
Yukihiro Shimogaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2963222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identifying the mechanism of formation of chlorinated silane polymer byâ€products during chemical vapor infiltration of SiC from CH ₃ SiCl ₃ /H ₂ . International Journal of Chemical Kinetics, 2022, 54, 300-308.	1.0	2
2	Suitability of metallic materials for constructing metal-coated dielectric terahertz waveguides. Journal of Applied Physics, 2022, 131, .	1.1	4
3	Kinetic analysis of face-centered-cubic Ti1â^'Al N film deposition by chemical vapor deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114992.	1.7	4
4	Elementary gasâ€phase reactions of radical species during chemical vapor deposition of silicon carbide using CH 3 SiCl 3. International Journal of Chemical Kinetics, 2021, 53, 638-645.	1.0	5
5	Development of a model for evaluating propagation loss of metal-coated dielectric terahertz waveguides. Journal of Applied Physics, 2021, 130, .	1.1	5
6	Conformal and Stoichiometric Chemical Vapor Deposition of Silicon Carbide onto Ultradeep Heterogeneous Micropores by Controlling the Initial Nucleation Stage. ACS Applied Materials & Interfaces, 2021, 13, 53009-53020.	4.0	7
7	Porous Membranes as Sacrificial Layers Enabling Conformal Chemical Vapor Deposition Involving Multiple Film-Forming Species. ACS Applied Materials & Interfaces, 2020, 12, 51016-51025.	4.0	4
8	Hot-Wire-Assisted Atomic Layer Deposition of High-Quality Ru Thin Films in the Absence of Oxidization. ECS Journal of Solid State Science and Technology, 2020, 9, 024010.	0.9	0
9	Modeling of the elementary gasâ€phase reaction during chemical vapor deposition of silicon carbide from CH ₃ SiCl ₃ /H ₂ . International Journal of Chemical Kinetics, 2020, 52, 359-367.	1.0	6
10	Material evaluation for inner metallic coating of hollow dielectric THz waveguides. , 2020, , .		1
11	Supercritical fluid deposition technique enabling metallic coating onto 3D-printed polymer for fabrication of high-aspect-ratio THz devices. , 2020, , .		0
12	Identification of Film-Forming Species during SiC-CVD of CH ₃ SiCl ₃ /H ₂ by Exploiting Deep Microtrenches. ECS Journal of Solid State Science and Technology, 2019, 8, P423-P429.	0.9	5
13	Growth mechanism of hot wire-assisted atomic layer deposition of nickel to achieve conformal deposition on trenches: role of physisorption and chemisorption. Japanese Journal of Applied Physics, 2019, 58, 075505.	0.8	1
14	Strain control of GaN grown on Si substrates using an AlGaN interlayer. Journal of Crystal Growth, 2019, 514, 65-69.	0.7	3
15	Kinetic effects of methanol addition on supercritical fluid deposition of TiO2. Journal of Supercritical Fluids, 2018, 138, 63-72.	1.6	2
16	Separate evaluation of multiple film-forming species in chemical vapor deposition of SiC using high aspect-ratio microchannels. Japanese Journal of Applied Physics, 2017, 56, 06HE02.	0.8	7
17	Fundamental Evaluation of Gas-Phase Elementary Reaction Models for Silicon Carbide Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2017, 6, P399-P404.	0.9	7
18	Conformal Bismuth Titanate Formation Using Supercritical Fluid Deposition. ECS Journal of Solid State Science and Technology, 2017, 6, P483-P488.	0.9	5

#	Article	IF	CITATIONS
19	Supercritical fluid deposition of conformal oxide films: 3-dimentionally-stacked RuO <inf>2</inf> /TiO <inf>2</inf> /RuO <inf>2</inf> structures for MIM capacitors. , 2017, , .		0
20	Experimental approach to estimate diffusivity of metal organics in supercritical CO 2 at high temperatures. Journal of Supercritical Fluids, 2017, 120, 209-217.	1.6	4
21	Highâ€Aspectâ€Ratio Parallelâ€Plate Microchannels Applicable to Kinetic Analysis of Chemical Vapor Deposition. Advanced Materials Interfaces, 2016, 3, 1600254.	1.9	6
22	Microchannels: High-Aspect-Ratio Parallel-Plate Microchannels Applicable to Kinetic Analysis of Chemical Vapor Deposition (Adv. Mater. Interfaces 16/2016). Advanced Materials Interfaces, 2016, 3, .	1.9	1
23	Kinetic Analysis of GaN-MOVPE via Thickness Profiles in the Gas Flow Direction with Systematically Varied Growth Conditions. ECS Journal of Solid State Science and Technology, 2016, 5, P164-P171.	0.9	2
24	Solubility of bis-(2,2,6,6-tetramethyl-3,5-heptanedionato)copper(II) in mixed supercritical CO2 and H2 systems for application in supercritical fluid deposition of Cu. Journal of Supercritical Fluids, 2015, 105, 193-200.	1.6	6
25	Study on the Adhesion Strength of CVD-Cu Films with ALD-Co(W) Underlayers Made Using Amidinato Precursors. ECS Journal of Solid State Science and Technology, 2015, 4, P20-P29.	0.9	5
26	Comparative Study on Cu-CVD Nucleation Using Î ² -diketonato and Amidinato Precursors for Sub-10-nm-Thick Continuous Film Growth. ECS Journal of Solid State Science and Technology, 2015, 4, P305-P313.	0.9	5
27	Analysis of the Gas Phase Kinetics Active during GaN Deposition from NH ₃ and Ga(CH ₃) ₃ . Journal of Physical Chemistry A, 2015, 119, 7858-7871.	1.1	15
28	Fabrication of Ni mold for nanoimprint lithography by combining two supercritical fluid-based deposition technologies. Japanese Journal of Applied Physics, 2015, 54, 076501.	0.8	1
29	Precursor-based designs of nano-structures and their processing for Co(W) alloy films as a single layered barrier/liner layer in future Cu-interconnect. Journal of Materials Chemistry C, 2015, 3, 2500-2510.	2.7	14
30	Dependency of the Underlying Surface Condition on Dielectric Film Removal at Wafer Edge. ECS Journal of Solid State Science and Technology, 2014, 3, N3041-N3045.	0.9	0
31	Role of W and Mn for reliable 1X nanometer-node ultra-large-scale integration Cu interconnects proved by atom probe tomography. Applied Physics Letters, 2014, 105, 133512.	1.5	8
32	Comparative Surface Study on Silicon Dioxide Film Covered with Alcohols. ECS Journal of Solid State Science and Technology, 2014, 3, N3001-N3005.	0.9	1
33	Comparative Surface Study on Hydrogen Terminated Si Surface Covered with Alcohols. ECS Journal of Solid State Science and Technology, 2014, 3, N46-N51.	0.9	3
34	Kinetic study of alcohol-assisted supercritical fluid deposition of TiO2. Thin Solid Films, 2014, 553, 184-187.	0.8	5
35	Role of NH3 feeding period to realize high-quality nickel films by hot-wire-assisted atomic layer deposition. Microelectronic Engineering, 2014, 120, 230-234.	1.1	16
36	Kinetic study on hot-wire-assisted atomic layer deposition of nickel thin films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2014, 32, 01A104.	0.9	21

