
Yaolin Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2963952/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Treatment of ladle furnace slag by carbonation: Carbon dioxide sequestration, heavy metal immobilization, and strength enhancement. Chemosphere, 2022, 287, 132274.	4.2	15
2	Comparison between CaO- and MgO-activated ground granulated blast-furnace slag (GGBS) for stabilization/solidification of Zn-contaminated clay slurry. Chemosphere, 2022, 286, 131860.	4.2	26
3	Cement soil stabilization for underground liquid natural gas storage. Cold Regions Science and Technology, 2022, 194, 103438.	1.6	8
4	The role of freshwater sludge and its carbonaceous derivatives in the removal of lead, phosphorus and antibiotic enrofloxacin: Sorption characteristics and performance. Chemosphere, 2022, 290, 133298.	4.2	5
5	Comparing carbide sludge-ground granulated blastfurnace slag and ordinary Portland cement: Different findings from binder paste and stabilized clay slurry. Construction and Building Materials, 2022, 321, 126382.	3.2	22
6	Carbonation treatment of gasification fly ash from municipal solid waste using sodium carbonate and sodium bicarbonate solutions. Environmental Pollution, 2022, 299, 118906.	3.7	8
7	Stabilization and Solidification of Fine Incineration Bottom Ash of Municipal Solid Waste Using Ground Granulated Blast-Furnace Slag. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	5
8	Utilization of incineration bottom ash, waste marine clay, and ground granulated blast-furnace slag as a construction material. Resources, Conservation and Recycling, 2022, 182, 106292.	5.3	11
9	Characterization and comparison of gasification and incineration fly ashes generated from municipal solid waste in Singapore. Waste Management, 2022, 146, 44-52.	3.7	9
10	Treating Pb-contaminated clay slurry by three curing agents. Chemosphere, 2022, 303, 135011.	4.2	3
11	Triaxial strength behavior of carbide sludge (CS)–ground-granulated blastfurnace slag (GGBS)-treated clay slurry. Acta Geotechnica, 2022, 17, 5585-5596.	2.9	12
12	Amending excavated soft marine clay with fine incineration bottom ash as a fill material for construction of transportation infrastructure. Transportation Geotechnics, 2022, 35, 100796.	2.0	4
13	Carbonation of municipal solid waste gasification fly ash: Effects of pre-washing and treatment period on carbon capture and heavy metal immobilization. Environmental Pollution, 2022, 308, 119662.	3.7	9
14	Carbonating MgO for treatment of manganese- and cadmium-contaminated soils. Chemosphere, 2021, 263, 128311.	4.2	22
15	Heat of hydration, bleeding, viscosity, setting of Ca(OH)2-GGBS and MgO-GGBS grouts. Construction and Building Materials, 2021, 270, 121839.	3.2	27
16	Acid washing of incineration bottom ash of municipal solid waste: Effects of pH on removal and leaching of heavy metals. Waste Management, 2021, 120, 183-192.	3.7	35
17	General solutions for the longitudinal deformation of shield tunnels with multiple discontinuities in strata. Tunnelling and Underground Space Technology, 2021, 107, 103652.	3.0	37
18	Biochar and hydrochar derived from freshwater sludge: Characterization and possible applications. Science of the Total Environment, 2021, 763, 144550.	3.9	49

#	Article	IF	CITATIONS
19	Bearing capacity optimization of T-shaped soil-cement column-improved soft ground under soft fill. Soils and Foundations, 2021, 61, 416-428.	1.3	6
20	Soft Clay Stabilization Using Three Industry Byproducts. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	21
21	Geotechnical and geoenvironmental engineering education during the pandemic. Environmental Geotechnics, 2021, 8, 233-243.	1.3	7
22	Closure to "Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag―by Wentao Li, Yaolin Yi, and Anand J. Puppala. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	0
23	Performance evaluation of TBM clogging potential for plain and conditioning soil using a newly developed laboratory apparatus. International Journal of Geotechnical Engineering, 2020, 14, 463-472.	1.1	12
24	Use of carbide slag from acetylene industry for activation of ground granulated blast-furnace slag. Construction and Building Materials, 2020, 238, 117713.	3.2	89
25	Use of ladle furnace slag containing heavy metals as a binding material in civil engineering. Science of the Total Environment, 2020, 705, 135854.	3.9	36
