
Mitsuo Niinomi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2961339/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of biomedical titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 243, 231-236.	5.6	1,662
2	Development of new metallic alloys for biomedical applications. Acta Biomaterialia, 2012, 8, 3888-3903.	8.3	1,249
3	Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 477-486.	2.2	1,179
4	Design and mechanical properties of new β type titanium alloys for implant materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 243, 244-249.	5.6	1,071
5	Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 30-42.	3.1	1,017
6	Recent research and development in titanium alloys for biomedical applications and healthcare goods. Science and Technology of Advanced Materials, 2003, 4, 445-454.	6.1	780
7	Biocompatibility of Ti-alloys for long-term implantation. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 20, 407-415.	3.1	664
8	Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials, 2003, 24, 2673-2683.	11.4	478
9	Effects of Ta content on Young's modulus and tensile properties of binary Ti–Ta alloys for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 283-290.	5.6	333
10	Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications. Materials Transactions, 2002, 43, 2970-2977.	1.2	301
11	Corrosion resistance and biocompatibility of Ti–Ta alloys for biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 398, 28-36.	5.6	253
12	Metallic biomaterials. Journal of Artificial Organs, 2008, 11, 105-110.	0.9	248
13	Biomedical titanium alloys with Young's moduli close to that of cortical bone. International Journal of Energy Production and Management, 2016, 3, 173-185.	3.7	241
14	Beta type Ti–Mo alloys with changeable Young's modulus for spinal fixation applications. Acta Biomaterialia, 2012, 8, 1990-1997.	8.3	172
15	Corrosion wear fracture of new β type biomedical titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 263, 193-199.	5.6	161
16	Biologically and Mechanically Biocompatible Titanium Alloys. Materials Transactions, 2008, 49, 2170-2178.	1.2	159
17	Ti–25Ta alloy with the best mechanical compatibility in Ti–Ta alloys for biomedical applications. Materials Science and Engineering C, 2009, 29, 1061-1065.	7.3	148
18	Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. Materials Science and Engineering C, 2005, 25, 248-254.	7.3	147

Мітѕио Міімомі

#	Article	IF	CITATIONS
19	Relationships between tensile deformation behavior and microstructure in Ti–Nb–Ta–Zr system alloys. Materials Science and Engineering C, 2005, 25, 363-369.	7.3	127
20	Decomposition of martensite α″ during aging treatments and resulting mechanical properties of Tiâ^'Ta alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 384, 92-101.	5.6	119
21	Microstructures and mechanical properties of metastable Ti–30Zr–(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. Acta Biomaterialia, 2011, 7, 3230-3236.	8.3	119
22	Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation. Materials Letters, 2011, 65, 688-690.	2.6	117
23	Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants. Materials Science and Engineering C, 2011, 31, 1436-1444.	7.3	113
24	Optimization of Cr content of metastable β-type Ti–Cr alloys with changeable Young's modulus for spinal fixation applications. Acta Biomaterialia, 2012, 8, 2392-2400.	8.3	107
25	Microstructures and mechanical properties of Ti–50mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, 2008, 466, 535-542.	5.5	101
26	Nanotube oxide coating on Ti–29Nb–13Ta–4.6Zr alloy prepared by self-organizing anodization. Electrochimica Acta, 2006, 52, 94-101.	5.2	98
27	Tensile Deformation Behavior of Ti-Nb-Ta-Zr Biomedical Alloys. Materials Transactions, 2004, 45, 1113-1119.	1.2	86
28	Effect of Zr on super-elasticity and mechanical properties of Ti–24at% Nb–(0, 2, 4)at% Zr alloy subjected to aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 536, 197-206.	5.6	85
29	Improvement in Fatigue Strength of Biomedical β-type Ti–Nb–Ta–Zr Alloy While Maintaining Low Young's Modulus Through Optimizing ω-Phase Precipitation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 294-302.	2.2	81
30	Microstructures, mechanical properties and cytotoxicity of low cost beta Ti–Mn alloys for biomedical applications. Acta Biomaterialia, 2015, 26, 366-376.	8.3	80
31	Recent titanium R&D for biomedical applications in japan. Jom, 1999, 51, 32-34.	1.9	75
32	Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical α/β titanium alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1949-1958.	2.2	75
33	Aging behavior of the Ti-29Nb-13Ta-4.6Zr new beta alloy for medical implants. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 487-493.	2.2	71
34	Fabrication of low-cost beta-type Ti–Mn alloys for biomedical applications by metal injection molding process and their mechanical properties. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 497-507.	3.1	71
35	Bioactive calcium phosphate invert glass-ceramic coating on β-type Ti–29Nb–13Ta–4.6Zr alloy. Biomaterials, 2003, 24, 283-290.	11.4	70
36	Fully Depleted Ti–Nb–Ta–Zr–O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 22997-23008.	8.0	70

#	Article	IF	CITATIONS
37	Fracture characteristics of fatigued Ti–6Al–4V ELI as an implant material. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1998, 243, 237-243.	5.6	69
38	Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid. Journal of the American Ceramic Society, 2001, 84, 450-52.	3.8	67
39	Mechanical characteristics and microstructure of drawn wire of Ti–29Nb–13Ta–4.6Zr for biomedical applications. Materials Science and Engineering C, 2007, 27, 154-161.	7.3	67
40	Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged Conditions. Materials Transactions, 2009, 50, 2716-2720.	1.2	64
41	Micro-arc oxidation treatment to improve the hard-tissue compatibility of Ti–29Nb–13Ta–4.6Zr alloy. Applied Surface Science, 2012, 262, 34-38.	6.1	64
42	Surface hardening of biomedical Ti–29Nb–13Ta–4.6Zr and Ti–6Al–4V ELI by gas nitriding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 193-201.	5.6	62
43	Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 280, 208-213.	5.6	60
44	Effect of Ta content on mechanical properties of Ti–30Nb–XTa–5Zr. Materials Science and Engineering C, 2005, 25, 370-376.	7.3	60
45	Changeable Young's modulus with large elongation-to-failure in β-type titanium alloys for spinal fixation applications. Scripta Materialia, 2014, 82, 29-32.	5.2	59
46	Design and development of metallic biomaterials with biological and mechanical biocompatibility. Journal of Biomedical Materials Research - Part A, 2019, 107, 944-954.	4.0	58
47	Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. Scripta Materialia, 2016, 123, 144-148.	5.2	57
48	Athermal and deformation-induced ï‰-phase transformations in biomedical beta-type alloy Ti–9Cr–0.2O. Acta Materialia, 2016, 106, 162-170.	7.9	56
49	Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by Mo addition. Materials and Design, 2016, 110, 414-424.	7.0	54
50	Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. Materials Science and Engineering C, 2005, 25, 417-425.	7.3	53
51	Heterogeneous structure and mechanical hardness of biomedical <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si16.gif" display="inline" overflow="scroll"><mml:mi>î²</mml:mi>-type Tiâ€"29Nbâ€"13Taâ€"4.6Zr subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials. 2012, 10, 235-245.</mml:math 	3.1	53
52	Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 153-156.	5.6	52
53	Japanese research and development on metallic biomedical, dental, and healthcare materials. Jom, 2005, 57, 18-24.	1.9	51
54	Deformation-induced ω phase in modified Ti–29Nb–13Ta–4.6Zr alloy by Cr addition. Acta Biomaterialia, 2013, 9, 8027-8035.	8.3	49