#	Article	IF	CITATIONS
37	Design of a Multi-Wafer Reactor for Supercritical Fluid Deposition of Cu in Mass Production: (1) Reaction Mechanism and Kinetics. Journal of Chemical Engineering of Japan, 2014, 47, 737-742.	0.3	6
38	Design of a Multi-Wafer Reactor for Supercritical Fluid Deposition of Cu in Mass Production: (2) Benchmarks for Single- and Multiple-Wafer Reactors. Journal of Chemical Engineering of Japan, 2014, 47, 743-749.	0.3	5
39	CVD of cobalt–tungsten alloy film as a novel copper diffusion barrier. Microelectronic Engineering, 2013, 106, 91-95.	1.1	38
40	Strontium ruthenium oxide deposition in supercritical carbon dioxide using a closed reactor system. Journal of Supercritical Fluids, 2013, 79, 244-250.	1.6	12
41	Selective area MOVPE of InGaAsP and InGaN systems as process analytical and design tools for OEICs. , 2013, , .		0
42	Film Thickness Prediction of Poly-Silicon LPCVD Process with a Simplified Two-Step Surface Reaction Model. ECS Journal of Solid State Science and Technology, 2013, 2, N182-N186.	0.9	3
43	Multi-Scale Analysis and Elementary Reaction Simulation of SiC-CVD Using CH ₃ SiCl ₃ /H ₂ . ECS Journal of Solid State Science and Technology, 2013, 2, P492-P497.	0.9	18
44	Potential Step Coverage for Supercritical Fluid Deposition of TiO2 by Numerical Simulation and Microcavity Analysis. ECS Solid State Letters, 2013, 2, P79-P81.	1.4	7
45	Self-Assembled Nano-Stuffing Structure in CVD and ALD Co(W) Films as a Single-Layered Barrier/Liner for Future Cu-Interconnects. ECS Journal of Solid State Science and Technology, 2013, 2, P471-P477.	0.9	9
46	Ethanol-Assisted Flow-Type Supercritical Fluid Deposition of SrRuO3 for Stoichiometric Film Formation. ECS Solid State Letters, 2013, 2, P70-P72.	1.4	5
47	Study on the Adhesion Strength of CVD-Cu Films with CVD/ALD-Co(W) Underlayers Made Using Carbonyl Precursors. ECS Solid State Letters, 2013, 3, P20-P22.	1.4	6
48	Smooth and Conformal TiO ₂ Thin-Film Formation Using Supercritical Fluid Deposition. ECS Journal of Solid State Science and Technology, 2013, 2, N191-N195.	0.9	11
49	Material design of plasma-enhanced chemical vapour deposition SiCH films for low- <i>k</i> cap layers in the further scaling of ultra-large-scale integrated devices-Cu interconnects. Science and Technology of Advanced Materials, 2013, 14, 055005.	2.8	5
50	Gap Filling Model of O3-Tetraethylorthosilicate Film Formed on an Underlying Layer Pretreated with Organic Solvent. ECS Journal of Solid State Science and Technology, 2013, 2, N237-N242.	0.9	0
51	One-Step Fabrication of Copper Thin Films on Insulators Using Supercritical Fluid Deposition. Journal of the Electrochemical Society, 2013, 160, D3290-D3294.	1.3	2
52	CVD and ALD Co(W) Films Using Amidinato Precursors as a Single-Layered Barrier/Liner for Next-Generation Cu-Interconnects. ECS Journal of Solid State Science and Technology, 2013, 2, P311-P315.	0.9	14
53	Relationship between Surface Free Energy of Underlying Layers and O3-TEOS Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2013, 2, N187-N190.	0.9	4
54	Impacts of Chemical Supply Flow on Particle Removability in Wet Clean Bath. Journal of the Electrochemical Society, 2012, 159, H367-H372.	1.3	10