26	Suppressing Ettringite-Induced Swelling of Gypseous Soil by Using Magnesia-Activated Ground Granulated Blast-Furnace Slag. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	35
27	pH evolution during water washing of incineration bottom ash and its effect on removal of heavy metals. Waste Management, 2020, 104, 213-219.	3.7	32
28	Numerical Modeling of the Annular Failure Pressure during HDD in Noncohesive Soils. Journal of Pipeline Systems Engineering and Practice, 2020, 11, 04020004.	0.9	1
29	Assessment of the clogging potential of two clays. Applied Clay Science, 2019, 178, 105134.	2.6	11
30	Soft clay stabilization using ladle slag-ground granulated blastfurnace slag blend. Applied Clay Science, 2019, 178, 105136.	2.6	45
31	Stabilization/solidification of lead- and zinc-contaminated soils using MgO and CO2. Journal of CO2 Utilization, 2019, 33, 215-221.	3.3	45
32	Comparison of reactive magnesia, quick lime, and ordinary Portland cement for stabilization/solidification of heavy metal-contaminated soils. Science of the Total Environment, 2019, 671, 741-753.	3.9	119
33	Variable-diameter deep mixing column for multi-layered soft ground improvement: Laboratory modeling and field application. Soils and Foundations, 2019, 59, 633-643.	1.3	20
34	Utilization of carbide slag-activated ground granulated blastfurnace slag to treat gypseous soil. Soils and Foundations, 2019, 59, 1496-1507.	1.3	28
35	Predicting one-dimensional compression of tire derived aggregate using a simple method. Soils and Foundations, 2019, 59, 1292-1301.	1.3	3
36	Bearing capacity of composite ground with soil-cement columns under earth fills: Physical and numerical modeling. Soils and Foundations, 2019, 59, 2206-2219.	1.3	17

#	Article	IF	CITATIONS
37	Bearing capacity of composite foundation consisting of T-shaped soil-cement column and soft clay. Transportation Geotechnics, 2018, 15, 47-56.	2.0	46
38	Numerical study of earth pressures on rigid pipes with tire-derived aggregate inclusions. Geosynthetics International, 2018, 25, 494-506.	1.5	38
39	Simple methods for fluidic drag estimation during pipe installation via HDD. Tunnelling and Underground Space Technology, 2018, 76, 172-176.	3.0	2
40	Subsurface profiling using horizontal drilling indices for guided boring method. International Journal of Geotechnical Engineering, 2018, 12, 155-165.	1.1	0
41	Clogging potential of tunnel boring machine (TBM): a review. International Journal of Geotechnical Engineering, 2018, 12, 316-323.	1.1	19
42	Fragility analysis of continuous pipelines subjected to transverse permanent ground deformation. Soils and Foundations, 2018, 58, 1400-1413.	1.3	48
43	Use of tire-derived aggregate for seismic mitigation of buried pipelines under strike-slip faults. Soil Dynamics and Earthquake Engineering, 2018, 115, 495-506.	1.9	31
44	Stabilization of Marine Soft Clay with Two Industry By-products. , 2018, , 121-128.		0
45	Numerical Investigation of T-Shaped Soil-Cement Column Supported Embankment Over Soft Ground. Springer Series in Geomechanics and Geoengineering, 2018, , 1068-1071.	0.0	3
46	Efficient drilling in horizontal directional drilling by implementing the concept of specific energy. Geomechanics and Geoengineering, 2017, 12, 201-206.	0.9	2
47	Mechanical properties of clayey soil relevant for clogging potential. International Journal of Geotechnical Engineering, 2017, , 1-8.	1.1	7
48	Estimation of Hydrokinetic Pressure and Fluidic Drag Changes during Pipe Installations via HDD Based on Identifying Slurry-Flow Pattern Change within a Borehole. Journal of Pipeline Systems Engineering and Practice, 2017, 8, 04017020.	0.9	3
49	Jacking Force Analysis of Pipe Installation Using a Modified Guided Boring Method. Journal of Pipeline Systems Engineering and Practice, 2017, 8, 04017014.	0.9	1
50	Estimation of Soil Expansion Force in Static Pipe Bursting: Comparison between Numerical and Analytical Solutions. International Journal of Geomechanics, 2017, 17, .	1.3	2
51	Estimation of Maximum Annular Pressure during HDD in Noncohesive Soils. International Journal of Geomechanics, 2017, 17, .	1.3	8
52	Vertical bearing capacity behaviour of single T-shaped soil–cement column in soft ground: laboratory modelling, field test, and calculation. Acta Geotechnica, 2017, 12, 1077-1088.	2.9	44
53	Performance Evaluation of Highway Embankment Constructed from Tire-Derived Aggregate Using Falling Weight Deflectometer Tests. Transportation Infrastructure Geotechnology, 2016, 3, 128-142.	1.9	7