#	Article	IF	CITATIONS
55	Fatigue, Fretting Fatigue and Corrosion Characteristics of Biocompatible Beta Type Titanium Alloy Conducted with Various Thermo-Mechanical Treatments. Materials Transactions, 2004, 45, 1540-1548.	1.2	47
56	Mechanical properties and microstructures of low cost Î ² titanium alloys for healthcare applications. Materials Science and Engineering C, 2005, 25, 304-311.	7.3	47
57	Titanium Alloys for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, 2015, , 179-213.	1.0	47
58	Predominant factor determining wear properties of β-type and (α+β)-type titanium alloys in metal-to-metal contact for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 208-220.	3.1	47
59	Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. Biomaterials, 2001, 22, 577-582.	11.4	46
60	Development of thermo-mechanical processing for fabricating highly durable <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si5.gif" display="inline" overflow="scroll"> <mml:mstyle mathvariant="bold"> <mml:mi>î² </mml:mi> -type Ti–Nb–Ta–Zr rod for use in mathvariant="bold"> <mml:mi>î² </mml:mi> -type Ti–Nb–Ta–Zr rod for use in</mml:mstyle </mml:math 	3.1	45
61	spinal fixation devices. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 9, 207-216. In situ X-ray analysis of mechanism of nonlinear super elastic behavior of Ti–Nb–Ta–Zr system beta-type titanium alloy for biomedical applications. Materials Science and Engineering C, 2008, 28, 406-413.	7.3	44
62	Improved fatigue properties with maintaining low Young's modulus achieved in biomedical beta-type titanium alloy by oxygen addition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 704, 10-17.	5.6	44
63	Deformation-induced changeable Young's modulus with high strength in β-type Ti–Cr–O alloys for spinal fixture. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 30, 205-213.	3.1	43
64	Mechanical properties and cytocompatibility of oxygen-modified β-type Ti–Cr alloys for spinal fixation devices. Acta Biomaterialia, 2015, 12, 352-361.	8.3	43
65	Improvement in mechanical strength of low-cost β-type Ti–Mn alloys fabricated by metal injection molding through cold rolling. Journal of Alloys and Compounds, 2016, 664, 272-283.	5.5	42
66	β-Type titanium alloys for spinal fixation surgery with high Young's modulus variability and good mechanical properties. Acta Biomaterialia, 2015, 24, 361-369.	8.3	41
67	Effect of Nb on Microstructural Characteristics of Ti-Nb-Ta-Zr Alloy for Biomedical Applications. Materials Transactions, 2002, 43, 2964-2969.	1.2	40
68	Isothermal Aging Behavior of Beta Titanium–Manganese Alloys. Materials Transactions, 2009, 50, 2737-2743.	1.2	40
69	The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti–29Nb–13Ta–4.6Zr alloys: The combined effect of duty cycle and the deposition frequency. Surface and Coatings Technology, 2019, 374, 345-354.	4.8	40
70	Relationship between various deformation-induced products and mechanical properties in metastable Ti–30Zr–Mo alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 2009-2016.	3.1	38
71	Inhibited grain growth in hydroxyapatite–graphene nanocomposites during high temperature treatment and their enhanced mechanical properties. Ceramics International, 2016, 42, 11248-11255.	4.8	35
72	Synthesis of biphasic calcium phosphate (BCP) coatings on β‒type titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitro corrosion. Journal of Sol-Gel Science and Technology, 2018, 87, 713-724.	2.4	33

#	Article	IF	CITATIONS
73	Toughness and Strength of Microstructurally Controlled Titanium Alloys ISIJ International, 1991, 31, 848-855.	1.4	31
74	Anomalous Thermal Expansion of Cold-Rolled Ti-Nb-Ta-Zr Alloy. Materials Transactions, 2009, 50, 423-426.	1.2	31
75	Dynamic Young's Modulus and Mechanical Properties of Ti−Hf Alloys. Materials Transactions, 2004, 45, 1549-1554.	1.2	30
76	Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660.	0.4	30
77	Osteoanabolic Implant Materials for Orthopedic Treatment. Advanced Healthcare Materials, 2016, 5, 1740-1752.	7.6	29
78	Relationship between fracture toughness and microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 263, 319-325.	5.6	28
79	An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1937-1948.	2.2	28
80	Recent Research and Development in Metallic Materials for Biomedical, Dental and Healthcare Products Applications. Materials Science Forum, 2007, 539-543, 193-200.	0.3	28
81	Effect of Deformation-Induced ω Phase on the Mechanical Properties of Metastable β-Type Ti–V Alloys. Materials Transactions, 2012, 53, 1379-1384.	1.2	28
82	Improvement in fatigue strength while keeping low Young's modulus of a β-type titanium alloy through yttrium oxide dispersion. Materials Science and Engineering C, 2012, 32, 542-549.	7.3	28
83	Abnormal Deformation Behavior of Oxygen-Modified β-Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 139-149.	2.2	27
84	Fatigue characteristics of a biomedical β-type titanium alloy with titanium boride. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 640, 154-164.	5.6	26
85	Microstructural evolution and mechanical properties of biomedical Co–Cr–Mo alloy subjected to high-pressure torsion. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 226-235.	3.1	26
86	Influence of Fe Content of Ti-Mn-Fe Alloys on Phase Constitution and Heat Treatment Behavior. Materials Science Forum, 0, 706-709, 1893-1898.	0.3	25
87	PHOSPHATE GLASSES AND GLASS-CERAMICS FOR BIOMEDICAL APPLICATIONS. Phosphorus Research Bulletin, 2012, 26, 8-15.	0.6	25
88	Developing biomedical nano-grained β-type titanium alloys using high pressure torsion for improved cell adherence. RSC Advances, 2016, 6, 7426-7430.	3.6	25
89	Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3925-3935.	2.2	24
90	Creation of Functionality by Ubiquitous Elements in Titanium Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 21-28.	0.4	24