Yukihiro Shimogaki

#	Article	IF	CITATIONS
55	Pattern Density Dependency of the Underlying Layer on O ₃ -Tetraethylorthosilicate (TEOS) Film Formation. ECS Journal of Solid State Science and Technology, 2012, 1, N91-N96.	0.9	5
56	O ₃ -TEOS CVD Film Formation on Thermal SiO ₂ Pre-Coated with Ethanol. ECS Journal of Solid State Science and Technology, 2012, 1, N73-N78.	0.9	4
57	Ultra-Conformal Metal Coating on High-Aspect-Ratio Three-Dimensional Structures Using Supercritical Fluid: Controlled Selectivity/Non-Selectivity. Japanese Journal of Applied Physics, 2012, 51, 056502.	0.8	11
58	Hot-wire-assisted atomic layer deposition of a high quality cobalt film using cobaltocene: Elementary reaction analysis on NH <i>x</i> radical formation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	0.9	46
59	Control of In Surface Segregation and Inter-Diffusion in GaAs on InGaP Grown by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 055601.	0.8	2
60	Low Temperature Chemical Vapor Deposition of Silicon-rich Tungsten Silicide Films from Tungsten Hexafluoride - Disilane Pre-activated Mixtures. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	2
61	Comparative study on ALD/CVD-Co(W) films as a single barrier/liner layer for 22−1x nm generation interconnects. , 2012, , .		0
62	Adsorption Model of Organic Molecules on the Surface of Thermally Oxidized Silicon. ECS Journal of Solid State Science and Technology, 2012, 1, N61-N66.	0.9	4
63	Precise structure control of GaAs/InGaP hetero-interfaces using metal organic vapor phase epitaxy and its abruptness analyzed by STEM. Journal of Crystal Growth, 2012, 347, 25-30.	0.7	4
64	Atomic Layer Deposited Co(W) Film as a Single-Layered Barrier/Liner for Next-Generation Cu-Interconnects. Japanese Journal of Applied Physics, 2012, 51, 05EB02.	0.8	31
65	A 50 nm-wide 5 μm-deep copper vertical gap formation method by a gap-narrowing post-process with Supercritical Fluid Deposition for Pirani gauge operating over atmospheric pressure. , 2012, , .		7
66	Ultra-Conformal Metal Coating on High-Aspect-Ratio Three-Dimensional Structures Using Supercritical Fluid: Controlled Selectivity/Non-Selectivity. Japanese Journal of Applied Physics, 2012, 51, 056502.	0.8	10
67	Atomic Layer Deposited Co(W) Film as a Single-Layered Barrier/Liner for Next-Generation Cu-Interconnects. Japanese Journal of Applied Physics, 2012, 51, 05EB02.	0.8	26
68	Control of In Surface Segregation and Inter-Diffusion in GaAs on InGaP Grown by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2012, 51, 055601.	0.8	0
69	Intersubband absorption saturation in AlN-based waveguide with GaN/AlN multiple quantum wells grown by metalorganic vapor phase epitaxy. Applied Physics Letters, 2011, 99, 151102.	1.5	8
70	Intersubband transition at 1.55μm in AlN/GaN multiple quantum wells by metal organic vapor phase epitaxy using the pulse injection method at 770°C. Journal of Crystal Growth, 2011, 314, 252-257.	0.7	4
71	High-Temperature Annealing Effect of Si in Group-V Ambient Prior to Heteroepitaxy of InAs in Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2011, 50, 04DH07.	0.8	2
72	Isobutyl Silane Precursors for SiCH Low-kCap Layer beyond the 22 nm Node: Analysis of Film Structure for Compatibility of Lowerk-value and High Barrier Properties. Japanese Journal of Applied Physics, 2011, 50, 05EB01.	0.8	7

#	Article	IF	CITATIONS
73	Novel Precursors for SiCH Low-\$k\$ Caps beyond the 22 nm Node: Reactions of Silacyclopentane Precursors in the Plasma-Enhanced Chemical Vapor Deposition Process and Structural Analyses of SiCH Films. Japanese Journal of Applied Physics, 2011, 50, 08KA01.	0.8	6
74	CVD and ALD of Cobalt-tungsten alloy film as a novel Copper diffusion barrier. , 2011, , .		1
75	Multiscale Analysis of Silicon Carbide-Chemical Vapor Deposition Process. Journal of Nanoscience and Nanotechnology, 2011, 11, 7988-7993.	0.9	12
76	Characterization of Indium Segregation in Metalorganic Vapor Phase Epitaxy-Grown InGaP by Schottky Barrier Height Measurement. Japanese Journal of Applied Physics, 2011, 50, 011201.	0.8	0
77	Fabrication of n-Type GaN Layers by the Pulse Injection Method at 950°C for Intersubband Devices. Electrochemical and Solid-State Letters, 2011, 14, H143.	2.2	1
78	Particle Generation on Hydrogen-Terminated Si Surface by Brush Scrubbing of Polyvinyl Alcohol. Journal of the Electrochemical Society, 2011, 158, D651.	1.3	17
79	Characterization of Indium Segregation in Metalorganic Vapor Phase Epitaxy-Grown InGaP by Schottky Barrier Height Measurement. Japanese Journal of Applied Physics, 2011, 50, 011201.	0.8	1
80	lsobutyl Silane Precursors for SiCH Low- <i>k</i> Cap Layer beyond the 22 nm Node: Analysis of Film Structure for Compatibility of Lower <i>k</i> value and High Barrier Properties. Japanese Journal of Applied Physics, 2011, 50, 05EB01.	0.8	4
81	Novel Precursors for SiCH Low- <i>k</i> Caps beyond the 22 nm Node: Reactions of Silacyclopentane Precursors in the Plasma-Enhanced Chemical Vapor Deposition Process and Structural Analyses of SiCH Films. Japanese Journal of Applied Physics, 2011, 50, 08KA01.	0.8	3
82	In situ anti-oxidation treatment in GaAs MOVPE by as desorption and passivation with AIP. Journal of Crystal Growth, 2010, 312, 1359-1363.	0.7	2
83	Evaluation of a novel unfluorinated copper precursor for chemical vapor deposition. Microelectronic Engineering, 2010, 87, 249-253.	1.1	7
84	Thermal stability and chemical bonding states of AlO N /Si gate stacks revealed by synchrotron radiation photoemission spectroscopy. Applied Surface Science, 2010, 257, 1638-1642.	3.1	6
85	Selectivity enhancement by hydrogen addition in selective area metalâ€organic vapor phase epitaxy of GaN and InGaN. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1375-1378.	0.8	7
86	Examination of intermediate species in GaN metal-organic vapor-phase epitaxy by selective-area growth. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 2085-2087.	0.8	2
87	Monolithically Integrated InGaN-Based Multicolor Light-Emitting Diodes Fabricated by Wide-Stripe Selective Area Metal–Organic Vapor Phase Epitaxy. Applied Physics Express, 2010, 3, 092104.	1.1	3
88	Step Coverage Quality of Cu Films by Supercritical Fluid Deposition Compared with Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2010, 49, 05FF01.	0.8	19
89	Metalorganic Vapor Phase Epitaxy of GaAs with AlP Surface Passivation Layer for Improved Metal Oxide Semiconductor Characteristics. Japanese Journal of Applied Physics, 2010, 49, 04DF04.	0.8	2
90	Initial Cu Growth in Cu-Seeded and Ru-Lined Narrow Trenches for Supercritical Fluid Cu Chemical Deposition. Japanese Journal of Applied Physics, 2010, 49, 05FA07.	0.8	9

