
Olga I Belykh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964120/publications.pdf Version: 2024-02-01

OLCA L RELYKH

#	Article	IF	CITATIONS
1	Rapid ecological change in the coastal zone of Lake Baikal (East Siberia): Is the site of the world's greatest freshwater biodiversity in danger?. Journal of Great Lakes Research, 2016, 42, 487-497.	1.9	139
2	Comparative analysis of biodiversity in the planktonic and biofilm bacterial communities in Lake Baikal. Microbiology, 2013, 82, 91-101.	1.2	55
3	Application of a new cultivation technology, I-tip, for studying microbial diversity in freshwater sponges of Lake Baikal, Russia. FEMS Microbiology Ecology, 2014, 90, n/a-n/a.	2.7	48
4	Analysis of bacterial communities of two Lake Baikal endemic sponge species. Microbiology, 2014, 83, 787-797.	1.2	34
5	Phylogenetic diversity of T4-like bacteriophages in Lake Baikal, East Siberia. FEMS Microbiology Letters, 2010, 309, no-no.	1.8	33
6	First detection of benthic cyanobacteria in Lake Baikal producing paralytic shellfish toxins. Toxicon, 2016, 121, 36-40.	1.6	32
7	Metagenomic Analysis of Virioplankton from the Pelagic Zone of Lake Baikal. Viruses, 2019, 11, 991.	3.3	31
8	Identification of toxigenic Cyanobacteria of the genus Microcystis in the Curonian Lagoon (Baltic) Tj ETQq0 0 0 r	gBT /Overl 1.2	ock 10 Tf 50
9	Recent changes in the spring microplankton of Lake Baikal, Russia. Limnologica, 2019, 75, 19-29.	1.5	28
10	Autotrophic picoplankton of Lake Baikal: composition, abundance and structure. Hydrobiologia, 2006, 568, 9-17.	2.0	26
11	Presence and genetic diversity of microcystin-producing cyanobacteria (Anabaena and Microcystis) in Lake Kotokel (Russia, Lake Baikal Region). Hydrobiologia, 2011, 671, 241-252.	2.0	25
12	Stratified distribution of nutrients and extremophile biota within freshwater ice covering the surface of Lake Baikal. Journal of Microbiology, 2012, 50, 8-16.	2.8	22

13	Title is missing!. Hydrobiologia, 2000, 435, 83-90.	2.0	20
14	Nutritional diagnosis of phytoplankton in Lake Baikal. Ecological Research, 2002, 17, 135-142.	1.5	20
15	Diversity of the major capsid genes (g23) of T4-like bacteriophages in the eutrophic Lake Kotokel in East Siberia, Russia. Archives of Microbiology, 2013, 195, 513-520.	2.2	16
16	Plankton composition and water chemistry in the mixing zone of the Selenga River with Lake Baikal. Hydrobiologia, 2012, 695, 329-341.	2.0	15
17	Comparison of bacterial diversity and species composition in three endemic Baikalian sponges. Annales De Limnologie, 2016, 52, 27-32.	0.6	13
18	Extensive Contamination of Water with Saxitoxin Near the Dam of the Irkutsk Hydropower Station Reservoir (East Siberia, Russia). Toxins, 2018, 10, 402.	3.4	13

