
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2962892/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite. Sensors and Actuators B: Chemical, 2008, 129, 888-895.	4.0	204
2	Design of SnO2/ZnO hierarchical nanostructures for enhanced ethanol gas-sensing performance. Sensors and Actuators B: Chemical, 2012, 174, 594-601.	4.0	174
3	Comparative study of gas sensor performance of SnO2 nanowires and their hierarchical nanostructures. Sensors and Actuators B: Chemical, 2010, 150, 112-119.	4.0	135
4	Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Current Applied Physics, 2011, 11, 657-661.	1.1	135
5	Enhanced performance of SnO2 nanowires ethanol sensor by functionalizing with La2O3. Sensors and Actuators B: Chemical, 2008, 133, 228-234.	4.0	128
6	Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. Journal of Hazardous Materials, 2014, 265, 124-132.	6.5	125
7	DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection. Journal of Immunological Methods, 2009, 350, 118-124.	0.6	119
8	Chlorine Gas Sensing Performance of On-Chip Grown ZnO, WO ₃ , and SnO ₂ Nanowire Sensors. ACS Applied Materials & Interfaces, 2016, 8, 4828-4837.	4.0	116
9	Gas-sensing properties of tin oxide doped with metal oxides and carbon nanotubes: A competitive sensor for ethanol and liquid petroleum gas. Sensors and Actuators B: Chemical, 2010, 144, 450-456.	4.0	110
10	Synthesis of oleic acid-stabilized silver nanoparticles and analysis of their antibacterial activity. Materials Science and Engineering C, 2010, 30, 910-916.	3.8	103
11	On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance. Sensors and Actuators B: Chemical, 2010, 146, 361-367.	4.0	102
12	Thin film polypyrrole/SWCNTs nanocomposites-based NH3 sensor operated at room temperature. Sensors and Actuators B: Chemical, 2009, 140, 500-507.	4.0	99
13	Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Applied Physics Letters, 2014, 105, .	1.5	93
14	Facile on-chip electrospinning of ZnFe2O4 nanofiber sensors with excellent sensing performance to H2S down ppb level. Journal of Hazardous Materials, 2018, 360, 6-16.	6.5	87
15	Selective detection of carbon dioxide using LaOCl-functionalized SnO2 nanowires for air-quality monitoring. Talanta, 2012, 88, 152-159.	2.9	77
16	Electrochemical detection of short HIV sequences on chitosan/Fe3O4 nanoparticle based screen printed electrodes. Materials Science and Engineering C, 2011, 31, 477-485.	3.8	76
17	Gas sensing properties at room temperature of a quartz crystal microbalance coated with ZnO nanorods. Sensors and Actuators B: Chemical, 2011, 153, 188-193.	4.0	74
18	On-chip growth of wafer-scale planar-type ZnO nanorod sensors for effective detection of CO gas. Sensors and Actuators B: Chemical, 2013, 181, 529-536.	4.0	74

#	Article	IF	CITATIONS
19	Synthesis, characterization, and comparative gas-sensing properties of Fe2O3 prepared from Fe3O4 and Fe3O4-chitosan. Journal of Alloys and Compounds, 2012, 523, 120-126.	2.8	72
20	Diameter controlled synthesis of tungsten oxide nanorod bundles for highly sensitive NO2 gas sensors. Sensors and Actuators B: Chemical, 2013, 183, 372-380.	4.0	70
21	Controllable growth of ZnO nanowires grown on discrete islands of Au catalyst for realization of planar-type micro gas sensors. Sensors and Actuators B: Chemical, 2014, 193, 888-894.	4.0	69
22	Mixed SnO2/TiO2 included with carbon nanotubes for gas-sensing application. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 258-263.	1.3	67
23	Controlled synthesis of ultrathin MoS ₂ nanoflowers for highly enhanced NO ₂ sensing at room temperature. RSC Advances, 2020, 10, 12759-12771.	1.7	67
24	Comparative study on the gas-sensing performance of ZnO/SnO2 external and ZnO–SnO2 internal heterojunctions for ppb H2S and NO2 gases detection. Sensors and Actuators B: Chemical, 2021, 334, 129606.	4.0	65