Yukihiro Shimogaki

#	Article	IF	CITATIONS
91	Metalorganic Chemical Vapor Deposition of Al2O3Thin Films from Dimethylaluminumhydride and O2. Japanese Journal of Applied Physics, 2010, 49, 031502.	0.8	6
92	Surface Modification of SiO2Microchannels with Biocompatible Polymer Using Supercritical Carbon Dioxide. Japanese Journal of Applied Physics, 2010, 49, 116503.	0.8	0
93	Blueshift of intersubband transition wavelength in AlN/GaN multiple quantum wells by low temperature metal organic vapor phase epitaxy using pulse injection method. Applied Physics Letters, 2009, 95, .	1.5	19
94	In situ passivation of InP surface using H2S during metal organic vapor phase epitaxy. Applied Physics Letters, 2009, 95, 152103.	1.5	17
95	Investigation on GaAs surface treated with dimethylaluminumhydride. Applied Physics Letters, 2009, 95,	1.5	10
96	Strain effects on the intersubband transitions in GaN/AlN multiple quantum wells grown by low-temperature metal organic vapor phase epitaxy with AlGaN interlayer. Applied Physics Letters, 2009, 95, .	1.5	12
97	Predictable Simple Reaction Model for Poly-Silicon LPCVD Process. ECS Transactions, 2009, 25, 421-428.	0.3	4
98	Kinetics of Deposition of Cu Thin Films in Supercritical Carbon Dioxide Solutions from a F-Free Copper(II) β-Diketone Complex. Journal of the Electrochemical Society, 2009, 156, H443.	1.3	32
99	Reaction Kinetics of GaN Metal-Organic Vapor-Phase Epitaxy Analyzed by Multi-Scale Profiles of Growth Rate. ECS Transactions, 2009, 25, 507-512.	0.3	2
100	Competitive Kinetics Model to Explain Surface Segregation of Indium during InGaP Growth by Using Metal Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2009, 48, 011101.	0.8	5
101	Zn and S Doping in GaAs Selective Area Growth by Metal–Organic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2009, 48, 031101.	0.8	0
102	Kinetic Analysis of InAsP by Metalorganic Vapor Phase Epitaxy Selective Area Growth Technique. Japanese Journal of Applied Physics, 2009, 48, 041102.	0.8	1
103	Comparative Study on the Step Coverage Quality of Cu Film by SCFD and CVD. ECS Transactions, 2009, 25, 1199-1206.	0.3	Ο
104	Selective Area Metal–Organic Vapor Phase Epitaxy of Nitride Semiconductors for Multicolor Emission. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 1053-1065.	1.9	22
105	SiON as a barrier layer for depositing an Al ₂ O ₃ thin film on Si for gate applications. Surface and Interface Analysis, 2009, 41, 956-959.	0.8	4
106	Process design of the pulse injection method for low-temperature metal organic vapor phase epitaxial growth of AlN at 800°C. Journal of Crystal Growth, 2009, 311, 383-388.	0.7	10
107	Selective area metal-organic vapor-phase epitaxy of InN, GaN and InGaN covering whole composition range. Journal of Crystal Growth, 2009, 311, 2809-2812.	0.7	17
108	Role of vapor-phase diffusion in selective-area MOVPE of InGaN/GaN MQWs. Journal of Crystal Growth, 2009, 311, 2813-2816.	0.7	5

#	Article	IF	CITATIONS
109	Effect of liquid additives in supercritical fluid deposition of copper for enhancing deposition chemistry. Thin Solid Films, 2008, 517, 674-680.	0.8	17
110	Reactor-scale profile of group-V composition of InGaAsP studied by fluid dynamics simulation and in situ analysis of surface kinetics. Journal of Crystal Growth, 2008, 310, 3042-3048.	0.7	2
111	Non-linear surface reaction kinetics in GaAs selective area MOVPE. Journal of Crystal Growth, 2008, 310, 4731-4735.	0.7	2
112	Kinetic analysis of surface adsorption layer for InGaAsP-related binary materials using in situ RAS. Journal of Crystal Growth, 2008, 310, 4736-4740.	0.7	3
113	In situ passivation of GaAs surface with aluminum oxide with MOVPE. Journal of Crystal Growth, 2008, 310, 4808-4812.	0.7	4
114	Preparation of conductive HfN by post rapid thermal annealing-assisted MOCVD and its application to metal gate electrode. Microelectronic Engineering, 2008, 85, 320-326.	1.1	13
115	Acetone-assisted deposition of silver films in supercritical carbon dioxide. Microelectronic Engineering, 2008, 85, 675-681.	1.1	21
116	High-resolution transmission electron microscopy (HRTEM) observation of dislocation structures in AlN thin films. Journal of Materials Research, 2008, 23, 2188-2194.	1.2	15
117	Kinetic Analysis of InN Selective Area Metal–Organic Vapor Phase Epitaxy. Applied Physics Express, 2008, 1, 071102.	1.1	12
118	Kinetics of Subsurface Formation during Metal–Organic Vapor Phase Epitaxy Growth of InP and InGaP. Japanese Journal of Applied Physics, 2008, 47, 1473-1478.	0.8	7
119	Surface Reaction Kinetics of InP and InAs Metalorganic Vapor Phase Epitaxy Analyzed by Selective Area Growth Technique. Japanese Journal of Applied Physics, 2008, 47, 7788.	0.8	3
120	Nonlinear Kinetic Analysis of InP and InAs Metal Organic Vapor Phase Epitaxy by Selective Area Growth Technique. Japanese Journal of Applied Physics, 2008, 47, 8269-8274.	0.8	3
121	Multiscale Model of the GaAs MOVPE Process for the Fast Numerical Simulation. Chemical Product and Process Modeling, 2008, 3, .	0.5	Ο
122	In situObservation of Initial Nucleation and Growth Processes in Supercritical Fluid Deposition of Copper. Japanese Journal of Applied Physics, 2008, 47, 885-890.	0.8	21
123	Abrupt InGaPâ^•GaAs heterointerface grown by optimized gas-switching sequence in metal organic vapor phase epitaxy. Applied Physics Letters, 2008, 92, 112106.	1.5	17
124	Comparative Study of Cu–CVD Seed Layer Deposition on Ru and Ta Underlayers. Journal of the Electrochemical Society, 2007, 154, G13.	1.3	29
125	Nonlinear Kinetics of GaAs MOVPE Examined by Selective Area Growth Technique. Journal of the Electrochemical Society, 2007, 154, H91.	1.3	21
126	Impact of Atomistic Surface Structure on Macroscopic Surface Reaction Rate in MOVPE of GaAs. Electrochemical and Solid-State Letters, 2007, 10, H123.	2.2	1