#	Article	IF	CITATIONS
91	Evaluation of dynamic crack initiation and growth toughness by computer aided charpy impact testing system. Nuclear Engineering and Design, 1989, 111, 27-33.	1.7	23
92	Development of .BETA. Type Titanium Alloys for Impant Materials Materia Japan, 1998, 37, 843-846.	0.1	23
93	Tensile Properties and Cyto-toxicity of New Biomedical β-type Titanium Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 602-609.	0.4	23
94	Fracture characteristics and microstructural factors in single and duplex annealed Ti–4.5Al–3V–2Mo–2Fe. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 308, 216-224.	5.6	23
95	Improvements in the Superelasticity and Change in Deformation Mode of β-Type TiNb24Zr2 Alloys Caused by Aging Treatments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 2843-2849.	2.2	23
96	Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility. Materials Transactions, 2018, 59, 1-13.	1.2	23
97	Wear Characteristics of Surface Oxidation Treated New Biomedical β-type Titanium Alloy in Simulated Body Environment. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 567-574.	0.4	22
98	Passive films and corrosion resistance of Ti–Hf alloys in 5% HCl solution. Surface and Coatings Technology, 2009, 204, 180-186.	4.8	22
99	Effect of terminal functional groups of silane layers on adhesive strength between biomedical Ti-29Nb-13Ta-4.6Zr alloy and segment polyurethanes. Surface and Coatings Technology, 2012, 206, 3137-3141.	4.8	22
100	Development of low-Young's modulus Ti–Nb-based alloys with Cr addition. Journal of Materials Science, 2019, 54, 8675-8683.	3.7	22
101	Hydroxyapatite coating on titanium alloy TNTZ for increasing osseointegration and reducing inflammatory response in vivo on Rattus norvegicus Wistar rats. Ceramics International, 2021, 47, 16094-16100.	4.8	22
102	On the accuracy of measurement of dynamic elastic-plastic fracture toughness parameters by the instrumented charpy test. Engineering Fracture Mechanics, 1987, 26, 83-94.	4.3	21
103	Low Modulus Titanium Alloys for Inhibiting Bone Atrophy. , 0, , .		21
104	Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 393-402.	3.1	21
105	Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses. Intermetallics, 2016, 72, 69-75.	3.9	21
106	Dissolution of Ferrous Alloys into Molten Aluminium. Transactions of the Japan Institute of Metals, 1982, 23, 780-787.	0.5	20
107	Fatigue characteristics of ultra high molecular weight polyethylene with different molecular weight for implant material. Journal of Materials Science: Materials in Medicine, 2001, 12, 267-272.	3.6	20
108	Bioactive Ceramic Surface Modification of β-Type Ti-Nb-Ta-Zr System Alloy by Alkali Solution Treatment. Materials Transactions, 2007, 48, 293-300.	1.2	20

#	Article	IF	CITATIONS
109	Wear and Mechanical Properties, and Cell Viability of Gas-Nitrided Beta-Type Ti-Nb-Ta-Zr System Alloy for Biomedical Applications. Materials Transactions, 2008, 49, 166-174.	1.2	20
110	Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control. Expert Review of Medical Devices, 2010, 7, 481-488.	2.8	20
111	Effects of TiB on the mechanical properties of Ti–29Nb–13Ta–4.6Zr alloy for use in biomedical applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5600-5609.	5.6	20
112	Fatigue Properties and Microstructure of Newly Developed Ti-29Nb-14Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 715-722.	0.4	20
113	Machinable calcium pyrophosphate glass-ceramics. Journal of Materials Research, 2001, 16, 876-880.	2.6	19
114	é«~生体èžå•機èf½æ€§Tiå•金Ti-29Nb-13Ta-4.6Zrã®é–‹ç™º. Materia Japan, 2002, 41, 221-223.	0.1	19
115	Mechanical and biodegradable properties of porous titanium filled with poly-L-lactic acid by modified in situ polymerization technique. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1206-1218.	3.1	19
116	Microstructural factors determining mechanical properties of laser-welded Ti–4.5Al–2.5Cr–1.2Fe–0.1C alloy for use in next-generation aircraft. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 550, 55-65.	5.6	19
117	Enhancement of adhesive strength of hydroxyapatite films on Ti–29Nb–13Ta–4.6Zr by surface morphology control. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18, 232-239.	3.1	19
118	Electrochemical Surface Treatment of a β-titanium Alloy to Realize an Antibacterial Property and Bioactivity. Metals, 2016, 6, 76.	2.3	19
119	Titanium Alloys. , 2019, , 213-224.		19
120	Heat Treatment Processes and Mechanical Properties of New β-type Biomedical Ti-29Nb-13Ta-4.6Zr Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 610-616.	0.4	18
121	Effect of Cooling Rate on Microstructure and Fracture Characteristics of β-Rich α + β Type Ti-4.5Al-3V-2Mo-2Fe Alloy. Materials Transactions, 2001, 42, 1339-1348.	1.2	18
122	Fretting Fatigue Characteristics of New Biomedical β-type Titanium Alloy in Air and Simulated Body Environment. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002, 88, 553-560.	0.4	18
123	Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3, 41-50.	3.1	18
124	Reduction in anisotropy of mechanical properties of coilable (α+β)-type titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 594, 103-110.	5.6	18
125	Effect of .BETA. Phase Stability at Room Temperature on Mechanical Properties in .BETARich .ALPHA.+.BETA. Type Ti-4.5Al-3V-2Mo-2Fe Alloy ISIJ International, 2002, 42, 191-199.	1.4	18
126	Effect of microstructure on fracture characteristics of Ti-6Al-2Sn-2Zr-2Mo-2Cr-Si. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 2795-2804.	2.2	17

#	Article	IF	CITATIONS
127	Mechanical Properties of Biocompatible Beta-Type Titanium Alloy Coated with Calcium Phosphate Invert Glass-Ceramic Layer. Materials Transactions, 2005, 46, 1564-1569.	1.2	17
128	Effect of Microstructure on Fatigue Strength of Bovine Compact Bones. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2005, 48, 472-480.	0.4	17
129	Mechanical properties of Ti–4.5Al–3V–2Mo–2Fe and possibility for healthcare applications. Materials Science and Engineering C, 2005, 25, 296-303.	7.3	17
130	Experimental application of pulsed laserâ€induced water jet for endoscopic submucosal dissection: Mechanical investigation and preliminary experiment in swine. Digestive Endoscopy, 2013, 25, 255-263.	2.3	17
131	Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical β-type titanium alloy. Materials Science and Engineering C, 2014, 36, 244-251.	7.3	17
132	Wear transition of solid-solution-strengthened Ti–29Nb–13Ta–4.6Zr alloys by interstitial oxygen for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 398-408.	3.1	17
133	Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering. Acta Metallurgica Sinica (English Letters), 2016, 29, 793-799.	2.9	17
134	Fatigue Characteristics of Low Cost β Titanium Alloys for Healthcare and Medical Applications. Materials Transactions, 2005, 46, 1570-1577.	1.2	16
135	Phase Constitution and Heat Treatment Behavior of Ti-7mass% Mn-Al Alloys. Materials Science Forum, 2010, 654-656, 855-858.	0.3	16
136	Mechanical Properties and Biocompatibilities of Zr-Nb System Alloys with Different Nb Contents for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 445-451.	0.4	16
137	Mechanism of unique hardening of dental Ag–Pd–Au–Cu alloys in relation with constitutional phases. Journal of Alloys and Compounds, 2012, 519, 15-24.	5.5	16
138	Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO 2 additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 619, 112-118.	5.6	16
139	In vitro biocompatibility of Ti–Mg alloys fabricated by direct current magnetron sputtering. Materials Science and Engineering C, 2015, 54, 1-7.	7.3	16
140	Improvement in mechanical properties of dental cast Ti-6Al-7Nb by thermochemical processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 503-510.	2.2	15
141	Effect of Nb Content on Microstructure, Tensile Properties and Elastic Modulus of Ti-XNb-10Ta-5Zr Alloys for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 681-687.	0.4	15
142	Effect of Aging Treatment on Mechanical Properties of Ti-29Nb-13Ta-4.6Zr Alloy for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 295-303.	0.4	15
143	Frictional wear characteristics of biomedical Ti–29Nb–13Ta–4.6Zr alloy with various microstructures in air and simulated body fluid. Biomedical Materials (Bristol), 2007, 2, S167-S174.	3.3	15
	Differences in Wear Behaviors at Sliding Contacts for & amn beta: Type and (& amn alpha: +) Ti FTOoO 0 0 rgBT /(Werlock 1	0 Tf 50 67 Td

144

9

Differences in Wear Behaviors at Sliding Contacts for & amp; beta;-Type and (& amp; alpha; +) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 67 Td 1.2 15 56, 317-326.

