
Marie E Jönsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2962113/publications.pdf Version: 2024-02-01

MADIE E LÃONSSON

#	Article	IF	CITATIONS
1	A cis-acting structural variation at the ZNF558 locus controls a gene regulatory network in human brain development. Cell Stem Cell, 2022, 29, 52-69.e8.	11.1	37
2	Distinct subcellular autophagy impairments in induced neurons from patients with Huntington's disease. Brain, 2022, 145, 3035-3057.	7.6	19
3	Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO Journal, 2021, 40, e106423.	7.8	38
4	Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in Genetics, 2020, 36, 610-623.	6.7	64
5	Profiling of lincRNAs in human pluripotent stem cell derived forebrain neural progenitor cells. Heliyon, 2020, 6, e03067.	3.2	13
6	Activation of neuronal genes via LINE-1 elements upon global DNA demethylation in human neural progenitors. Nature Communications, 2019, 10, 3182.	12.8	76
7	LINE-2 transposable elements are a source of functional human microRNAs and target sites. PLoS Genetics, 2019, 15, e1008036.	3.5	44
8	TRIM28 and the control of transposable elements in the brain. Brain Research, 2019, 1705, 43-47.	2.2	28
9	letâ€7 regulates radial migration of newâ€born neurons through positive regulation of autophagy. EMBO Journal, 2017, 36, 1379-1391.	7.8	60
10	TRIM28 Controls a Gene Regulatory Network Based on Endogenous Retroviruses in Human Neural Progenitor Cells. Cell Reports, 2017, 18, 1-11.	6.4	87
11	hESC-derived neural progenitors prevent xenograft rejection through neonatal desensitisation. Experimental Neurology, 2016, 282, 78-85.	4.1	12
12	Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1946-E1955.	7.1	52
13	TRIM28 Represses Transcription of Endogenous Retroviruses in Neural Progenitor Cells. Cell Reports, 2015, 10, 20-28.	6.4	112
14	Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports, 2015, 4, 975-983.	4.8	92
15	Comprehensive analysis of microRNA expression in regionalized human neural progenitor cells reveals microRNA-10 as a caudalizing factor. Development (Cambridge), 2015, 142, 3166-3177.	2.5	34
16	Tracking differentiating neural progenitors in pluripotent cultures using microRNA-regulated lentiviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11602-11607.	7.1	42
17	The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson's disease. Brain, 2010, 133, 482-495.	7.6	125
18	Efficient production of mesencephalic dopamine neurons by Lmx1a expression in embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7613-7618.	7.1	196

#	Article	IF	CITATIONS
19	Dopamine neuron precursors within the developing human mesencephalon show radial glial characteristics. Glia, 2009, 57, 1648-1659.	4.9	30
20	Identification of transplantable dopamine neuron precursors at different stages of midbrain neurogenesis. Experimental Neurology, 2009, 219, 341-354.	4.1	64
21	Progenitor cell injury after irradiation to the developing brain can be modulated by mild hypothermia or hyperthermia. Journal of Neurochemistry, 2005, 94, 1604-1619.	3.9	25