25	In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. International Journal of Hydrogen Energy, 2013, 38, 12090-12100.	3.8	61
26	Electrochemical synthesis of polyaniline nanowires on Pt interdigitated microelectrode for room temperature NH3 gas sensor application. Current Applied Physics, 2012, 12, 1011-1016.	1.1	60
27	A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO2 gas sensor application. Sensors and Actuators B: Chemical, 2012, 171-172, 760-768.	4.0	59
28	First-principles study of the structural and electronic properties of graphene/MoS2 interfaces. Journal of Applied Physics, 2017, 122, .	1.1	57
29	Selective discrimination of hazardous gases using one single metal oxide resistive sensor. Sensors and Actuators B: Chemical, 2018, 277, 121-128.	4.0	54
30	Facile synthesis of SnO2–ZnO core–shell nanowires for enhanced ethanol-sensing performance. Current Applied Physics, 2013, 13, 1637-1642.	1.1	53
31	Novel Self-Heated Gas Sensors Using on-Chip Networked Nanowires with Ultralow Power Consumption. ACS Applied Materials & amp; Interfaces, 2017, 9, 6153-6162.	4.0	53
32	Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions. Sensors and Actuators B: Chemical, 2017, 238, 1120-1127.	4.0	53
33	Simple post-synthesis of mesoporous p-type Co3O4 nanochains for enhanced H2S gas sensing performance. Sensors and Actuators B: Chemical, 2018, 270, 158-166.	4.0	53
34	Comparative study on CO2 and CO sensing performance of LaOCl-coated ZnO nanowires. Journal of Hazardous Materials, 2013, 244-245, 209-216.	6.5	51
35	Comparative NO2 gas-sensing performance of the self-heated individual, multiple and networked SnO2 nanowire sensors fabricated by a simple process. Sensors and Actuators B: Chemical, 2014, 201, 7-12.	4.0	51
36	Giant enhancement of H2S gas response by decorating n-type SnO2 nanowires with p-type NiO nanoparticles. Applied Physics Letters, 2012, 101, .	1.5	48

#	Article	IF	CITATIONS
37	Nanoporous and crystal evolution in nickel oxide nanosheets for enhanced gas-sensing performance. Sensors and Actuators B: Chemical, 2018, 273, 784-793.	4.0	47
38	Facile synthesis of p-type semiconducting cupric oxide nanowires and their gas-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 146-149.	1.3	45
39	Gas sensor based on nanoporous hematite nanoparticles: Effect of synthesis pathways on morphology and gas sensing properties. Current Applied Physics, 2012, 12, 1355-1360.	1.1	42
40	Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor. Journal of Alloys and Compounds, 2018, 735, 787-794.	2.8	41
41	Room temperature highly toxic NO2 gas sensors based on rootstock/scion nanowires of SnO2/ZnO, ZnO/SnO2, SnO2/SnO2 and, ZnO/ZnO. Sensors and Actuators B: Chemical, 2021, 348, 130652.	4.0	40
42	Crystalline mesoporous tungsten oxide nanoplate monoliths synthesized by directed soft template method for highly sensitive NO2 gas sensor applications. Materials Research Bulletin, 2013, 48, 440-448.	2.7	39
43	Synthesis of single-crystal SnO2 nanowires for NOx gas sensors application. Ceramics International, 2012, 38, 6557-6563.	2.3	37
44	Self-heated Ag-decorated SnO2 nanowires with low power consumption used as a predictive virtual multisensor for H2S-selective sensing. Analytica Chimica Acta, 2019, 1069, 108-116.	2.6	37
45	Low-temperature growth and ethanol-sensing characteristics of quasi-one-dimensional ZnO nanostructures. Physica B: Condensed Matter, 2008, 403, 50-56.	1.3	36
46	Scalable Fabrication of High-Performance NO ₂ Gas Sensors Based on Tungsten Oxide Nanowires by On-Chip Growth and RuO ₂ -Functionalization. ACS Applied Materials & Interfaces, 2014, 6, 12022-12030.	4.0	36