#	Article	IF	CITATIONS
145	Phase transformation and its effect on mechanical characteristics in warm-deformed Ti-29Nb-13Ta-4.6Zr alloy. Metals and Materials International, 2015, 21, 202-207.	3.4	15
146	Grain Refinement Mechanism and Evolution of Dislocation Structure of Co–Cr–Mo Alloy Subjected to High-Pressure Torsion. Materials Transactions, 2016, 57, 1109-1118.	1.2	15
147	Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys. Journal of Materials Engineering and Performance, 2019, 28, 5501-5508.	2.5	15
148	Instrumented Impact Testing of Ceramics. Transactions of the Japan Institute of Metals, 1986, 27, 775-783.	0.5	14
149	Joining of Calcium Phosphate Invert Glassâ€Ceramics on a βâ€Type Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033.	3.8	14
150	Aging Characteristics and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr Coated with Calcium Phosphate Invert Glass-Ceramic for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 604-613.	0.4	14
151	Specific characteristics of mechanically and biologically compatible titanium alloy rods for use in spinal fixation applications. Materials Letters, 2012, 86, 178-181.	2.6	14
152	Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and Ti–Nb–Ta–Zr alloys. Japanese Journal of Applied Physics, 2014, 53, 11RD02.	1.5	14
153	Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications. Materials Transactions, 2017, 58, 271-279.	1.2	14
154	Bending springback behavior related to deformation-induced phase transformations in Ti–12Cr and Ti–29Nb–13Ta–4.6Zr alloys for spinal fixation applications. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 66-74.	3.1	13
155	Effects of Aging Treatments on Fracture Characteristics of 6061 Aluminum Alloy Reinforced with SiC Whisker. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 468-475.	0.4	12
156	Recent Applications, Research and Development in Titanium and Its Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 462-471.	0.4	12
157	Notch fatigue properties of a Ti-29Nb-13Ta-4.6Zr alloy for biomedical applications. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 575-581.	0.4	12
158	Relationship between Unique Hardening Behavior and Microstructure of Dental Silver Alloy Subjected to Solution Treatment. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 337-344.	0.4	12
159	Tensile Properties and Surface Reaction Layer of Biomaterial, Ti-29Nb-13Ta-4.6Zr, Cast by Dental Precision Casting Process Using Various Investment Materials. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 154-161.	0.4	12
160	Fatigue crack propagation in Al-Si alloy castings Keikinzoku/Journal of Japan Institute of Light Metals, 1987, 37, 824-830.	0.4	11
161	The role of microstructures on the strengthening mechanisms of a thermomechanically processed 2091 Al–Li alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 284, 14-24.	5.6	11
162	Image-Based Mechanical Analysis of Multifilamentary Microstructure Formation in Al–Fe Heavily Deformed <1>In-Situ 1 Composites. Materials Transactions, 2005, 46, 2229-2236.	1.2	11

#	Article	IF	CITATIONS
163	Microstructural Modification in a Beta Titanium Alloy for Implant Applications. Materials Transactions, 2006, 47, 90-95.	1.2	11
164	Mechanical Properties of Implant Rods made of Low-Modulus β-Type Titanium Alloy, Ti-29Nb-13Ta-4.6Zr, for Spinal Fixture. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 674-678.	0.4	11
165	Facile formation with HA/Sr–GO-based composite coatings via green hydrothermal treatment on β-type TiNbTaZr alloys: Morphological and electrochemical insights. Journal of Materials Research, 2022, 37, 2512-2524.	2.6	11
166	Microstructure and mechanical properties of Ti–Nb–Fe–Zr alloys with high strength and low elastic modulus. Transactions of Nonferrous Metals Society of China, 2022, 32, 503-512.	4.2	11
167	White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. Advances in Materials Science and Engineering, 2013, 2013, 1-9.	1.8	10
168	Effect of heterogeneous precipitation caused by segregation of substitutional and interstitial elements on mechanical properties of a β-type Ti alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 643, 109-118.	5.6	10
169	Optimization of Microstructure and Mechanical Properties of Co–Cr–Mo Alloys by High-Pressure Torsion and Subsequent Short Annealing. Materials Transactions, 2016, 57, 1887-1896.	1.2	10
170	Nanostructure Of β-type Titanium Alloys Through Severe Plastic Deformation. Advanced Materials Letters, 2014, 5, 378-383.	0.6	10
171	Change in Mechanical Properties of Ti-6Al-4V ELI during Fatigue Failure Process. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 140-149.	0.4	9
172	Formation of L10-type ordered β′ phase in as-solutionized dental Ag–Pd–Au–Cu alloys and hardening behavior. Materials Science and Engineering C, 2012, 32, 503-509.	7.3	9
173	Mechanical Properties and Biocompatibility of Low Cost-Type Ti-Mn System Binary Alloys for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2013, 77, 253-258.	0.4	9
174	Low Young's Modulus Ti–Nb–O with High Strength and Good Plasticity. Materials Transactions, 2018, 59, 858-860.	1.2	9
175	Fatigue Crack Propagation Characteristics in SiC _p /6061-T6 Composite. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1991, 55, 72-78.	0.4	9
176	On the Alloy Layers Formed by the Reaction between Ferrous Alloys and Molten Aluminium. Transactions of the Japan Institute of Metals, 1982, 23, 709-717.	0.5	8
177	Mechanical properties and Portevin-Le Chatelier effect in Al-Si alloy Keikinzoku/Journal of Japan Institute of Light Metals, 1986, 36, 555-561.	0.4	8
178	Evaluation of fracture toughness of aluminum alloys by tear test Keikinzoku/Journal of Japan Institute of Light Metals, 1988, 38, 9-15.	0.4	8
179	Effect of Microstructure on Fracture Characteristics of Compact Bone Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 1998, 64, 312-318.	0.2	8
180	BIOMIMETIC APATITE FORMATION ON CALCIUM PHOSPHATE INVERT GLASSES. Phosphorus Research Bulletin, 2001, 12, 39-44.	0.6	8

