
Niels Hadrup

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2963984/publications.pdf Version: 2024-02-01

NIELS HADDUD

#	Article	IF	CITATIONS
1	Asthmaâ€inducing potential of 28 substances in spray cleaning products—Assessed by quantitative structure activity relationship (QSAR) testing and literature review. Journal of Applied Toxicology, 2022, 42, 130-153.	2.8	14
2	Distribution, metabolism, excretion, and toxicity of implanted silver: a review. Drug and Chemical Toxicology, 2022, 45, 2388-2397.	2.3	5
3	Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology, 2022, 467, 153098.	4.2	16
4	Pulmonary toxicity of synthetic amorphous silica – effects of porosity and copper oxide doping. Nanotoxicology, 2021, 15, 96-113.	3.0	20
5	Toxicity of boric acid, borax and other boron containing compounds: A review. Regulatory Toxicology and Pharmacology, 2021, 121, 104873.	2.7	50
6	Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials. NanoImpact, 2021, 23, 100335.	4.5	27
7	Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. Journal of Trace Elements in Medicine and Biology, 2021, 67, 126801.	3.0	41
8	Safe-by-design strategies for lowering the genotoxicity and pulmonary inflammation of multiwalled carbon nanotubes: Reduction of length and the introduction of COOH groups. Environmental Toxicology and Pharmacology, 2021, 87, 103702.	4.0	7
9	Toward Rigorous Materials Production: New Approach Methodologies Have Extensive Potential to Improve Current Safety Assessment Practices. Small, 2020, 16, e1904749.	10.0	43
10	Pulmonary toxicity of Fe2O3, ZnFe2O4, NiFe2O4 and NiZnFe4O8 nanomaterials: Inflammation and DNA strand breaks. Environmental Toxicology and Pharmacology, 2020, 74, 103303.	4.0	27
11	Acute human toxicity and mortality after selenium ingestion: A review. Journal of Trace Elements in Medicine and Biology, 2020, 58, 126435.	3.0	84
12	Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 2020, 20, 100267.	4.5	22
13	A response to the letter to the editor by Driscoll et al Particle and Fibre Toxicology, 2020, 17, 32.	6.2	2
14	Pulmonary toxicity of silver vapours, nanoparticles and fine dusts: A review. Regulatory Toxicology and Pharmacology, 2020, 115, 104690.	2.7	60
15	Acute Phase Response as a Biological Mechanismâ€ofâ€Action of (Nano)particleâ€Induced Cardiovascular Disease. Small, 2020, 16, e1907476.	10.0	37
16	Subacute oral toxicity investigation of selenium nanoparticles and selenite in rats. Drug and Chemical Toxicology, 2019, 42, 76-83.	2.3	28
17	Acute phase response and inflammation following pulmonary exposure to low doses of zinc oxide nanoparticles in mice. Nanotoxicology, 2019, 13, 1275-1292.	3.0	42
18	Association between a urinary biomarker for exposure to PAH and blood level of the acute phase protein serum amyloid A in coke oven workers. Environmental Health, 2019, 18, 81.	4.0	15

NIELS HADRUP

#	Article	IF	CITATIONS
19	Pulmonary effects of nanofibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environmental Toxicology and Pharmacology, 2019, 66, 116-125.	4.0	42
20	Commentary: the chronic inhalation study in rats for assessing lung cancer risk may be better than its reputation. Particle and Fibre Toxicology, 2019, 16, 44.	6.2	20
21	Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: A review. Regulatory Toxicology and Pharmacology, 2018, 98, 257-267.	2.7	200
22	Influence of dispersion medium on nanomaterial-induced pulmonary inflammation and DNA strand breaks: investigation of carbon black, carbon nanotubes and three titanium dioxide nanoparticles. Mutagenesis, 2017, 32, 581-597.	2.6	47
23	Effects of 14-day oral low dose selenium nanoparticles and selenite in rat—as determined by metabolite pattern determination. PeerJ, 2016, 4, e2601.	2.0	25
24	Perfluorononanoic acid in combination with 14 chemicals exerts low-dose mixture effects in rats. Archives of Toxicology, 2016, 90, 661-675.	4.2	16
25	Juvenile Male Rats Exposed to a Low-Dose Mixture of Twenty-Seven Environmental Chemicals Display Adverse Health Effects. PLoS ONE, 2016, 11, e0162027.	2.5	16
26	Perinatal exposure to mixtures of anti-androgenic chemicals causes proliferative lesions in rat prostate. Prostate, 2015, 75, 126-140.	2.3	15
27	Exposure to perfluorononanoic acid combined with a low-dose mixture of 14 human-relevant compounds disturbs energy/lipid homeostasis in rats. Metabolomics, 2015, 11, 1451-1464.	3.0	4
28	Toxicological risk assessment of elemental gold following oral exposure to sheets and nanoparticles – A review. Regulatory Toxicology and Pharmacology, 2015, 72, 216-221.	2.7	30
29	LC–MS analysis of the plasma metabolome—A novel sample preparation strategy. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 978-979, 83-88.	2.3	25
30	Selection of reference genes for quantitative RT-PCR (RT-qPCR) analysis of rat tissues under physiological and toxicological conditions. PeerJ, 2015, 3, e855.	2.0	79
31	Applicability of Computational Systems Biology in Toxicology. Basic and Clinical Pharmacology and Toxicology, 2014, 115, 45-49.	2.5	17
32	Absorption, distribution, metabolism and excretion of selenium following oral administration of elemental selenium nanoparticles or selenite in rats. Metallomics, 2014, 6, 330.	2.4	81
33	Oral toxicity of silver ions, silver nanoparticles and colloidal silver – A review. Regulatory Toxicology and Pharmacology, 2014, 68, 1-7.	2.7	420
34	In-vivo study of genotoxic and inflammatory effects of the organo-modified Montmorillonite Cloisite® 30B. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2014, 770, 66-71.	1.7	21
35	Evidence from pharmacology and pathophysiology suggests that chemicals with dissimilar mechanisms of action could be of bigger concern in the toxicological risk assessment of chemical mixtures than chemicals with a similar mechanism of action. Regulatory Toxicology and Pharmacology. 2014. 69. 281-283.	2.7	14
36	A computational approach to mechanistic and predictive toxicology of pesticides. ALTEX: Alternatives To Animal Experimentation, 2014, 31, 11-22.	1.5	19