47	A facile thermal evaporation route for large-area synthesis of tin oxide nanowires: Characterizations and their use for liquid petroleum gas sensor. Current Applied Physics, 2010, 10, 636-641.	1.1	35
48	Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole. Applied Surface Science, 2011, 257, 9817-9824.	3.1	35
49	Modified interdigitated arrays by novel poly(1,8-diaminonaphthalene)/carbon nanotubes composite for selective detection of mercury(II). Talanta, 2011, 85, 2445-2450.	2.9	35
50	Effective design and fabrication of low-power-consumption self-heated SnO2 nanowire sensors for reducing gases. Sensors and Actuators B: Chemical, 2019, 295, 144-152.	4.0	35
51	Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2950-2958.	1.3	34
52	Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance. Applied Surface Science, 2015, 324, 280-285.	3.1	34
53	General and scalable route to synthesize nanowire-structured semiconducting metal oxides for gas-sensor applications. Journal of Alloys and Compounds, 2013, 549, 260-268.	2.8	32
54	Comparative effects of synthesis parameters on the NO2 gas-sensing performance of on-chip grown ZnO and Zn2SnO4 nanowire sensors. Journal of Alloys and Compounds, 2018, 765, 1237-1242.	2.8	32

#	Article	IF	CITATIONS
55	Significantly enhanced NO2 gas-sensing performance of nanojunction-networked SnO2 nanowires by pulsed UV-radiation. Sensors and Actuators A: Physical, 2021, 327, 112759.	2.0	31
56	Highly reproducible synthesis of very large-scale tin oxide nanowires used for screen-printed gas sensor. Sensors and Actuators B: Chemical, 2010, 144, 425-431.	4.0	29
57	Shape and size controlled synthesis of Au nanorods: H 2 S gas-sensing characterizations and antibacterial application. Journal of Alloys and Compounds, 2015, 635, 265-271.	2.8	29
58	Facile preparation of a DNA sensor for rapid herpes virus detection. Materials Science and Engineering C, 2010, 30, 1145-1150.	3.8	27
59	Detection of pathogenic microorganisms using biosensor based on multi-walled carbon nanotubes dispersed in DNA solution. Current Applied Physics, 2012, 12, 1553-1560.	1.1	27
60	Micro-wheels composed of self-assembled tungsten oxide nanorods for highly sensitive detection of low level toxic chlorine gas. RSC Advances, 2015, 5, 25204-25207.	1.7	27
61	Novel silver nanoparticles: synthesis, properties and applications. International Journal of Nanotechnology, 2011, 8, 278.	0.1	26
62	Effective hydrogen gas nanosensor based on bead-like nanowires of platinum-decorated tin oxide. Sensors and Actuators B: Chemical, 2012, 173, 211-217.	4.0	26
63	Polyaniline Nanowires-Based Electrochemical Immunosensor for Label Free Detection of Japanese Encephalitis Virus. Analytical Letters, 2013, 46, 1229-1240.	1.0	26
64	Ultrasensitive NO2 gas sensors using hybrid heterojunctions of multi-walled carbon nanotubes and on-chip grown SnO2 nanowires. Applied Physics Letters, 2018, 112, .	1.5	26
65	An effective H ₂ S sensor based on SnO ₂ nanowires decorated with NiO nanoparticles by electron beam evaporation. RSC Advances, 2019, 9, 13887-13895.	1.7	26
66	On-chip growth of single phase Zn2SnO4 nanowires by thermal evaporation method for gas sensor application. Journal of Alloys and Compounds, 2017, 708, 470-475.	2.8	23
67	Ultralow power consumption gas sensor based on a self-heated nanojunction of SnO ₂ nanowires. RSC Advances, 2018, 8, 36323-36330.	1.7	23
68	Density-controllable growth of SnO2 nanowire junction-bridging across electrode for low-temperature NO2 gas detection. Journal of Materials Science, 2013, 48, 7253-7259.	1.7	21
69	Single-crystal zinc oxide nanorods with nanovoids as highly sensitive NO2 nanosensors. Materials Letters, 2013, 94, 41-43.	1.3	21
70	Nanoporous hematite nanoparticles: Synthesis and applications for benzylation of benzene and aromatic compounds. Journal of Alloys and Compounds, 2014, 582, 83-87.	2.8	21