Мітѕио Міімомі

#	Article	IF	CITATIONS
181	Assessment of Thermo-Mechanical Fatigue Behaviors of Cast Al-Si Alloys by Experiments and Multi-Step Numerical Simulation. Materials Transactions, 2005, 46, 111-117.	1.2	8
182	Dental Precision Casting of Ti-29Nb-13Ta-4.6Zr Using Calcia Mold. Materials Science Forum, 2005, 475-479, 2303-2308.	0.3	8
183	Heterogeneous α Phase Precipitation and Peculiar Aging Strengthening in Biomedical β-Type Ti-Nb-Ta-Zr Alloy Having Vortical Structure. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2011, 75, 198-206.	0.4	8
184	Microstructure and Mechanical Properties of a Biomedical β-Type Titanium Alloy Subjected to Severe Plastic Deformation after Aging Treatment. Key Engineering Materials, 0, 508, 152-160.	0.4	8
185	Research and Development of Low-Cost Titanium Alloys for Biomedical Applications. Key Engineering Materials, 0, 551, 133-139.	0.4	8
186	Development of Titanium Alloys with High Mechanical Biocompatibility with Focusing on Controlling Elastic Modulus. Materia Japan, 2013, 52, 219-228.	0.1	8
187	A review of surface modification of a novel low modulus β-type titanium alloy for biomedical applications. International Journal of Surface Science and Engineering, 2014, 8, 138.	0.4	8
188	Enhancing the durability of spinal implant fixture applications made of Ti-6Al-4V ELI by means of cavitation peening. International Journal of Fatigue, 2016, 92, 360-367.	5.7	8
189	High-cycle fatigue properties of an easily hot-workable (α+β)-type titanium alloy butt joint prepared by friction stir welding below β transus temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 553-563.	5.6	8
190	Effect of Microstructure on Small Fatigue Crack Initiation and Propagation Characteristics of Ti-6Al-7Nb Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62, 952-960.	0.4	8
191	Fretting Fatigue Characteristics with Relating Contact Pressure and Surface Roughness of Highly Workable Titanium Alloy, Ti-4.5Al-3V-2Mo-2Fe. Materials Transactions, 2004, 45, 1586-1593.	1.2	7
192	Tensile Deformation Behavior of Ti-30Nb-10Ta-XZr Alloys for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 89-95.	0.4	7
193	Improvement of adhesive strength of segmented polyurethane on Ti–29Nb–13Ta–4.6Zr alloy through H ₂ O ₂ treatment for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2013, 101B, 776-783.	3.4	7
194	Fatigue Property and Cytocompatibility of a Biomedical Co–Cr–Mo Alloy Subjected to a High Pressure Torsion and a Subsequent Short Time Annealing. Materials Transactions, 2020, 61, 361-367.	1.2	7
195	Effects of Triaxiality and Microstructure on the Ductile Fracture Morphology of Al-Zn-Mg-Cu-Zr Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1988, 52, 26-33.	0.4	6
196	Fatigue Properties of Cast Ag-Pd-Cu-Au-Zn Alloy for Dental Applications in the Relation with Casting Defects. Materials Transactions, 2002, 43, 3160-3166.	1.2	6
197	The commercial potential of MIM titanium alloy. Metal Powder Report, 2009, 64, 17-20.	0.1	6
198	Bending Fatigue and Spring Back Properties of Implant Rods Made of β-Type Titanium Alloy for Spinal Fixture. Advanced Materials Research, 0, 89-91, 400-404.	0.3	6

#	Article	IF	CITATIONS
199	Effect of Oxide Particles Formed through Addition of Rare-Earth Metal on Mechanical Properties of Biomedical β-Type Titanium Alloy. Materials Transactions, 2013, 54, 1361-1367.	1.2	6
200	In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. PLoS ONE, 2018, 13, e0189967.	2.5	6
201	Low Young's Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content. Journal of Materials Engineering and Performance, 2020, 29, 2871-2878.	2.5	6
202	Strength, Toughness and Thermomechanical Processings in Ti-15V-3Cr-3Sn-3Al Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1992, 78, 1862-1869.	0.4	6
203	On Accuracy of Measurement of Dynamic Elastic-Plastic Fracture Toughness by Instrumented Charpy Test. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1986, 72, 2133-2140.	0.4	6
204	Microstructure, mechanical properties, and cytotoxicity of low Young's modulus Ti–Nb–Fe–Sn alloys. Journal of Materials Science, 2022, 57, 5634-5644.	3.7	6
205	Impact toughness of Al-Li system alloys at low temperatures Keikinzoku/Journal of Japan Institute of Light Metals, 1987, 37, 816-823.	0.4	5
206	Contact pressure and fretting fatigue characteristics of highly workable titanium alloy with equiaxed .ALPHA. and Widmanstaetten .ALPHA. structure. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 661-667.	0.4	5
207	Fretting-Fatigue Properties and Fracture Mechanism of Semi-Precious Alloy for Dental Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 63-71.	0.4	5
208	Effects of Nd Content on the Dynamic Elastic Modulus and Mechanical Properties of Titanium-Neodymium Alloys. Materials Transactions, 2009, 50, 368-372.	1.2	5
209	Effect of Y ₂ O ₃ on Mechanical Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Materials Science Forum, 2010, 654-656, 2138-2141.	0.3	5
210	High mechanical functionalization of Ti–Al–Cr–Fe–C system alloy for next-generation aircraft applications through microstructural control. Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 705-710.	0.4	5
211	Contribution of β′ and β precipitates to hardening in as-solutionized Ag–20Pd–12Au–14.5Cu alloys for dental prosthesis applications. Materials Science and Engineering C, 2014, 37, 204-209.	7.3	5
212	Low Springback and Low Young's Modulus in Ti–29Nb–13Ta–4.6Zr Alloy Modified by Mo Addition. Materials Transactions, 2019, 60, 1755-1762.	1.2	5
213	Effects of Fe on Microstructures and Mechanical Properties of Ti–15Nb–25Zr–(0, 2, 4, 8)Fe Alloys Prepared by Spark Plasma Sintering. Materials Transactions, 2019, 60, 1763-1768.	1.2	5
214	Effect of Substructure Formed in Prior β Grain on Crack Initiation and Propagation Toughness of Ti-6 Al-2 Sn-4 Zr-6 Mo Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1988, 74, 543-550.	0.4	5
215	Dissolution of Ferrous Alloys into Molten Aluminium. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1978, 42, 549-555.	0.4	5
216	Toughness and Microstructural Factor of Ti-6Al-4V Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1986, 72, 633-640.	0.4	4

#	Article	IF	CITATIONS
217	Mechanical properties of SiC whisker reinforced aluminum alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1988, 38, 593-599.	0.4	4
218	Microstructure and fracture characteristics in reactive sintering TiAl intermetallic compound Keikinzoku/Journal of Japan Institute of Light Metals, 1997, 47, 521-526.	0.4	4
219	Microstructure and fretting fatigue characteristics of a Ti-4.5%Al-3% V-2%Mo-2%Fe alloy Keikinzoku/Journal of Japan Institute of Light Metals, 2002, 52, 371-377.	0.4	4
220	Effects of contact pressure and surface roughness on fretting fatigue characteristics of a high workable Ti-4.5%Al-3%V-2%Mo-2%Fe alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2003, 53, 563-569.	0.4	4
221	Microstructures and Mechanical Properties of Ti-Ni and Ti-Ni-Co Type Shape Memory Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 595-603.	0.4	4
222	CALCIUM PHOSPHATE GLASS-CERAMIC COATING ON A TITANIUM ALLOY. Phosphorus Research Bulletin, 2004, 17, 29-36.	0.6	4
223	Numerical simulation of fracture of model Al-Si alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2979-2992.	2.2	4
224	Analysis of Tensile Deformation Behaviors of Ti-XNb-10Ta-5Zr Alloys for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 572-578.	0.4	4
225	Effect of Young's modulus in metallic implants on atrophy and bone remodeling. , 2010, , 90-99.		4
226	Antibacterial Cu-Doped Calcium Phosphate Coating on Pure Titanium. Materials Transactions, 2021, 62, 1052-1055.	1.2	4
227	Fracture Characteristics and Microstructures of Intermetallic Compound Ti-24Al-11Nb(at%). Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1995, 59, 708-716.	0.4	4
228	Effects of Thermochemical Treatment on Mechanical Properties of Cast Ti-6Al-7Nb Alloy for Dental Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2000, 64, 895-902.	0.4	4
229	Dissolution of Ferrous Alloys into Molten Pure Aluminium under Forced Flow. Transactions of the Japan Institute of Metals, 1984, 25, 429-439.	0.5	3
230	Effect of Microstructural Factor on Impact Toughness of Ti-6Al-2Sn-4Zr-6Mo Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1987, 73, 1397-1404.	0.4	3
231	Strength and toughness of microstructually controlled .ALPHA.+.BETA. type titanium alloys by thermochemical processings with hydrogen Keikinzoku/Journal of Japan Institute of Light Metals, 1992, 42, 638-643.	0.4	3
232	Strength, toughness and microstructural parameters in 2091 Al-Li system alloy Keikinzoku/Journal of Japan Institute of Light Metals, 1995, 45, 127-132.	0.4	3
233	Effects of Fe and Ca on impact fatigue characteristics of AC2B-T6 aluminum casting alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1995, 45, 88-94.	0.4	3
234	Effect of stress triaxiality on fracture behavior of 2091 aluminum alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1995, 45, 654-659.	0.4	3

