Frederick W Quelle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2962109/publications.pdf

Version: 2024-02-01

40 papers 7,895 citations

236833 25 h-index 289141 40 g-index

40 all docs

40 docs citations

40 times ranked

5236 citing authors

#	Article	IF	CITATIONS
1	RhoBTB1 reverses established arterial stiffness in angiotensin Il–induced hypertension by promoting actin depolymerization. JCI Insight, 2022, 7, .	2.3	8
2	Conditional deletion of smooth muscle Cullin-3 causes severe progressive hypertension. JCI Insight, 2019, 4, .	2.3	24
3	RABL6A inhibits tumor-suppressive PP2A/AKT signaling to drive pancreatic neuroendocrine tumor growth. Journal of Clinical Investigation, 2019, 129, 1641-1653.	3.9	25
4	RhoBTB1 protects against hypertension and arterial stiffness by restraining phosphodiesterase 5 activity. Journal of Clinical Investigation, 2019, 129, 2318-2332.	3.9	32
5	Hypertension-Causing Mutation in Peroxisome Proliferator–Activated Receptor γ Impairs Nuclear Export of Nuclear Factor-κB p65 in Vascular Smooth Muscle. Hypertension, 2017, 70, 174-182.	1.3	25
6	PPAR \hat{l}^3 and retinol binding protein 7 form a regulatory hub promoting antioxidant properties of the endothelium. Physiological Genomics, 2017, 49, 653-658.	1.0	8
7	Retinol-binding protein 7 is an endothelium-specific PPAR \hat{I}^3 cofactor mediating an antioxidant response through adiponectin. JCI Insight, 2017, 2, e91738.	2.3	24
8	Endothelial PPAR- \hat{l}^3 provides vascular protection from IL- $1\hat{l}^2$ -induced oxidative stress. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H39-H48.	1.5	61
9	Cullin-3 mutation causes arterial stiffness and hypertension through a vascular smooth muscle mechanism. JCI Insight, 2016, 1, e91015.	2.3	53
10	Hypertension-causing Mutations in Cullin3 Protein Impair RhoA Protein Ubiquitination and Augment the Association with Substrate Adaptors. Journal of Biological Chemistry, 2015, 290, 19208-19217.	1.6	54
11	Nuclear interactor of ARF and Mdm2 regulates multiple pathways to activate p53. Cell Cycle, 2014, 13, 1288-1298.	1.3	23
12	ARF sees Pdgfr \hat{l}^2 through the miR. Cell Cycle, 2014, 13, 1520-1521.	1.3	2
13	RABL6A Promotes G1–S Phase Progression and Pancreatic Neuroendocrine Tumor Cell Proliferation in an Rb1-Dependent Manner. Cancer Research, 2014, 74, 6661-6670.	0.4	32
14	PPARÎ ³ . Circulation Research, 2013, 112, 411-414.	2.0	11
15	FOXO Transcription Factors Enforce Cell Cycle Checkpoints and Promote Survival of Hematopoietic Cells after DNA Damage. Molecular Cancer Research, 2009, 7, 1294-1303.	1.5	41
16	Phosphoinositide 3-kinase signaling overrides a G ₂ phase arrest checkpoint and promotes aberrant cell cycling and death of hematopoietic cells after DNA damage. Cell Cycle, 2008, 7, 2877-2885.	1.3	11
17	Cytokine signaling to the cell cycle. Immunologic Research, 2007, 39, 173-184.	1.3	18
18	Nucleophosmin (B23) Targets ARF to Nucleoli and Inhibits Its Function. Molecular and Cellular Biology, 2005, 25, 1258-1271.	1.1	264

#	Article	IF	CITATIONS
19	Cytokine-induced phosphoinositide 3-kinase activity promotes Cdk2 activation in factor-dependent hematopoietic cells. Experimental Cell Research, 2004, 299, 257-266.	1.2	15
20	Erythropoietin Receptors Associate with a Ubiquitin Ligase, p33RUL, and Require Its Activity for Erythropoietin-induced Proliferation. Journal of Biological Chemistry, 2003, 278, 26851-26861.	1.6	23
21	Cytokine activation of phosphoinositide 3-kinase sensitizes hematopoietic cells to cisplatin-induced death. Cancer Research, 2003, 63, 1034-9.	0.4	22
22	DNA damage–induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood, 2001, 98, 834-841.	0.6	91
23	DNA Damage-Induced G 1 Arrest in Hematopoietic Cells Is Overridden following Phosphatidylinositol 3-Kinase-Dependent Activation of Cyclin-Dependent Kinase 2 . Molecular and Cellular Biology, 2001 , 21 , $6113-6121$.	1.1	23
24	Cytokine rescue of p53-dependent apoptosis and cell cycle arrest is mediated by distinct Jak kinase signalingÂpathways. Genes and Development, 1998, 12, 1099-1107.	2.7	93
25	Jaks and stats in cytokine signaling. Stem Cells, 1997, 15, 105-112.	1.4	100
26	Erythropoietin Induces Activation of Stat5 through Association with Specific Tyrosines on the Receptor That Are Not Required for a Mitogenic Response. Molecular and Cellular Biology, 1996, 16, 1622-1631.	1.1	262
27	Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted State6 gene. Nature, 1996, 380, 630-633.	13.7	1,223
28	Cloning of Murine Stat6 and Human Stat6, Stat Proteins That Are Tyrosine Phosphorylated in Responses to IL-4 and IL-3 but Are Not Required for Mitogenesis. Molecular and Cellular Biology, 1995, 15, 3336-3343.	1.1	319
29	Interleukin-9 Induces Tyrosine Phosphorylation of Insulin Receptor Substrate-1 via JAK Tyrosine Kinases. Journal of Biological Chemistry, 1995, 270, 20497-20502.	1.6	126
30	Phosphorylation and Activation of the DNA Binding Activity of Purified Stat1 by the Janus Protein-tyrosine Kinases and the Epidermal Growth Factor Receptor. Journal of Biological Chemistry, 1995, 270, 20775-20780.	1.6	146
31	Distribution of the Mammalian Stat Gene Family in Mouse Chromosomes. Genomics, 1995, 29, 225-228.	1.3	177
32	Signaling Through the Hematopoietic Cytokine Receptors. Annual Review of Immunology, 1995, 13, 369-398.	9.5	589
33	Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 beta receptor components. Science, 1994, 263, 92-95.	6.0	967
34	2 Cytokine receptors and signal transduction. Best Practice and Research: Clinical Haematology, 1994, 7, 17-48.	1.1	36
35	Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends in Biochemical Sciences, 1994, 19, 222-227.	3.7	637
36	Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-& gamma; signal transduction pathway. Nature, 1993, 366, 166-170.	13.7	532

#	Article	IF	CITATIONS
37	Signal transduction through the receptor for erythropoietin. Seminars in Immunology, 1993, 5, 375-389.	2.7	46
38	JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell, 1993, 74, 227-236.	13.5	1,190
39	Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8429-8433.	3.3	511
40	[3H]Dexamethasone Binding to Plasma Membrane-Enriched Fractions from Liver of Nonadrenalectomized Rats*. Endocrinology, 1988, 123, 1642-1651.	1.4	51