#	Article	IF	CITATIONS
127	GaN Selective Area Metal–Organic Vapor Phase Epitaxy: Prediction of Growth Rate Enhancement by Vapor Phase Diffusion Model. Japanese Journal of Applied Physics, 2007, 46, L1045.	0.8	7
128	Effects of Zn- and S-Doping on Kinetics of GaAs Selective Area MOVPE. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	1
129	Low Temperature Metal Organic Vapor Phase Epitaxial Growth of AlN by Pulse Injection Method at 800 °C. Japanese Journal of Applied Physics, 2007, 46, L927-L929.	0.8	12
130	Kinetic Analysis of Surface Adsorption Layer in GaAs(001) Metalorganic Vapor Phase Epitaxy byIn situReflectance Anisotropy Spectroscopy. Japanese Journal of Applied Physics, 2007, 46, 6519-6524.	0.8	3
131	Deposition Uniformity Control in a Commercial Scale HTO-CVD Reactor. Materials Research Society Symposia Proceedings, 2007, 989, 8.	0.1	2
132	Dielectric Evolution Characteristics of HfCN Metal-Electrode-Gated MOS Stacks. Journal of the Electrochemical Society, 2007, 154, G25.	1.3	3
133	Ultra Thin Cu film Fabrication by Supercritical Fluid Deposition for ULSI Metallization. Materials Research Society Symposia Proceedings, 2007, 992, 1.	0.1	2
134	Predictive Model Extraction for Polysilicon Low-Pressure Chemical Vapor Deposition in a Commercial Scale Reactor. Journal of the Electrochemical Society, 2007, 154, D328.	1.3	4
135	Vapor phase diffusion and surface diffusion combined model for InGaAsP selective area metal–organic vapor phase epitaxy. Journal of Crystal Growth, 2007, 298, 37-40.	0.7	14
136	Reactor-scale uniformity of selective-area performance in InGaAsP system. Journal of Crystal Growth, 2007, 298, 59-63.	0.7	2
137	High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties. Journal of Crystal Growth, 2007, 298, 85-89.	0.7	5
138	Non-linear kinetic analysis on GaAs selective area MOVPE combined with macro-scale analysis to extract major reaction mechanism. Journal of Crystal Growth, 2007, 298, 32-36.	0.7	9
139	Kinetic modeling of tungsten silicide chemical vapor deposition from WF6 and Si2H6: Determination of the reaction scheme and the gas-phase reaction rates. Chemical Engineering Science, 2007, 62, 6403-6411.	1.9	7
140	Effect of Surface Misorientation on the Kinetics of GaAs MOVPE Examined Using Selective Area Growth. Electrochemical and Solid-State Letters, 2006, 9, G104.	2.2	15
141	Effect of Ru crystal orientation on the adhesion characteristics of Cu for ultra-large scale integration interconnects. Applied Surface Science, 2006, 252, 3938-3942.	3.1	24
142	Effect of group V partial pressure on the kinetics of selective area MOVPE for GaAs on (100) exact and misoriented substrate. Journal of Crystal Growth, 2006, 287, 664-667.	0.7	13
143	Control of abnormal edge growth in selective area MOVPE of InP. Journal of Crystal Growth, 2006, 287, 668-672.	0.7	14
144	Novel gas-switching sequence using group-III pre-flow (GIIIP) method for fabrication of InGaP on GaAs hetero-interface by MOVPE. Journal of Crystal Growth, 2006, 296, 179-185.	0.7	8

#	Article	IF	CITATIONS
145	Role of surface diffusion during selective area MOVPE growth of InP. Thin Solid Films, 2006, 498, 163-166.	0.8	5
146	Effect of NH3 on the fabrication of HfN as gate-electrode using MOCVD. Thin Solid Films, 2006, 498, 75-79.	0.8	12
147	Simulation and design of the emission wavelength of multiple quantum well structures fabricated by selective area metalorganic chemical vapor deposition. Thin Solid Films, 2006, 498, 174-178.	0.8	18
148	Kinetic study of chemical vapor deposition of WSix films from WF6 and SiH2Cl2: Determination of molecular size and reactivity of gas species. Thin Solid Films, 2006, 513, 36-42.	0.8	4
149	Optimization of Al-CVD process based on elementary reaction simulation and experimental verification: From the growth rate to the surface morphology. Thin Solid Films, 2006, 498, 30-35.	0.8	6
150	Kinetics of chemical vapor deposition of WSix films from WF6 and SiH2Cl2: Effect of added H2, SiH4, and Si2H6. Microelectronic Engineering, 2006, 83, 1994-2000.	1.1	2
151	In SituObservation of Initial Nucleation and Growth of Chemical Vapor Deposition of Copper by Surface Reflectivity Measurement. Japanese Journal of Applied Physics, 2006, 45, 8618-8623.	0.8	6
152	Preparation of Amorphous Fluorinated Carbon Film Using Low Global-Warming Potential Gas, C4F6, by Plasma Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2006, 45, L151-L153.	0.8	2
153	High Temperature Annealing-Induced Phase Transformation Characteristic of Nitrogen-Rich Hafnium Nitride Films. Japanese Journal of Applied Physics, 2006, 45, L1183-L1185.	0.8	6
154	Material Consideration on Ta, Mo, Ru, and Os as Glue Layer for Ultra Large Scale Integration Cu Interconnects. Japanese Journal of Applied Physics, 2006, 45, 2497-2501.	0.8	37
155	Source Gas Dependency of Amorphous Fluorinated Carbon Film Properties Prepared by Plasma Enhanced Chemical Vapor Deposition Using C4F8, C4F6, and C5F8Gases. Japanese Journal of Applied Physics, 2006, 45, L463-L466.	0.8	4
156	Influence of Crystal Orientation of Ru Under-Layer on Initial Growth of Copper Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2006, 45, L233-L235.	0.8	21
157	Non-linear Surface Reaction Kinetics of GaAs MOVPE Explored by Selective Area Growth. ECS Transactions, 2006, 2, 145-156.	0.3	1
158	The Effect of Process Parameters on CVD Cu Seed Layer Deposition on Ru and Ta Under-layer. ECS Transactions, 2006, 2, 157-165.	0.3	0
159	Thin and Smooth Cu Seed Layer Deposition using the Reduction of Low Temperature Deposited Cu ₂ O. Materials Research Society Symposia Proceedings, 2006, 914, 1.	0.1	5
160	Novel Reducing Chemistry for Supercritical Fluid Deposition of Copper. Materials Research Society Symposia Proceedings, 2006, 914, 1.	0.1	2
161	Preparation and Characterization of Amorphous Fluorinated Carbon Film Using Low-Global-Warming-Potential Gas, C4F6, by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2006, 45, 8624-8628.	0.8	3
162	Deposition of Cu-Ag Alloy Film by Supercritical Fluid Deposition. Japanese Journal of Applied Physics, 2006, 45, L1296-L1299.	0.8	23