#	Article	IF	CITATIONS
235	"Strategy for Ubiquitous Titanium Alloys― Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 915.	0.4	3
236	High Mechanical Functionalization of Metallic Biomaterials through Thermomechanical Treatments. Journal of Biomechanical Science and Engineering, 2009, 4, 345-355.	0.3	3
237	Young's Modulus Changeable β-Type Binary Ti-Cr Alloys for Spinal Fixation Applications. Key Engineering Materials, 2012, 508, 117-123.	0.4	3
238	Effects of Alloying Elements on the HAp Formability on Ti Alloys after Alkali Treatment. Materials Transactions, 2013, 54, 1295-1301.	1.2	3
239	Hardening behavior after high-temperature solution treatment of Ag–20Pd–12Au–xCu alloys with different Cu contents for dental prosthetic restorations. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35, 123-131.	3.1	3
240	Change in Mechanical Strength and Bone Contactability of Biomedical Titanium Alloy with Low Young's Modulus Subjected to Fine Particle Bombarding Process. Materials Transactions, 2015, 56, 218-223.	1.2	3
241	Fatigue failure of metallic biomaterials. , 2019, , 153-188.		3
242	Relationship between Fatigue Life, Changing of Mechanical Properties and Dislocation Structure during Fatigue in Pure Titanium. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1999, 63, 1527-1534.	0.4	3
243	Microstructure and Fatigue Crack Initiation and Propagation Characteristics of Cast α+β Type Titanium Alloys Conducted with Thermochemical Heat Processing for Dental Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002, 66, 1098-1106.	0.4	3
244	Application of atmospheric-pressure plasma treatment to coat Ti-alloy orthodontic wire with white oxide layer. Japanese Journal of Applied Physics, 2020, 59, SAAC09.	1.5	3
245	Microstructures and Mechanical Properties of Ternary Ti^ ^ndash;10Cr^ ^ndash;(V, Fe, Mo) Alloys with Self-tunable Young's Moduli for Biomedical Applications. ISIJ International, 2012, 52, 1655-1660.	1.4	3
246	Evaluation of Dynamic Fracture Toughness Parameters by Instrumented Charpy Test. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1985, 71, 1934-1940.	0.4	3
247	Antibacterial Properties and Biocompatibility of Hydroxyapatite Coating Doped with Various Cu Contents on Titanium. Materials Transactions, 2022, 63, 1072-1079.	1.2	3
248	Fracture Toughness and Microstructure in TiB Particulate-reinforced Ti-6Al-2Sn-4Zr-2Mo Composites. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1998, 84, 452-457.	0.4	2
249	Cold Crucible Levitation Melting of Biomedical Ti-30 wt%Ta Alloy Dental Materials Journal, 2001, 20, 156-163.	1.8	2
250	NOVEL METHOD FOR APATITE COATING ON Ti-29Nb-13Ta-4.6Zr ALLOY. Phosphorus Research Bulletin, 2004, 17, 258-261.	0.6	2
251	Influences of spatial distribution of Si particles on crack propagation in model Al-Si cast alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 75-81.	0.4	2
252	Microstructure and fretting fatigue characteristics of highly workable titanium alloy with equiaxed .ALPHA. and Widmanstaetten .ALPHA. structure. Keikinzoku/Journal of Japan Institute of Light Metals, 2005, 55, 654-660.	0.4	2

#	Article	IF	CITATIONS
253	Feasibility Study on Smart Coating for Failure Prevention under Thermo-mechanical Fatigue Loading. Journal of Intelligent Material Systems and Structures, 2006, 17, 1099-1103.	2.5	2
254	Change in Fatigue Strength of Biomedical β-Type Titanium Alloy through Heat Treatment Processes. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 893-898.	0.2	2
255	Improvement in Fatigue Strength of Biomedical β-Type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young's Modulus through Optimizing ω-Phase Precipitation. Materials Transactions, 2011, , .	1.2	2
256	Difference of Microstructure and Fatigue Properties between Forged and Rolled Ti-6Al-4V. Key Engineering Materials, 2012, 508, 161-165.	0.4	2
257	Microstructural Analysis of Biomedical Co-Cr-Mo Alloy Subjected to High-Pressure Torsion Processing. Key Engineering Materials, 0, 616, 263-269.	0.4	2
258	Biomedical Polymer Surface Modification of Beta-Type Titanium Alloy for Implants through Anodic Oxide Nanostructures. Materials Science Forum, 0, 783-786, 1261-1264.	0.3	2
259	Wear Properties of Ti-6Al-4V/Ti-29Nb-13Ta-4.6Zr Combination for Spinal Implants. Advanced Materials Research, 0, 922, 424-428.	0.3	2
260	Precipitation of β′ phase and hardening in dental-casting Ag–20Pd–12Au–14.5Cu alloys subjected to aging treatments. Materials Science and Engineering C, 2014, 36, 329-335.	7.3	2
261	Osteoanabolic Implants: Osteoanabolic Implant Materials for Orthopedic Treatment (Adv. Healthcare) Tj ETQq1 1	0,784314 7.6	rgBT /Over
262	Ti-Based Biomedical Alloys. , 2019, , 61-76.		2
263	Influence of Sintering Temperature on Mechanical Properties of Ti-Nb-Zr-Fe Alloys Prepared by Spark Plasma Sintering. Journal of Materials Engineering and Performance, 2021, 30, 5719-5727.	2.5	2
264	Relationship between Microstructure and Fatigue Properties of Forged Ti–5Al–2Sn–2Zr–4Mo–4Cr for Aircraft Applications. Materials Transactions, 2020, 61, 2017-2024.	1.2	2
265	Impact Fatigue Properties of Carburized SCM415 Steels. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1991, 77, 155-162.	0.4	2
266	Friction Wear Property of Newly Designed β-type Biomedical Titanium Alloys in Air and Ringer's Solution. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2001, 87, 500-507.	0.4	2
267	Effects of Striker Edge Radius on Load-Deflection Curve and Absorbed Energy in Instrumented Charpy Impact Test. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 485-492.	0.4	2
268	Effects of Strain-induced Transformation and Temperature on Fracture Toughness of Titanium Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1989, 75, 537-544.	0.4	2
269	Low-Modulus Ti Alloys Suitable for Rods in Spinal Fixation Devices. , 2017, , 3-21.		2
270	Factors Leading to Low Elastic Modulus and Current Status of Medically Applied Research of β-type Ti-Nb-based Alloys. Materia Japan, 2020, 59, 588-593.	0.1	2

