Bo Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2961873/publications.pdf

Version: 2024-02-01

315357 304368 2,046 41 22 38 citations h-index g-index papers 52 52 52 2370 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Development of Chiral Ligands for the Transitionâ€Metalâ€Catalyzed Enantioselective Silylation and Borylation of Câ°'H Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	59
2	Development of Chiral Ligands for the Transitionâ€Metalâ€Catalyzed Enantioselective Silylation and Borylation of Câ^'H Bonds. Angewandte Chemie, 2022, 134, e202113343.	1.6	15
3	Design, Synthesis, Antivirus Activity, and SARs of Phenanthroquinolizidine Alkaloid Derivatives. ACS Agricultural Science and Technology, 2021, 1, 222-229.	1.0	4
4	Cu-Catalyzed Highly Stereoselective Syntheses of (<i>E</i>)-δ-Vinyl-homoallylic Alcohols. Organic Letters, 2021, 23, 6035-6040.	2.4	13
5	Application of Trimethylgermanyl-Substituted Bisphosphine Ligands with Enhanced Dispersion Interactions to Copper-Catalyzed Hydroboration of Disubstituted Alkenes. Journal of the American Chemical Society, 2020, 142, 18213-18222.	6.6	73
6	Diverse functionalization of strong alkyl C–H bonds by undirected borylation. Science, 2020, 368, 736-741.	6.0	131
7	Palladium-Catalyzed Oxidation of β-C(sp ³)â€"H Bonds of Primary Alkylamines through a Rare Four-Membered Palladacycle Intermediate. Journal of the American Chemical Society, 2020, 142, 7912-7919.	6.6	37
8	The Protective Effect of Different Polar Solvent Extracts of Er Miao San on Rats with Adjuvant Arthritis. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-8.	0.5	4
9	Anti-Inflammatory Effects of Different Elution Fractions of Er-Miao-San on Acute Inflammation Induced by Carrageenan in Rat Paw Tissue. Medical Science Monitor, 2019, 25, 7958-7965.	0.5	10
10	Iridium-Catalyzed, β-Selective C(sp3)–H Silylation of Aliphatic Amines To Form Silapyrrolidines and 1,2-Amino Alcohols. Journal of the American Chemical Society, 2018, 140, 18032-18038.	6.6	77
11	Iridiumâ€Catalyzed, Silylâ€Directed, <i>peri</i> à€Borylation of Câ^'H Bonds in Fused Polycyclic Arenes and Heteroarenes. Angewandte Chemie, 2018, 130, 10320-10324.	1.6	13
12	Iridiumâ€Catalyzed, Silylâ€Directed, <i>peri</i> â€Borylation of Câ^'H Bonds in Fused Polycyclic Arenes and Heteroarenes. Angewandte Chemie - International Edition, 2018, 57, 10163-10167.	7.2	36
13	An Unprecedented Cyano-Induced Sodium Nitrite-Catalyzed C(sp3)-H and C(sp2)-H Coupling Reaction. Current Organic Synthesis, 2018, 15, 989-994.	0.7	3
14	A Chiral Nitrogen Ligand for Enantioselective, Iridiumâ€Catalyzed Silylation of Aromatic Câ^'H Bonds. Angewandte Chemie, 2017, 129, 1112-1116.	1.6	8
15	Enantioselective Borylation of Aromatic Câ^'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie - International Edition, 2017, 56, 7205-7208.	7.2	85
16	Enantioselective Borylation of Aromatic Câ^'H Bonds with Chiral Dinitrogen Ligands. Angewandte Chemie, 2017, 129, 7311-7314.	1.6	34
17	A Chiral Nitrogen Ligand for Enantioselective, Iridiumâ€Catalyzed Silylation of Aromatic Câ°'H Bonds. Angewandte Chemie - International Edition, 2017, 56, 1092-1096.	7.2	66
18	Ir-Catalyzed Enantioselective, Intramolecular Silylation of Methyl C–H Bonds. Journal of the American Chemical Society, 2017, 139, 12137-12140.	6.6	77