#	Article	IF	CITATIONS
163	Dielectric Evolution Characteristics of HfCN Metal Electrode Gated MOS Stacks. ECS Transactions, 2006, 1, 529-538.	0.3	0
164	A numerical study on heat transfer and film growth rate of InP and GaAs MOCVD process. Journal of Crystal Growth, 2005, 276, 431-438.	0.7	21
165	Interface structure of HfNx/SiO2 stack grown by MOCVD using TDEAHf precursor. Surface Science, 2005, 588, 108-116.	0.8	19
166	Process design of Cu(Sn) alloy deposition for highly reliable ultra large-scale integration interconnects. Thin Solid Films, 2005, 491, 221-227.	0.8	17
167	Effects of thermal contact resistance on film growth rate in a horizontal MOCVD reactor. Journal of Mechanical Science and Technology, 2005, 19, 1338-1346.	0.7	1
168	Cu Wettability and Diffusion Barrier Property of Ru Thin Film for Cu Metallization. Journal of the Electrochemical Society, 2005, 152, G594.	1.3	137
169	Precursor Evaluation for Cu-Supercritical Fluid Deposition Based on Adhesion Properties and Surface Morphology. Japanese Journal of Applied Physics, 2005, 44, L1199-L1202.	0.8	32
170	Fabrication of Hf(C)N Films on SiO2by Metal Organic Chemical Vapor Deposition (MOCVD) Using TDEAHf Precursor. Japanese Journal of Applied Physics, 2005, 44, L348-L351.	0.8	12
171	Improved Etched Surface Morphology in Electron Cyclotron Resonance-Reactive Ion Etching of GaN by Cyclic Injection of CH4/H2/Ar and O2with Constant Ar Flow. Japanese Journal of Applied Physics, 2005, 44, 5819-5823.	0.8	2
172	Effects of Ag Addition on the Resistivity, Texture and Surface Morphology of Cu Metallization. Japanese Journal of Applied Physics, 2005, 44, L1278-L1281.	0.8	19
173	Electrical and Thermal Stability Characteristics of HfCN Films as Metal Gate-Electrode Synthesized by Metalorganic Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2005, 44, L1019-L1021.	0.8	7
174	化å•̂物åŠå°Žä½"集ç©å…‰ãf‡ãfẽ,¤,¹ã•ãf‰ãf©ã,¤,¨ãffãfẽf³ã,°æŠ€è¡". Shinku/Journal of the Vacuum	Society o	f Japan, 2005
175	Stranski–Krastanov Growth of Tungsten during Chemical Vapor Deposition Revealed by Micro-Auger Electron Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 6974-6977.	0.8	6
176	Nucleation of W during Chemical Vapor Deposition from WF6and SiH4. Japanese Journal of Applied Physics, 2004, 43, 3945-3950.	0.8	18
177	Improvement of TiN Flow Modulation Chemical Vapor Deposition from TiCl4and NH3by Introducing Ar Purge Time. Japanese Journal of Applied Physics, 2004, 43, 1619-1624.	0.8	2
178	Kinetics of TiN Chemical Vapor Deposition Process using TiCl4and NH3for ULSI Diffusion Barrier Applications: Relationship between Step Coverage and NH3Partial Pressure. Japanese Journal of Applied Physics, 2004, 43, 7287-7291.	0.8	7
179	Fabrication of AlGaN-Based Waveguides by Inductively Coupled Plasma Etching. Japanese Journal of Applied Physics, 2004, 43, L1340-L1342.	0.8	3
180	Selective Silicidation of Co Using Silane or Disilane for Anti-Oxidation Barrier Layer in Cu Metallization. Japanese Journal of Applied Physics, 2004, 43, 6001-6007.	0.8	3