#	Article	IF	CITATIONS
271	Effect of intermediate thermomechanical treatment on toughness of Al-Li system alloy Keikinzoku/Journal of Japan Institute of Light Metals, 1986, 36, 718-727.	0.4	1
272	Effect of manufacturing process on strength and toughness of 2091 Al-Li system alloy Keikinzoku/Journal of Japan Institute of Light Metals, 1995, 45, 121-126.	0.4	1
273	Effect of Microstructure on Tensile Properties and Static Fracture Toughness of Dental Gold Alloy. Materials Transactions, 2005, 46, 1540-1544.	1.2	1
274	"Materials Technology for Improving QOL― Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 259.	0.4	1
275	Effect of Microstructure on Tensile Properties and Static Fracture Toughness of Dental Gold Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 337-342.	0.4	1
276	Effect of Oxygen on Phase Precipitation and Mechanical Functionality in Ti-29Nb-13Ta-4.6Zr. Key Engineering Materials, 2010, 436, 179-184.	0.4	1
277	Formability of Ti–29Nb–13Ta–4.6Zr Biomaterial at High Temperatures. Key Engineering Materials, 2010, 443, 620-625.	0.4	1
278	Young's Modulus Changeable Titanium Alloys for Orthopaedic Applications. Materials Science Forum, 0, 706-709, 557-560.	0.3	1
279	Development of New Titanium-Molybdenum Alloys with Changeable Young's Modulus for Spinal Fixture Devices. Journal of Solid Mechanics and Materials Engineering, 2012, 6, 695-700.	0.5	1
280	Phase Constitution and Heat Treatment Behavior of Low Cost Ti-Mn System Alloys. Key Engineering Materials, 2013, 551, 217-222.	0.4	1
281	Advances in Development of Titanium Alloys for Spinal Fixation Applications-Titanium Alloys with High Fatigue Strength and Low Springback for Spinal Fixation Applications Key Engineering Materials, 0, 575-576, 446-452.	0.4	1
282	Effect of Subsurface Deformation on Sliding Wear Behavior of Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications. Key Engineering Materials, 0, 616, 270-274.	0.4	1
283	Optimization of Mo Content in Beta-Type Ti-Mo Alloys for Obtaining Larger Changeable Young's Modulus during Deformation for Use in Spinal Fixation Applications. Materials Science Forum, 0, 783-786, 1307-1312.	0.3	1
284	Developments of titanium alloys with high mechanical biocompatibility for biomedical applications. Keikinzoku/Journal of Japan Institute of Light Metals, 2014, 64, 374-381.	0.4	1
285	Evaluation of Adhesion of Hydroxyapatite Films Fabricated on Biomedical β-Type Titanium Alloy after Immersion in Ringer's Solution. Materials Transactions, 2015, 56, 1703-1710.	1.2	1
286	Enhancement of Mechanical Biocompatibility of Titanium Alloys by Deformation-Induced Transformation. Materials Science Forum, 2016, 879, 125-130.	0.3	1
287	Current Situation and Challenges and Prospects of the Design and Manufacturing Process of the Spinal Implants. Materia Japan, 2016, 55, 142-146.	0.1	1
288	Microstructure, Mechanical Properties, and Springback of Ti-Nb Alloys Modified by Mo Addition. Journal of Materials Engineering and Performance, 2020, 29, 5366-5373.	2.5	1

#	Article	IF	CITATIONS
289	Co–Cr-based alloys. , 2021, , 103-126.		1
290	Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices. , 2016, , 215-221.		1
291	Multifunctional low-rigidity \hat{I}^2 -type Ti-Nb-Ta-Zr system alloys as biomaterials. , 2007, , 75-84.		1
292	Titanium and Its Alloys. , 2008, , 2876-2892.		1
293	Effect of Microstructure on Impact Toughness of Al-Li Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1988, 52, 34-42.	0.4	1
294	Fracture Characteristics of Titanium-based Intermetallic Compound Ti ₃ Al. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1991, 55, 1023-1030.	0.4	1
295	Impact Toughness of Hydrogen Charged Ti-6Al-2Sn-4Zr-6Mo Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1987, 73, 1405-1412.	0.4	1
296	Effect of Thermomechanical Treatment Conditions on Mechanical Properties of Ti-10V-2Fe-3Al Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1990, 76, 1712-1719.	0.4	1
297	Relationship between microstructures and mechanical properties of Ti–4.5%Al–2%Mo–1.6%V–0.5%Fe–0.3%Si–0.03%C for next-generation aircraft applications. Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 711-717.	0.4	1
298	Effect of Molecular Weight on Fatigue Characteristics of Ultra-High Molecular Weight Polyethylene for Implant Material. Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49, 35-40.	0.2	1
299	Effect of Microstructure on Fracture Characteristics of Ti-6Al-2Sn-2Mo-2Zr-2Cr-Si Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2001, 87, 55-62.	0.4	1
300	Effect of Hydrogen Charging on the Impact Toughness of Ti-6Al-4V Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1986, 50, 449-455.	0.4	1
301	Microstructural Control by Retrogression and Reaging Treatment in SiC Whisker Reinforced Aluminum Alloy Composite. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1994, 58, 1086-1094.	0.4	1
302	Development of Strengthening and Toughening of β-type Titanium Alloys. Materia Japan, 2019, 58, 193-200.	0.1	1
303	Exfoliation Resistance, Microstructure, and Oxide Formation Mechanisms of the White Oxide Layer on CP Ti and Ti–Nb–Ta–Zr Alloys. Materials, 2021, 14, 6599.	2.9	1
304	Phenomenological law and process of α phase evolution in a β-type bio-Titanium alloy TNTZ during aging. Materials Characterization, 2021, 182, 111576.	4.4	1
305	Microstructure, Mechanical Properties, and Cytotoxicity of β-Type Ti-Nb-Cr Alloys Designed by Electron Parameter. Journal of Materials Engineering and Performance, 0, , 1.	2.5	1
306	Effect of intermediate thermomechanical treatment on toughness of Al-Zn-Mg-Cu alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1985, 35, 512-519.	0.4	0