#	Article	IF	Citations
19	Total synthesis of the reported structure of 13a-hydroxytylophorine. Scientific Reports, 2017, 7, 16916.	1.6	1
20	Spatial Configuration and Three-Dimensional Conformation Directed Design, Synthesis, Antiviral Activity, and Structure–Activity Relationships of Phenanthroindolizidine Analogues. Journal of Agricultural and Food Chemistry, 2016, 64, 2039-2045.	2.4	33
21	Diversityâ€Oriented Synthesis through Rhâ€Catalyzed Selective Transformations of a Novel Multirole Directing Group. ChemCatChem, 2015, 7, 2986-2990.	1.8	36
22	Exploration of Earth-Abundant Transition Metals (Fe, Co, and Ni) as Catalysts in Unreactive Chemical Bond Activations. Accounts of Chemical Research, 2015, 48, 886-896.	7.6	628
23	Sodium Nitriteâ€Catalyzed Aerobic Oxidative C <i>sp</i> ² C <i>sp</i> ³ Coupling: Direct Construction of the 4â€Aryldihydroisoquinolinone Moiety. Advanced Synthesis and Catalysis, 2014, 356, 977-981.	2.1	13
24	Total synthesis of phenanthroindolizidine alkaloids via asymmetric deprotonation of N-Boc-pyrrolidine. RSC Advances, 2014, 4, 14979-14984.	1.7	13
25	An enantioselective strategy for the total synthesis of (S)-tylophorine via catalytic asymmetric allylation and a one-pot DMAP-promoted isocyanate formation/Lewis acid catalyzed cyclization sequence. Organic and Biomolecular Chemistry, 2014, 12, 3616-3621.	1.5	22
26	Design, Synthesis, Antiviral Activity, and Structure–Activity Relationships (SARs) of Two Types of Structurally Novel Phenanthroindo/quinolizidine Analogues. Journal of Agricultural and Food Chemistry, 2014, 62, 1233-1239.	2.4	17
27	Silver-catalysed direct amination of unactivated C–H bonds of functionalized molecules. Nature Communications, 2014, 5, 4707.	5.8	150
28	Asymmetric synthesis of (S)-tylophorine and (S)-cryptopleurine via one-pot Curtius rearrangement and Friedel–Crafts reaction tandem sequence. Organic Chemistry Frontiers, 2014, 1, 674-677.	2.3	14
29	Design, synthesis, antiviral activity, and SARs of 13a-substituted phenanthroindolizidine alkaloid derivatives. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2881-2884.	1.0	33
30	An Enantioselective Strategy for the Synthesis of (<i>>S</i>)-Tylophorine via One-Pot Intramolecular Schmidt/Bischler–Napieralski/Imine-Reduction Cascade Sequence. Journal of Organic Chemistry, 2013, 78, 2775-2779.	1.7	34
31	The First Enantioselective Approach to 13aâ€Methylâ€14â€hydroxyphenanthroindolizidine Alkaloids – Synthetic Studies towards Hypoestestatin 2. European Journal of Organic Chemistry, 2013, 2013, 1979-1985.	1.2	15
32	Bioinspired Construction of a Spirocyclohexadienone Moiety via Sodium Nitrite Catalyzed Aerobic Intramolecular Oxidative Phenol Coupling. Organic Letters, 2013, 15, 1606-1609.	2.4	44
33	A Simple and Efficient Oxidative Coupling of Aromatic Nuclei Mediated by Manganese Dioxide. Synthesis, 2013, 45, 2626-2626.	1.2	0
34	Enantioselective Approach to 13a-Methylphenanthroindolizidine Alkaloids. Journal of Organic Chemistry, 2012, 77, 7981-7987.	1.7	25
35	A Novel Sodium Nitriteâ€Catalyzed Oxidative Coupling for Constructing Polymethoxyphenanthrene Rings. Advanced Synthesis and Catalysis, 2012, 354, 383-387.	2.1	35
36	First total synthesis of $(\hat{a}^{"})$ - and $(+)$ -6-O-desmethylantofine. Organic and Biomolecular Chemistry, 2011, 9, 141-145.	1.5	15

#	Article	IF	CITATIONS
37	First total synthesis of Papilistatin. Organic and Biomolecular Chemistry, 2011, 9, 2539.	1.5	7
38	m-CPBA/TFA: an efficient nonmetallic reagent for oxidative coupling of 1,2-diarylethylenes. Tetrahedron, 2010, 66, 9135-9140.	1.0	28
39	A Simple and Efficient Oxidative Coupling of Aromatic Nuclei Mediated by Manganese Dioxide. Synthesis, 2010, 2010, 1083-1090.	1.2	33
40	Synthesis and Antiviral Activities of Phenanthroindolizidine Alkaloids and Their Derivatives. Journal of Agricultural and Food Chemistry, 2010, 58, 2703-2709.	2.4	105
41	Total Synthesis of the Proposed Structure of Tyloindane and Its Diastereoisomer. Synthesis, 0, , .	1.2	0