#	Article	IF	CITATIONS
181	The Fabrication of Hafnium Nitride by Metal Organic Chemical Vapor Deposition (MOCVD) Using TDEAHf Precursor for Gate-Electrode Application. Japanese Journal of Applied Physics, 2004, 43, L1445-L1448.	0.8	13
182	Analysis and modeling of low pressure chemical vapor deposition of phosphorus-doped polysilicon in commercial scale reactor. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1763-1766.	0.9	2
183	Deposition of Copper Thin Films on Titanium Nitride Layer Prepared by Flow Modulation CVD Technology. Materials Science Forum, 2004, 449-452, 457-460.	0.3	0
184	Effect of Partial Pressure of TiCl4and NH3on Chemical Vapor Deposition Titanium Nitride (CVD-TiN) Film Cl Content and Electrical Resistivity. Japanese Journal of Applied Physics, 2004, 43, L519-L521.	0.8	3
185	Chemical Vapor Deposition of TiAlN film by Using Titanium Tetrachloride, Dimethylethylamine Alane and Ammonia Gas for ULSI Cu Diffusion Barrier Application. Japanese Journal of Applied Physics, 2004, 43, 8253-8257.	0.8	13
186	Polycrystals growth on dielectric masks during InP/GaAs selective MOVPE. Journal of Crystal Growth, 2004, 261, 411-418.	0.7	23
187	The role of the surface adsorption layer during MOVPE growth analyzed by the flow modulation method. Journal of Crystal Growth, 2004, 272, 15-23.	0.7	9
188	Diffusion barrier property of TiN and TiN/Al/TiN films deposited with FMCVD for Cu interconnection in ULSI. Science and Technology of Advanced Materials, 2004, 5, 399-405.	2.8	36
189	Development of TiSiN CVD process using TiCl4/SiH4/NH3chemistry for ULSI anti-oxidation barrier applications. Science and Technology of Advanced Materials, 2004, 5, 549-554.	2.8	11
190	Fundamental kinetics determining growth rate profiles of InP and GaAs in MOCVD with horizontal reactor. Journal of Crystal Growth, 2004, 261, 214-224.	0.7	35
191	The effect of group V precursor on selective area MOVPE of InP/GaAs-related materials. Journal of Crystal Growth, 2004, 261, 419-426.	0.7	18
192	Surface Reaction Kinetics in Metalorganic Vapor Phase Epitaxy of GaAs through Analyses of Growth Rate Profile in Wide-Gap Selective-Area Growth. Japanese Journal of Applied Physics, 2003, 42, 6284-6291.	0.8	48
193	Shortest intersubband transition wavelength (1.68 μm) achieved in AlN/GaN multiple quantum wells by metalorganic vapor phase epitaxy. Applied Physics Letters, 2003, 82, 4465-4467.	1.5	42
194	Factors Determining the Generation of Polycrystalline Growth over Masks in Selective-Area Metalorganic Vapor Phase Epitaxy: Gas-Phase Concentration Analysis. Japanese Journal of Applied Physics, 2003, 42, L359-L361.	0.8	9
195	Electron Cyclotron Resonance-Reactive Ion Etching of III-V Semiconductors by Cyclic Injection of CH4/H2/Ar and O2with Constant Ar Flow. Japanese Journal of Applied Physics, 2003, 42, 3958-3961.	0.8	6
196	Comparison of Organic and Hydride Group V Precursors in Terms of Surface Kinetics in Wide-Gap Selective Area Metalorganic Vapor Phase Epitaxy. Japanese Journal of Applied Physics, 2003, 42, L1195-L1197.	0.8	14
197	Examination of Surface Elementary Reaction Model for Chemical Vapor Deposition of Al UsingIn SituInfrared Reflection Absorption Spectroscopy: Teoretical Optimization Procedure (3). Japanese Journal of Applied Physics, 2002, 41, 570-576.	0.8	3
198	Adhesion Characteristics between Chemical Vapor Deposited Cu and TiN Films: Aspects of Process Integration. Japanese Journal of Applied Physics, 2002, 41, 1500-1506.	0.8	9

#	Article	IF	CITATIONS
199	Electron Cyclotron Resonance-Reactive Ion Beam Etching of InP by Cyclic Injection of CH4/H2/Ar and O2. Japanese Journal of Applied Physics, 2002, 41, 15-19.	0.8	19
200	Phenomenological and Elementary Reaction Analysis of Poly-crystalline Silicon CVD Process. Materials Research Society Symposia Proceedings, 2002, 716, 1191.	0.1	1
201	Surface reaction probabilities of radicals correlated from film thickness contours in silane chemical vapor deposition. Thin Solid Films, 2002, 411, 177-184.	0.8	4
202	X-ray photoelectron spectroscopic characterization of the adhesion behavior of chemical vapor deposited copper films. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 2642-2651.	0.9	43
203	TiN Films Prepared by Flow Modulation Chemical Vapor Deposition using TiCl4and NH3. Japanese Journal of Applied Physics, 2001, 40, 1517-1521.	0.8	17
204	Physical and Chemical Contributions of Interfacial Impurities to Film Adhesion. Japanese Journal of Applied Physics, 2001, 40, L1380-L1383.	0.8	10
205	CVD Material Processing. CVD Reactor Design Using Three-Dimensional Computer Simulation. Gas Outlet Effect Kagaku Kogaku Ronbunshu, 2000, 26, 758-762.	0.1	0
206	Kinetic study of P and As desorption from binary and ternary III–V semiconductors surface by in situ ellipsometry. Journal of Crystal Growth, 2000, 221, 129-135.	0.7	13
207	Kinetic ellipsometry measurement of InGaP/GaAs hetero-interface formation in MOVPE. Journal of Crystal Growth, 2000, 221, 136-141.	0.7	18
208	Macro/microcavity method and its application in modeling chemical vapor deposition reaction systems. Thin Solid Films, 2000, 365, 176-188.	0.8	33
209	Reaction Analysis of Aluminum Chemical Vapor Deposition from Dimethyl-aluminum-hydride Using Tubular Reactor and Fourier-Transform Infrared Spectroscopy: Theoretical Process Optimization Procedure (1). Japanese Journal of Applied Physics, 2000, 39, 1074-1079.	0.8	9
210	Elementary Surface Reaction Simulation of Aluminum Chemical Vapor Deposition from Dimethylaluminumhydride Based onAb InitioCalculations: Theoretical Process Optimization Procedure (2). Japanese Journal of Applied Physics, 2000, 39, 6501-6512.	0.8	12
211	Decrease in Deposition Rate and Improvement of Step Coverage by CF4Addition to Plasma-Enhanced Chemical Vapor Deposition of Silicon Oxide Films. Japanese Journal of Applied Physics, 2000, 39, 330-336.	0.8	7
212	Kinetics of GaAs Metalorganic Chemical Vapor Deposition Studied by Numerical Analysis Based on Experimental Reaction Data. Japanese Journal of Applied Physics, 2000, 39, 1642-1649.	0.8	14
213	Effect of Underlayers on the Morphology and Orientation of Aluminum Films Prepared by Chemical Vapor Deposition Using Dimethylaluminumhydride. Japanese Journal of Applied Physics, 1999, 38, L1528-L1531.	0.8	7
214	Changes in Orientational Polarization and Structure of Silicon Dioxide Film by Fluorine Addition. Journal of the Electrochemical Society, 1999, 146, 4196-4202.	1.3	36
215	Chemical Vapor Deposition Reactor Design Using Small‣cale Diagnostic Experiments Combined with Computational Fluid Dynamics Simulations. Journal of the Electrochemical Society, 1999, 146, 1780-1788.	1.3	14
216	Chemical reaction engineering in the design of CVD reactors. Chemical Engineering Science, 1999, 54, 1941-1957.	1.9	64