#	Article	IF	CITATIONS
307	Mechanical properties of Al-Si and Al-Fe powder metallurgy alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1991, 41, 772-777.	0.4	0
308	Fracture characteristics of Al-Si and Al-Fe system powder metallurgy alloys Keikinzoku/Journal of Japan Institute of Light Metals, 1993, 43, 263-268.	0.4	0
309	Effect of microstructure on mechanical properties in intermetallic compound Ti3Al-Nb Keikinzoku/Journal of Japan Institute of Light Metals, 1994, 44, 628-634.	0.4	0
310	Fretting fatigue and frictional wear characteristics of a high workable Ti-4.5%Al-3%V-2%Mo-Fe alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2003, 53, 251-257.	0.4	0
311	Mechanical Properties and Cyto-Toxicity of Newly Designed .BETA. Type Ti Alloys for Dental Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2005, 69, 96-102.	0.4	0
312	Effect of loading rate on absorbed energy and fracture surface area in wrought aluminum alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 2006, 56, 15-20.	0.4	0
313	Formability of Hydroxyapatite on Beta-Type Ti-Nb-Ta-Zr Alloy for Biomedical Applications through Alkaline Treatment Process. Key Engineering Materials, 2007, 352, 297-300.	0.4	0
314	Development of allergy-free titanium alloys for brass instruments and their characteristics. Keikinzoku/Journal of Japan Institute of Light Metals, 2008, 58, 604-610.	0.4	0
315	Structure and Mechanical Properties of Melt-Extracted Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High Bending Ductility. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 515-519.	0.4	0
316	Fabrication of Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High-Ductility by Arc-Melt-Type Melt-Extraction Method. Materials Transactions, 2010, 51, 377-380.	1.2	0
317	Quality improvement of a β-type titanium alloy cast for biomedical applications by using a calcia mold. Keikinzoku/Journal of Japan Institute of Light Metals, 2010, 60, 170-176.	0.4	0
318	Effects of Nb and O Contents on Microstructures and Mechanical Functionalities of Biomedical Ti–Nb–Ta–Zr–O System Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 93-100.	0.4	0
319	Preparation of Ti-Based and Zr-Based Bio-Metallic Wires by Arc-Melting Type Melt-Extraction Method. Materials Science Forum, 2010, 638-642, 2127-2132.	0.3	0
320	Fabrication of hydroxyapatite film on Ti–29%Nb–13%Ta–4.6%Zr using a MOCVD technique. Keikinzoku/Journal of Japan Institute of Light Metals, 2011, 61, 24-29.	0.4	0
321	Microstructural Change of β′ Phase and Hardness Change in As-Solutionized Dental Ag-20Pd-12Au-14.5Cu Alloy. Key Engineering Materials, 0, 508, 166-171.	0.4	0
322	Comparison of Mechanical Properties of a Biomedical Î ² Titanium Alloy Added with Pure Rare Earth and Rare Earth Oxides. Materials Science Forum, 2013, 750, 147-151.	0.3	0
323	Development of Changeable Young's Modulus with Good Mechanical Properties in β-Type Ti-Cr-O Alloys. Key Engineering Materials, 0, 575-576, 453-460.	0.4	0
324	Mechanical Performance and Biocompatibility of Biomedical Beta-Type Titanium Alloy Subjected to Micro-Shot Peening. Materials Science Forum, 0, 783-786, 1215-1220.	0.3	0

#	Article	IF	CITATIONS
325	Relationship between Heterogeneous Microstructure and Fatigue Strength of Ti-Nb-Ta-Zr Alloy for Biomedical Materials Subjected to Aging Treatments. Materials Science Forum, 0, 783-786, 1313-1319.	0.3	Ο
326	Nanostructure and Fatigue Behavior of <i>β-</i> Type Titanium Alloy Subjected to High-Pressure Torsion after Aging Treatment. Advanced Materials Research, 0, 891-892, 9-14.	0.3	0
327	Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices. , 0, , 213-221.		Ο
328	Change in Mechanical Properties of Biomechanical Ti-12Cr Subjected to Heat Treatment and Surface Modification Processing. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2016, 80, 764-771.	0.4	0
329	Change in Mechanical Properties of Biomechanical Ti–12Cr Subjected to Heat Treatment and Surface Modification Processing. Materials Transactions, 2017, 58, 951-957.	1.2	Ο
330	Mechanical Performance of Titanium Alloys with Added Lightweight Interstitial Element for Biomedical Applications. Materials Science Forum, 2018, 941, 2458-2464.	0.3	0
331	Relationship between Microstructure and Mechanical Strength of Dental Semiprecious Alloys Subjected to Solution Treatment. Materials Science Forum, 2018, 941, 1105-1110.	0.3	0
332	Low-Young's-Modulus Materials for Biomedical Applications. , 2019, , 435-457.		0
333	Functional Materials Developed in IMR. , 2019, , 89-103.		0
334	Further development of mechanically biocompatible metallic biomaterials. Materia Japan, 2021, 60, 273-280.	0.1	0
335	Effects of Microstructure and Simulated Body Environment on Fatigue Crack Propagation Behavior of Ti-5Al-2.5Fe for Biomedical Use. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2000, 86, 492-498.	0.4	Ο
336	605 Fretting Fatigue Characteristics and Microstructure of Ti-4.5Al-3V-2Mo-2Fe for Aircraft Applications. The Proceedings of the JSME Materials and Processing Conference (M&P), 2002, 10.2, 452-457.	0.1	0
337	OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics. 2003. 2003.2. OS11W0187- OS11W0187.	0.0	0
338	OS07W0159 Effects of microstructures on fatigue properties of dental drawn and cast Ag-Pd-Cu-Au-Zn alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _OS07W0159OS07W0159.	0.0	0
339	OS07W0157 Effect of Nb content on mechanical properties of Ti-Nb-Ta-Zr quaternary alloys fabricated by powder metallurgy processing for biomedical applications. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics. 2003. 2003.2. OS07W0157- OS07W0157.	0.0	0
340	Morphology of Calcium Phosphate Invert Glass-Ceramic Layer Coated on Surface of Beta Type Titanium Alloy for Biomedical Applications. Materia Japan, 2004, 43, 1034-1034.	0.1	0
341	Relationship between Tensile Properties and Casting Defect of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications Cast by Dental Precision Casting Process Using Various Investment Materials. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 827-834.	0.4	0
342	Assessment of Fracture Toughness by CT and Round Bar Specimens in a HT780 Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 415-420.	0.4	0

#	Article	IF	CITATIONS
343	Titanium and Its Alloys. Journal of the Japan Society for Technology of Plasticity, 2012, 53, 983-988.	0.3	Ο
344	Mechanical Properties of Ti-12Cr Alloy with Self-Tunable Young's Modulus for Use in Spinal Fixation Devices. , 2013, , 1551-1556.		0
345	Endurance of Low-Modulus β-Type Titanium Alloys for Spinal Fixation. , 2014, , 205-212.		Ο
346	Development and Performance of Low-Cost Beta-Type Ti-Based Alloys for Biomedical Applications Using Mn Additions. , 2017, , 229-245.		0
347	Suppression of Grain Boundary α Formation by Addition of Silicon in a Near-β Titanium Alloy. Materials Transactions, 2019, 60, 1749-1754.	1.2	Ο
348	Relationship between Microstructure and Fatigue Properties of Forged Ti-5Al-2Sn-2Zr-4Mo-4Cr for Aircraft Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2020, 84, 200-207.	0.4	0
349	Recent Progress in Mechanically Biocompatible Titanium-Based Materials. Advances in Bioinformatics and Biomedical Engineering Book Series, 0, , 206-212.	0.4	0
350	Practure characteristics of light alloys. Keikinzoku/Journal of Japan Institute of Light Metals, 1996, 46, 352-360.	0.4	0