71	Konjac glucomannan-templated synthesis of three-dimensional NiO nanostructures assembled from porous NiO nanoplates for gas sensors. RSC Advances, 2019, 9, 9584-9593.	1.7	21
72	Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric-based DNA sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 41, 1567-1571.	1.3	17

#	Article	IF	CITATIONS
73	A new fluorescent chemosensor for Hg ²⁺ in aqueous solution. Luminescence, 2013, 28, 222-225.	1.5	17
74	lsotropic metamaterial absorber using cut-wire-pair structures. Applied Physics Express, 2015, 8, 032001.	1.1	17
75	Dip-coating decoration of Ag ₂ O nanoparticles on SnO ₂ nanowires for high-performance H ₂ S gas sensors. RSC Advances, 2020, 10, 17713-17723.	1.7	17
76	Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials. Applied Physics Express, 2012, 5, 112001.	1.1	15
77	The quantum acoustomagnetoelectric field in a quantum well with a parabolic potential. Superlattices and Microstructures, 2012, 52, 921-930.	1.4	15
78	Full-Layer Controlled Synthesis and Transfer of Large-Scale Monolayer Graphene for Nitrogen Dioxide and Ammonia Sensing. Analytical Letters, 2014, 47, 280-294.	1.0	15
79	A comparative study on the NH <sub align="right">3 gas-sensing properties of ZnO, SnO<sub align=right>2, and WO_{3 nanowires. International Journal of Nanotechnology, 2011, 8, 174.}</sub </sub>	0.1	13
80	CuO Nanofibers Prepared by Electrospinning for Gas Sensing Application: Effect of Copper Salt Concentration. Journal of Nanoscience and Nanotechnology, 2016, 16, 7910-7918.	0.9	11
81	Effect of current crowding on electromigration lifetime investigated by simulation and experiment. Computational Materials Science, 2010, 49, S235-S238.	1.4	8
82	The quantum acoustoelectric current in a doped superlattice GaAs:Si/GaAs:Be. Superlattices and Microstructures, 2013, 63, 121-130.	1.4	8
83	Single crystal cupric oxide nanowires: Length- and density-controlled growth and gas-sensing characteristics. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 58, 16-23.	1.3	8
84	First-principles study of electronic properties of AB-stacked bilayer armchair graphene nanoribbons under out-plane strain. Indian Journal of Physics, 2018, 92, 447-452.	0.9	7
85	Calculations of the acoustoelectric current in a quantum well by using a quantum kinetic equation. Journal of the Korean Physical Society, 2012, 61, 2026-2031.	0.3	6
86	Tungsten Oxide Urchin-Flowers and Nanobundles: Effect of Synthesis Conditions and Heat Treatment on Assembly and Gas-Sensing Characteristics. Science of Advanced Materials, 2014, 6, 1081-1090.	0.1	6
87	Electrochemical Behavior and Electronucleation of Copper Nanoparticles from CuCl2·2H2O Using a Choline Chloride-Urea Eutectic Mixture. Journal of Nanomaterials, 2021, 2021, 1-14.	1.5	3
88	A Simple Method for Production of High Aspect Ratio ZnO Nanowires with Uniform Structure for NO ₂ Gas Sensors. Science of Advanced Materials, 2014, 6, 1659-1667.	0.1	3
89	Formation of source and drain of a-Si:H TFT by ion implantation through metal technique. Physica B: Condensed Matter, 2007, 392, 38-42.	1.3	1
90	Systematic Study of the 4f Electronic State in RRhIn5 and RCu2Si2 (R: Rare Earth). E-Journal of Surface Science and Nanotechnology, 2011, 9, 446-453.	0.1	1

#	Article	IF	CITATIONS
91	Synthesis and Gas Sensing Properties of SnO ₂ Nanostructures by Thermal Evaporation. Advanced Materials Research, 0, 620, 350-355.	0.3	1
92	Novel portable electrical detection system for DNA SENSOR application. Journal of Experimental Nanoscience, 2014, 9, 652-660.	1.3	1
93	The Enhanced Gas Sensing Characteristics of La ₂ O ₃ -Doped SnO ₂ by the Addition of Multi Wall Carbon Nanotubes. Sensor Letters, 2011, 9, 283-287.	0.4	0