#	Article	IF	CITATIONS
217	Structural change of TiN/Ti/SiO2 multilayers by N2 annealing. Thin Solid Films, 1998, 320, 31-34.	0.8	9
218	In-situ As-P exchange monitoring in metal-organic vapor phase epitaxy of InGaAs/InP heterostructure by spectroscopic and kinetic ellipsometry. Thin Solid Films, 1998, 313-314, 604-608.	0.8	28
219	Experimental and numerical analysis of rapid reaction to initiate the radical chain reactions in WSix CVD. Thin Solid Films, 1998, 320, 151-158.	0.8	7
220	The Role of Gasâ€Phase Reactions during Chemical Vapor Deposition of Copper from (hfac)Cu(tmvs). Journal of the Electrochemical Society, 1998, 145, 4226-4233.	1.3	29
221	The Best Way to Obtain Good Quality CVD-TiN Films from TiCl ₄ and NH ₃ . Materials Research Society Symposia Proceedings, 1998, 514, 501.	0.1	3
222	Reduction Mechanism in the Dielectric Constant of Fluorineâ€Đoped Silicon Dioxide Film. Journal of the Electrochemical Society, 1997, 144, 2531-2537.	1.3	44
223	Modeling and simulation of blanket chemical vapor deposition of WSi _x from WF ₆ /Si ₂ H ₆ . Electronics and Communications in Japan, 1996, 79, 83-92.	0.2	1
224	Preparation of low dielectric constant Fâ€doped SiO2 films by plasma enhanced chemical vapor deposition. Applied Physics Letters, 1996, 68, 832-834.	1.5	33
225	Impurity-free Disordering of InGaAs/InGaAlAs Quantum Wells on InP by Dielectric Thin Cap Films and Characterization of Its In-plane Spatial Resolution. Japanese Journal of Applied Physics, 1996, 35, 1276-1279.	0.8	23
226	Simple Kinetic Model of ECR Reactive Ion Beam Etching Reactor for the Optimization of GaAs Etching Process. Japanese Journal of Applied Physics, 1996, 35, 1235-1241.	0.8	4
227	Preparation of Low-Dielectric-Constant F-DopedSiO2Films by Plasma-Enhanced Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1996, 35, 1468-1473.	0.8	59
228	Kinetic study of WSi _x VD processes—a comparison of WF ₆ /SiH ₄ and WF ₆ /Si ₂ H ₆ reaction systems. Electronics and Communications in Japan, 1995, 78, 73-84.	0.2	2
229	A simple kinetic model for the optimization of electron cyclotron resonance/reactive ion beam etching performance for GaAs. Applied Physics Letters, 1995, 67, 897-899.	1.5	1
230	Characterization of P- and N-Type Impurity Diffusions in GaAs from Doped Silica Films. Japanese Journal of Applied Physics, 1995, 34, 1127-1134.	0.8	2
231	Step Coverage Analysis for Hexamethyldisiloxane and Ozone Atmospheric Pressure Chemical Vapor Deposition. Japanese Journal of Applied Physics, 1994, 33, L473-L475.	0.8	4
232	Deposition ofWSixFilms from Preactivated Mixture ofWF6/SiH4. Japanese Journal of Applied Physics, 1994, 33, 275-279.	0.8	13
233	Step overage Simulation for Tetraethoxysilane and Ozone Atmospheric Pressure Chemical Vapor Deposition. Journal of the Electrochemical Society, 1993, 140, 2309-2312.	1.3	14

Study of the Reaction of Si2 H 6 in the Presence of  C 2 H 2 in Synthesis of SiC Films by LPCVD Using a Macro/microcavity Method. Journal of the Electrochemical Society, 1992, 139, 3652-3659.

#	Article	IF	CITATIONS
235	Conformal deposition of WSixfilms on micronâ€sized trenches: The reactivity of film precursors. Applied Physics Letters, 1992, 61, 764-765.	1.5	14
236	Composition change of SiCx(x=1–2) films due to variation of film precursors in the Si2H6/C2H2chemical vapor deposition reaction system. Applied Physics Letters, 1992, 61, 910-912.	1.5	6
237	Control of particle and film formation by changing the total pressure in LPCVD. Preparation of SiC from SiH4 and C6H6 Kagaku Kogaku Ronbunshu, 1990, 16, 463-468.	0.1	2
238	Activation mechanism of amorphous NixZr100-x alloys during CO/H2 reaction and preparation method of porous amorphous alloy catalysts Journal of Chemical Engineering of Japan, 1988, 21, 293-299.	0.3	9
239	Rapid Growth of TiO ₂ Films by Particle-Precipitation Aided Chemical Vapor Deposition. Journal of the Ceramic Association Japan, 1987, 95, 80-85.	0.2	3
240	PREPARATION OF AMORPHOUS TIO2FILMS BY THERMOPHORESIS-AIDED CHEMICAL VAPOR DEPOSITION. Chemistry Letters, 1986, 15, 267-268.	0.7	14
241	POROUS AND AMORPHOUS Ni67Zr33CATALYST PREPARED BY HYDROGENATION OF CARBON MONOXIDE. Chemistry Letters, 1985, 14, 661-664.	0.7	23
242	Conformal Deposition and Gap-Filling of Copper into Ultranarrow Patterns by Supercritical Fluid Deposition. Applied Physics Express, 0, 1, 097002.	1.1	51
243	Chemical Bonding States and Band Alignment of Ultrathin AlO _{<i>x</i>} N _{<i>y</i>} /Si Gate Stacks Grown by Metalorganic Chemical Vapor Deposition. Applied Physics Express, 0, 2, 075503.	1.1	12
244	Intersubband Transition at 1.52 µm in GaN/AlN Multiple Quantum Wells Grown by Metal Organic Vapor Phase Epitaxy. Applied Physics Express, 0, 2, 061002.	1.1	9
245	Fabrication of Abrupt AlN/GaN Multi Quantum Wells by Low Temperature Metal Organic Vapor Phase Epitaxy. Applied Physics Express, 0, 2, 051004.	1.1	9