54	Case Study of Pipeline Installation Using a Modified Guided Boring Method. Journal of Pipeline Systems Engineering and Practice, 2016, 7, 05016002.	0.9	1

#	Article	IF	CITATIONS
55	Laboratory modelling of T-shaped soil–cement column for soft ground treatment under embankment. Geotechnique, 2016, 66, 85-89.	2.2	34
56	General Method for Pullback Force Estimation for Polyethylene Pipes in Horizontal Directional Drilling. Journal of Pipeline Systems Engineering and Practice, 2016, 7, 04016004.	0.9	7
57	Predicting Soil Expansion Force during Static Pipe Bursting Using Cavity Expansion Solutions. International Journal of Geomechanics, 2016, 16, 04015075.	1.3	4
58	Predicting the plan annular pressure using the power law flow model in horizontal directional drectional drilling. Canadian Journal of Civil Engineering, 2016, 43, 252-259.	0.7	3
59	Magnesia reactivity on activating efficacy for ground granulated blastfurnace slag for soft clay stabilisation. Applied Clay Science, 2016, 126, 57-62.	2.6	64
60	Finite-Element Analysis of Highway Embankment Made from Tire-Derived Aggregate. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	12
61	Comparison of different methods for normal stress calculation during pipe jacking/microtunneling. International Journal of Geotechnical Engineering, 2016, 10, 366-376.	1.1	3
62	Mechanism of reactive magnesia – ground granulated blastfurnace slag (GGBS) soil stabilization. Canadian Geotechnical Journal, 2016, 53, 773-782.	1.4	87
63	Property changes of reactive magnesia–stabilized soil subjected to forced carbonation. Canadian Geotechnical Journal, 2016, 53, 314-325.	1.4	60
64	Magnesium sulfate attack on clays stabilised by carbide slag- and magnesia-ground granulated blast furnace slag. Geotechnique Letters, 2015, 5, 306-312.	0.6	48
65	Alkali-Activated Ground-Granulated Blast Furnace Slag for Stabilization of Marine Soft Clay. Journal of Materials in Civil Engineering, 2015, 27, .	1.3	97
66	On the compressibility of tire-derived aggregate: comparison of results from laboratory and field tests. Canadian Geotechnical Journal, 2015, 52, 442-458.	1.4	28
67	Carbide slag–activated ground granulated blastfurnace slag for soft clay stabilization. Canadian Geotechnical Journal, 2015, 52, 656-663.	1.4	60
68	Comparison of reactive magnesia- and carbide slag-activated ground granulated blastfurnace slag and Portland cement for stabilisation of a natural soil. Applied Clay Science, 2015, 111, 21-26.	2.6	94
69	Fluidic Drag Estimation in Horizontal Directional Drilling Based on Flow Equations. Journal of Pipeline Systems Engineering and Practice, 2015, 6, 04015006.	0.9	6
70	Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blastfurnace slag. Applied Clay Science, 2015, 103, 71-76.	2.6	157
71	Resistance of MgO–GGBS and CS–GGBS stabilised marine soft clays to sodium sulfate attack. Geotechnique, 2014, 64, 673-679.	2.2	65
72	Properties and microstructure of GGBS–magnesia pastes. Advances in Cement Research, 2014, 26, 114-122.	0.7	88

#	Article	IF	CITATIONS
73	Properties of Two Model Soils Stabilized with Different Blends and Contents of GGBS, MgO, Lime, and PC. Journal of Materials in Civil Engineering, 2014, 26, 267-274.	1.3	119
74	Carbonating magnesia for soil stabilization. Canadian Geotechnical Journal, 2013, 50, 899-905.	1.4	100
75	Cement–fly ash stabilisation/solidification of contaminated soil: Performance properties and initiation of operating envelopes. Applied Geochemistry, 2013, 33, 64-75.	1.4	76
76	Preliminary Laboratory-Scale Model Auger Installation and Testing of Carbonated Soil-MgO Columns. Geotechnical Testing Journal, 2013, 36, 384-393.	0.5	42
77	Initial Investigation into the Use of GGBS-MgO in Soil Stabilisation. , 2012, , .		21
78	Field Investigations on Performance of T-Shaped Deep Mixed Soil Cement Column–Supported Embankments over Soft Ground. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2012, 138, 718-727.	1.5	129
79	pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil. Journal of Environmental Sciences, 2012, 24, 1630-1638.	3.2	61
80	Process envelopes for stabilisation/solidification of contaminated soil using lime–slag blend. Environmental Science and Pollution Research, 2011, 18, 1286-1296.	2.7	42
81	Effect of water/cement ratio on properties of cement-stabilized Singapore soft marine clay for wet deep mixing application. International Journal of Geotechnical Engineering, 0, , 1-8.	1.1	5