
Vahagn Ohanyan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2964088/publications.pdf Version: 2024-02-01

<u> Μαμας</u> Ομανγαν

#	Article	IF	CITATIONS
1	Mechanisms of metabolic coronary flow regulation. Journal of Molecular and Cellular Cardiology, 2012, 52, 794-801.	1.9	93
2	Requisite Role of Kv1.5 Channels in Coronary Metabolic Dilation. Circulation Research, 2015, 117, 612-621.	4.5	78
3	Redox-Dependent Mechanisms in Coronary Collateral Growth: The "Redox Window―Hypothesis. Antioxidants and Redox Signaling, 2009, 11, 1961-1974.	5.4	66
4	Resolution of Mitochondrial Oxidative Stress Rescues Coronary Collateral Growth in Zucker Obese Fatty Rats. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 325-334.	2.4	57
5	Coronary collateral growth—Back to the future. Journal of Molecular and Cellular Cardiology, 2012, 52, 905-911.	1.9	51
6	Pomegranate phytoconstituents blunt the inflammatory cascade in a chemically induced rodent model of hepatocellular carcinogenesis. Journal of Nutritional Biochemistry, 2013, 24, 178-187.	4.2	47
7	Induction of Vascular Progenitor Cells From Endothelial Cells Stimulates Coronary Collateral Growth. Circulation Research, 2012, 110, 241-252.	4.5	43
8	Experimental animal models of coronary microvascular dysfunction. Cardiovascular Research, 2020, 116, 756-770.	3.8	43
9	Chemopreventive doses of resveratrol do not produce cardiotoxicity in a rodent model of hepatocellular carcinoma. Investigational New Drugs, 2011, 29, 380-391.	2.6	35
10	Overexpressing superoxide dismutase 2 induces a supernormal cardiac function by enhancing redox-dependent mitochondrial function and metabolic dilation. Journal of Molecular and Cellular Cardiology, 2015, 88, 14-28.	1.9	34
11	Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiology, 2013, 9, 897-905.	1.2	32
12	Black currant phytoconstituents exert chemoprevention of diethylnitrosamineâ€initiated hepatocarcinogenesis by suppression of the inflammatory response. Molecular Carcinogenesis, 2013, 52, 304-317.	2.7	30
13	Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoEâ^'/â^' mice. Scientific Reports, 2017, 7, 45279.	3.3	26
14	TSP-1 (Thrombospondin-1) Deficiency Protects ApoE ^{â^'/â^'} Mice Against Leptin-Induced Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, e112-e127.	2.4	26
15	Stimulation of Coronary Collateral Growth by Granulocyte Stimulating Factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 1817-1822.	2.4	25
16	Impaired coronary metabolic dilation in the metabolic syndrome is linked to mitochondrial dysfunction and mitochondrial DNA damage. Basic Research in Cardiology, 2016, 111, 29.	5.9	22
17	Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation, 2017, 24, e12334.	1.8	21
18	Coronary microvascular Kv1 channels as regulatory sensors of intracellular pyridine nucleotide redox potential. Microcirculation, 2018, 25, e12426.	1.8	19

VAHAGN OHANYAN

#	Article	IF	CITATIONS
19	Alignment of inducible vascular progenitor cells on a micro-bundle scaffold improves cardiac repair following myocardial infarction. Basic Research in Cardiology, 2017, 112, 41.	5.9	14
20	Mitochondrial DNA integrity and function are critical for endothelium-dependent vasodilation in rats with metabolic syndrome. Basic Research in Cardiology, 2022, 117, 3.	5.9	12
21	Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins. Circulation Research, 2021, 128, 738-751.	4.5	11
22	Mechanism of the switch from NO to H2O2 in endothelium-dependent vasodilation in diabetes. Basic Research in Cardiology, 2022, 117, 2.	5.9	11
23	The essential role for endothelial cell sprouting in coronary collateral growth. Journal of Molecular and Cellular Cardiology, 2022, 165, 158-171.	1.9	5
24	Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nature Communications, 2022, 13, 2051.	12.8	5
25	The role of MSC derived exosomes on cardiac microvascular dysfunction. International Journal of Cardiology, 2021, 344, 36-37.	1.7	2
26	Coronary microvascular disease during metabolic syndrome: What is known and unknown. International Journal of Cardiology, 2020, 321, 18-19.	1.7	1
27	Doxorubicinâ€induced cardiomyopathy: Prevention and treatment by a coronary specific vasodilator. FASEB Journal, 2019, 33, 685.14.	0.5	1
28	Step by Step. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 498-499.	2.4	0
29	The Diabetic Coronary Microcirculation is Regulated by MicroRNAâ \in 21. FASEB Journal, 2021, 35, .	0.5	Ο
30	Cardiomyocyte TRPV4 deletion preserves cardiac function following pressure overloadâ€induced pathological hypertrophy independent of cardiac fibrosis. FASEB Journal, 2021, 35, .	0.5	0
31	Cardiac Phenotypic Differences in Rat Models of the Metabolic Syndrome. FASEB Journal, 2009, 23, .	0.5	Ο
32	Gender differences in cardiac function of Kv1.5â^'/â^' mice during aging. FASEB Journal, 2012, 26, 860.13.	0.5	0
33	TRPV1 Channels In The Heart: A Novel Redox Sensor?. FASEB Journal, 2012, 26, 1056.4.	0.5	Ο
34	TRPV4 Channel Deletion Improves Cardiac Remodeling Following Myocardial Injury via Modulation of MRTFâ€A Pathway. FASEB Journal, 2015, 29, 845.6.	0.5	0
35	The Role of Kv1.2 Channels in Coronary Metabolic Dilation. FASEB Journal, 2019, 33, 689.4.	0.5	0
36	Deletion of endothelial TRPV4 protects myocardium against pressure overloadâ€induced hypertrophy. FASEB Journal, 2019, 33, 517.3.	0.5	0

#	Article	IF	CITATIONS
37	Role for NADHâ€sensitive Kv channels in the myocardialâ€vascular signaling axis FASEB Journal, 2020, 34, 1-1.	0.5	0
38	The Vascular Basis of Takotsubo Syndrome. FASEB Journal, 2022, 36, .	0.5	0