NIELS HADRUP

#	Article	IF	CITATIONS
37	Effects of perinatal ethinyl estradiol exposure in male and female Wistar rats. Reproductive Toxicology, 2013, 42, 180-191.	2.9	26
38	In vitro - in vivo correlations for endocrine activity of a mixture of currently used pesticides. Toxicology and Applied Pharmacology, 2013, 272, 757-766.	2.8	47
39	Endocrine disrupting effects in rats perinatally exposed to a dietary relevant mixture of phytoestrogens. Reproductive Toxicology, 2013, 40, 41-51.	2.9	27
40	Fluorochemicals used in food packaging inhibit male sex hormone synthesis. Toxicology and Applied Pharmacology, 2013, 266, 132-142.	2.8	75
41	Congestive heart failure in rats is associated with increased collecting duct vasopressin sensitivity and vasopressin type 2 receptor reexternalization. American Journal of Physiology - Renal Physiology, 2013, 305, F1547-F1554.	2.7	8
42	Demeclocycline attenuates hyponatremia by reducing aquaporin-2 expression in the renal inner medulla. American Journal of Physiology - Renal Physiology, 2013, 305, F1705-F1718.	2.7	20
43	Concentration Addition, Independent Action and Generalized Concentration Addition Models for Mixture Effect Prediction of Sex Hormone Synthesis In Vitro. PLoS ONE, 2013, 8, e70490.	2.5	78
44	The similar neurotoxic effects of nanoparticulate and ionic silver in vivo and in vitro. NeuroToxicology, 2012, 33, 416-423.	3.0	114
45	Identification of Cumulative Assessment Groups of Pesticides. EFSA Supporting Publications, 2012, 9, 269E.	0.7	26
46	Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics. Journal of Applied Toxicology, 2012, 32, 929-933.	2.8	31
47	Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Archives of Toxicology, 2012, 86, 543-551.	4.2	119
48	Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 2011, 83, 2461-2468.	6.5	164
49	Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Particle and Fibre Toxicology, 2011, 8, 18.	6.2	394
50	Nociceptin/Orphanin FQ Peptide Receptor Agonist Ac-RYYRWKKKKKKK-NH2 (ZP120) Induces Antinatriuresis in Rats by Stimulation of Amiloride-Sensitive Sodium Reabsorption. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 533-539.	2.5	6
51	Differential Down-Regulation of Aquaporin-2 in Rat Kidney Zones by Peripheral Nociceptin/Orphanin FQ Receptor Agonism and Vasopressin Type-2 Receptor Antagonism. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 516-524.	2.5	11
52	Losartan decreases vasopressinâ€mediated cAMP accumulation in the thick ascending limb of the loop of Henle in rats with congestive heart failure. Acta Physiologica, 2007, 190, 339-350.	3.8	13
53	Uncoupling of vasopressin signaling in collecting ducts from rats with CBL-induced liver cirrhosis. American Journal of Physiology - Renal Physiology, 2004, 287, F806-F815.	2.7	13
54	Distinct in vitro interaction pattern of dopamine receptor subtypes with adaptor proteins involved in post-endocytotic receptor targeting. FEBS Letters, 2004, 556, 276-280.	2.8	35

#	Article	IF	CITATIONS
55	Opioid receptor-like 1 stimulation in the collecting duct induces aquaresis through vasopressin-independent aquaporin-2 downregulation. American Journal of Physiology - Renal Physiology, 2004, 287, F160-F168.	2.7	20