Iole Indovina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2961352/publications.pdf

Version: 2024-02-01

289141 257357 2,214 45 24 40 h-index citations g-index papers 47 47 47 2412 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. Neurolmage, 2022, 250, 118925.	2.1	21
2	Structural connectivity of autonomic, pain, limbic, and sensory brainstem nuclei in living humans based on 7 Tesla and 3ÂTesla MRI. Human Brain Mapping, 2022, 43, 3086-3112.	1.9	7
3	Radiomics in breast cancer classification and prediction. Seminars in Cancer Biology, 2021, 72, 238-250.	4.3	165
4	Vestibular rehabilitation in patients with persistent postural-perceptual dizziness: a scoping review. Hearing, Balance and Communication, 2021, 19, 282-290.	0.1	5
5	Brain Correlates of Persistent Postural-Perceptual Dizziness: A Review of Neuroimaging Studies. Journal of Clinical Medicine, 2021, 10, 4274.	1.0	21
6	Watching the Effects of Gravity. Vestibular Cortex and the Neural Representation of "Visual―Gravity. Frontiers in Integrative Neuroscience, 2021, 15, 793634.	1.0	13
7	Structural connectome and connectivity lateralization of the multimodal vestibular cortical network. Neurolmage, 2020, 222, 117247.	2.1	31
8	Sensitivity of occipito-temporal cortex, premotor and Broca's areas to visible speech gestures in a familiar language. PLoS ONE, 2020, 15, e0234695.	1.1	8
9	Reduced cortical folding in multi-modal vestibular regions in persistent postural perceptual dizziness. Brain Imaging and Behavior, 2019, 13, 798-809.	1.1	35
10	Variability and Reproducibility of Directed and Undirected Functional MRI Connectomes in the Human Brain. Entropy, 2019, 21, 661.	1.1	15
11	Lower Functional Connectivity in Vestibular-Limbic Networks in Individuals With Subclinical Agoraphobia. Frontiers in Neurology, 2019, 10, 874.	1.1	15
12	Brain responses to virtual reality visual motion stimulation are affected by neurotic personality traits in patients with persistent postural-perceptual dizziness. Journal of Vestibular Research: Equilibrium and Orientation, 2019, 28, 369-378.	0.8	38
13	Probabilistic Template of the Lateral Parabrachial Nucleus, Medial Parabrachial Nucleus, Vestibular Nuclei Complex, and Medullary Viscero-Sensory-Motor Nuclei Complex in Living Humans From 7 Tesla MRI. Frontiers in Neuroscience, 2019, 13, 1425.	1.4	27
14	Structural connectome of the human vestibular, pre-motor, and navigation network *., 2018, 2018, 588-591.		1
15	Functional Connectome of the Five-Factor Model of Personality. Personality Neuroscience, 2018, 1, .	1.3	40
16	Neuroticism modulates brain visuo-vestibular and anxiety systems during a virtual rollercoaster task. Human Brain Mapping, 2017, 38, 715-726.	1.9	46
17	Dynamical brain connectivity estimation using GARCH models: An application to personality neuroscience., 2017, 2017, 3305-3308.		2
18	Dynamic inter-network connectivity in the human brain., 2017, 2017, 3313-3316.		3