Olga I Belykh

#	Article	IF	CITATIONS
19	Estimate of the diversity of viral and bacterial assemblage in the coastal water of Lake Baikal. FEMS Microbiology Letters, 2019, 366, .	1.8	13
20	Diversity of cyanobacterial species and phylotypes in biofilms from the littoral zone of Lake Baikal. Journal of Microbiology, 2013, 51, 757-765.	2.8	12
21	First data on cyanobacterial biodiversity in benthic biofilms during mass mortality of endemic sponges in Lake Baikal. Journal of Great Lakes Research, 2020, 46, 75-84.	1.9	12
22	Role of phytoplankton size distribution in lake ecosystems revealed by a comparison of whole plankton community structure between Lake Baikal and Lake Biwa. Limnology, 2007, 8, 227-232.	1.5	11
23	Abundance and pigment type composition of picocyanobacteria in Barguzin Bay, Lake Baikal. Limnology, 2008, 9, 105-114.	1.5	11
24	Identification of two cyanobacterial strains isolated from the Kotel'nikovskii hot spring of the Baikal rift. Microbiology, 2008, 77, 365-372.	1.2	11
25	Genetic diversity of cyanophages of the myoviridae family as a constituent of the associated community of the Baikal sponge Lubomirskia baicalensis. Russian Journal of Genetics, 2015, 51, 313-317.	0.6	11
26	Ecological development and genetic diversity of Microcystis aeruginosa from artificial reservoir in Russia. Journal of Microbiology, 2011, 49, 714-720.	2.8	10
27	Saxitoxin-Producing cyanobacteria in Lake Baikal. Contemporary Problems of Ecology, 2015, 8, 186-192.	0.7	10
28	Identification of cyanobacterial producers of shellfish paralytic toxins in lake Baikal and reservoirs of the Angara River. Microbiology, 2015, 84, 98-99.	1.2	10
29	Assessing the diversity of the g23 gene of T4-like bacteriophages from Lake Baikal with high-throughput sequencing. FEMS Microbiology Letters, 2018, 365, .	1.8	8
30	Diversity of Aerobic Anoxygenic Phototrophs and Rhodopsin-Containing Bacteria in the Surface Microlayer, Water Column and Epilithic Biofilms of Lake Baikal. Microorganisms, 2021, 9, 842.	3.6	8
31	Cyanobacteria Nostoc Punctiforme from Abyssal Benthos of Lake Baikal: Unique Ecology and Metabolic Potential. Indian Journal of Microbiology, 2017, 57, 422-426.	2.7	7
32	Distribution of Pelagic Invertebrates Near a Thermal bar in Lake Baikal. Hydrobiologia, 2006, 568, 69-76.	2.0	6
33	Vertical distribution and feeding activity of Epischura baicalensis Sars (Copepoda) nauplii in response to two predators in Lake Baikal in winter. Fundamental and Applied Limnology, 2007, 169, 211-216.	0.7	6
34	Daily variation of CO2 exchange and photosynthesis intensity in surface water of Lake Baikal. Doklady Earth Sciences, 2007, 413, 402-405.	0.7	6
35	New Aspects in the Epidemiology of Craniofacial Anomalies. World Neurosurgery, 2012, 77, 599-600.	1.3	6
36	Bacterioneuston in Lake Baikal: Abundance, Spatial and Temporal Distribution. International Journal of Environmental Research and Public Health, 2018, 15, 2587.	2.6	6

Olga I Belykh

#	Article	IF	CITATIONS
37	Nitrogen-fixing cyanobacterium Trichormus variabilis of the Lake Baikal phytoplankton. Microbiology, 2008, 77, 726-733.	1.2	5
38	Diversity and biogeography of bacteriophages in biofilms of Lake Baikal based on g23 sequences. Journal of Great Lakes Research, 2020, 46, 4-11.	1.9	4
39	Estimation of the spacial variability of carbonic acid stream direction in different hydrological seasons at Lake Baikal. Atmospheric and Oceanic Optics, 2009, 22, 478-482.	1.3	3
40	Molecular genetic diversity of the Myoviridae family cyanophages in Lake Khövsgöl (Mongolia). Molecular Biology, 2014, 48, 906-910.	1.3	3
41	Identification of toxic Cyanobacteria in Lake Baikal. Doklady Biochemistry and Biophysics, 2015, 463, 220-224.	0.9	3
42	Communities of T4-like bacteriophages associated with bacteria in Lake Baikal: diversity and biogeography. PeerJ, 0, 10, e12748.	2.0	3
43	Molecular-genetic identification of T4 bacteriophages in Lake Baikal. Doklady Biochemistry and Biophysics, 2010, 433, 175-178.	0.9	2
44	Transbiome invasions of femtoplankton. Contemporary Problems of Ecology, 2016, 9, 266-271.	0.7	2
45	Draft Genome Sequence of the Green Microalga <i>Chlorella</i> sp. Strain BAC9706, Isolated from Lake Baikal, Russia. Microbiology Resource Announcements, 2020, 9, .	0.6	1

46 Đ"еĐ½ĐµÑ,Đ,чеÑĐ⁰Đ¾Đµ Ñ€Đ°Đ·Đ½Đ¾Đ¾Đ±Ñ€Đ°Đ·Đ,е Đ¢4-баĐ⁰Ň,еÑ€Đ,Đ¾Ñ,,аĐ³Đ¾Đ² ÑеĐ¼ĐµĐ¹ÑÃ,Đ²Đ° My