Vahagn Ohanyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964088/publications.pdf

Version: 2024-02-01

		430874		552781	
38	810	18		26	
papers	citations	h-index		g-index	
			. '		
20	20	20		1100	
38	38	38		1198	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Mechanism of the switch from NO to H2O2 in endothelium-dependent vasodilation in diabetes. Basic Research in Cardiology, 2022, 117, 2.	5.9	11
2	Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Research in Cardiology, 2022, 117, 3.	5.9	12
3	The essential role for endothelial cell sprouting in coronary collateral growth. Journal of Molecular and Cellular Cardiology, 2022, 165, 158-171.	1.9	5
4	Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nature Communications, 2022, 13, 2051.	12.8	5
5	The Vascular Basis of Takotsubo Syndrome. FASEB Journal, 2022, 36, .	0.5	O
6	TSP-1 (Thrombospondin-1) Deficiency Protects ApoE ^{â^'/â^'} Mice Against Leptin-Induced Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e112-e127.	2.4	26
7	Myocardial Blood Flow Control by Oxygen Sensing Vascular $\mathrm{Kv}\hat{l}^2$ Proteins. Circulation Research, 2021, 128, 738-751.	4.5	11
8	The Diabetic Coronary Microcirculation is Regulated by MicroRNAâ€21. FASEB Journal, 2021, 35, .	0.5	0
9	Cardiomyocyte TRPV4 deletion preserves cardiac function following pressure overloadâ€induced pathological hypertrophy independent of cardiac fibrosis. FASEB Journal, 2021, 35, .	0.5	O
10	The role of MSC derived exosomes on cardiac microvascular dysfunction. International Journal of Cardiology, 2021, 344, 36-37.	1.7	2
11	Coronary microvascular disease during metabolic syndrome: What is known and unknown. International Journal of Cardiology, 2020, 321, 18-19.	1.7	1
12	Step by Step. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 498-499.	2.4	0
13	Experimental animal models of coronary microvascular dysfunction. Cardiovascular Research, 2020, 116, 756-770.	3.8	43
14	Role for NADHâ€sensitive Kv channels in the myocardialâ€vascular signaling axis FASEB Journal, 2020, 34, 1-1.	0.5	0
15	The Role of Kv1.2 Channels in Coronary Metabolic Dilation. FASEB Journal, 2019, 33, 689.4.	0.5	0
16	Doxorubicinâ€induced cardiomyopathy: Prevention and treatment by a coronary specific vasodilator. FASEB Journal, 2019, 33, 685.14.	0.5	1
17	Deletion of endothelial TRPV4 protects myocardium against pressure overloadâ€induced hypertrophy. FASEB Journal, 2019, 33, 517.3.	0.5	0
18	Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation, 2018, 25, e12426.	1.8	19

#	Article	IF	Citations
19	$\mbox{Kv1.3}$ channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation, 2017, 24, e12334.	1.8	21
20	Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoEâ^/\angle a^2 mice. Scientific Reports, 2017, 7, 45279.	3.3	26
21	Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Research in Cardiology, 2017, 112, 41.	5.9	14
22	Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Research in Cardiology, 2016, 111, 29.	5.9	22
23	Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. Journal of Molecular and Cellular Cardiology, 2015, 88, 14-28.	1.9	34
24	Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation. Circulation Research, 2015, 117, 612-621.	4.5	78
25	TRPV4 Channel Deletion Improves Cardiac Remodeling Following Myocardial Injury via Modulation of MRTFâ€A Pathway. FASEB Journal, 2015, 29, 845.6.	0.5	O
26	Black currant phytoconstituents exert chemoprevention of diethylnitrosamineâ€initiated hepatocarcinogenesis by suppression of the inflammatory response. Molecular Carcinogenesis, 2013, 52, 304-317.	2.7	30
27	Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis. Journal of Nutritional Biochemistry, 2013, 24, 178-187.	4.2	47
28	Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiology, 2013, 9, 897-905.	1.2	32
29	Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 325-334.	2.4	57
30	Mechanisms of metabolic coronary flow regulation. Journal of Molecular and Cellular Cardiology, 2012, 52, 794-801.	1.9	93
31	Coronary collateral growth—Back to the future. Journal of Molecular and Cellular Cardiology, 2012, 52, 905-911.	1.9	51
32	Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research, 2012, 110, 241-252.	4.5	43
33	Gender differences in cardiac function of Kv1.5â^'/â^' mice during aging. FASEB Journal, 2012, 26, 860.13.	0.5	0
34	TRPV1 Channels In The Heart: A Novel Redox Sensor?. FASEB Journal, 2012, 26, 1056.4.	0.5	0
35	Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Investigational New Drugs, 2011, 29, 380-391.	2.6	35
36	Stimulation of Coronary Collateral Growth by Granulocyte Stimulating Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1817-1822.	2.4	25

#	Article	IF	CITATIONS
37	Redox-Dependent Mechanisms in Coronary Collateral Growth: The "Redox Window―Hypothesis. Antioxidants and Redox Signaling, 2009, 11, 1961-1974.	5.4	66
38	Cardiac Phenotypic Differences in Rat Models of the Metabolic Syndrome. FASEB Journal, 2009, 23, .	0.5	0