#	Article	IF	Citations
19	Altered Insular and Occipital Responses to Simulated Vertical Self-Motion in Patients with Persistent Postural-Perceptual Dizziness. Frontiers in Neurology, 2017, 8, 529.	1.1	74
20	Path integration in 3D from visual motion cues: A human fMRI study. NeuroImage, 2016, 142, 512-521.	2.1	22
21	Role of the Insula and Vestibular System in Patients with Chronic Subjective Dizziness: An fMRI Study Using Sound-Evoked Vestibular Stimulation. Frontiers in Behavioral Neuroscience, 2015, 9, 334.	1.0	93
22	Filling gaps in visual motion for target capture. Frontiers in Integrative Neuroscience, 2015, 9, 13.	1.0	39
23	Sound-evoked vestibular stimulation affects the anticipation of gravity effects during visual self-motion. Experimental Brain Research, 2015, 233, 2365-2371.	0.7	15
24	Gravity in the Brain as a Reference for Space and Time Perception. Multisensory Research, 2015, 28, 397-426.	0.6	54
25	Visual gravity cues in the interpretation of biological movements: neural correlates in humans. Neurolmage, 2015, 104, 221-230.	2.1	46
26	Multisensory Integration and Internal Models for Sensing Gravity Effects in Primates. BioMed Research International, 2014, 2014, 1-10.	0.9	48
27	Personality traits modulate subcortical and cortical vestibular and anxiety responses to sound-evoked otolithic receptor stimulation. Journal of Psychosomatic Research, 2014, 77, 391-400.	1.2	47
28	Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths. Experimental Brain Research, 2013, 229, 579-586.	0.7	22
29	Simulated self-motion in a visual gravity field: Sensitivity to vertical and horizontal heading in the human brain. Neurolmage, 2013, 71, 114-124.	2.1	95
30	Visual gravitational motion and the vestibular system in humans. Frontiers in Integrative Neuroscience, 2013, 7, 101.	1.0	61
31	Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans. Neuron, 2011, 69, 563-571.	3.8	277
32	Processing of Targets in Smooth or Apparent Motion Along the Vertical in the Human Brain: An fMRI Study. Journal of Neurophysiology, 2010, 103, 360-370.	0.9	39
33	The Brain Network Underlying Serial Visual Search: Comparing Overt and Covert Spatial Orienting, for Activations and for Effective Connectivity. Cerebral Cortex, 2009, 19, 2946-2958.	1.6	47
34	Dissociation of Stimulus Relevance and Saliency Factors during Shifts of Visuospatial Attention. Cerebral Cortex, 2007, 17, 1701-1711.	1.6	155
35	Representation of Visual Gravitational Motion in the Human Vestibular Cortex. Science, 2005, 308, 416-419.	6.0	278
36	Occipital–parietal interactions during shifts of exogenous visuospatial attention: trial-dependent changes of effective connectivity. Magnetic Resonance Imaging, 2004, 22, 1477-1486.	1.0	30

3

lole Indovina

#	Article	IF	CITATIONS
37	Intermolecular double quantum coherences (iDQc) and diffusion-weighted imaging (DWI) imaging of the human brain at 1.5 T. Magnetic Resonance Imaging, 2003, 21, 1151-1157.	1.0	12
38	Quantitative NumART2* mapping in functional MRI studies at $1.5\mathrm{T}$. Magnetic Resonance Imaging, $2003, 21, 1241-1249$.	1.0	3
39	Real-time quantification ofT2* changes using multiecho planar imaging and numerical methods. Magnetic Resonance in Medicine, 2002, 48, 877-882.	1.9	51
40	In vivo multiple spin echoes imaging of trabecular bone on a clinical 1.5 T MR scanner. Magnetic Resonance Imaging, 2002, 20, 623-629.	1.0	17
41	Hand use modifies visual attention and voluntary movement related activation. Neurolmage, 2001, 13, 1195.	2.1	0
42	On Somatotopic Representation Centers for Finger Movements in Human Primary Motor Cortex and Supplementary Motor Area. NeuroImage, 2001, 13, 1027-1034.	2.1	116
43	Combined visual attention and finger movement effects on human brain representations. Experimental Brain Research, 2001, 140, 265-279.	0.7	34
44	Tonotopic cortical changes following stapes substitution in otosclerotic patients: A magnetoencephalographic study., 2000, 10, 28-38.		22
45	Bilateral neuromagnetic activation of human primary sensorimotor cortex in preparation and execution of unilateral voluntary finger movements. Brain Research, 1999, 827, 234-236.	1.1	22