Mitsuo Niinomi

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2961339/mitsuo-niinomi-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,184 46 358 110 h-index g-index citations papers 368 2.4 14,520 7.1 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
358	Facile formation with HA/Sr©O-based composite coatings via green hydrothermal treatment on Etype TiNbTaZr alloys: Morphological and electrochemical insights. <i>Journal of Materials Research</i> , 2022 , 1	2.5	O
357	Microstructure and mechanical properties of TiNbHeIr alloys with high strength and low elastic modulus. <i>Transactions of Nonferrous Metals Society of China</i> , 2022 , 32, 503-512	3.3	1
356	Microstructure, mechanical properties, and cytotoxicity of low Young® modulus TiNbBe®n alloys. <i>Journal of Materials Science</i> , 2022 , 57, 5634-5644	4.3	2
355	Phenomenological law and process of phase evolution in a type bio-Titanium alloy TNTZ during aging. <i>Materials Characterization</i> , 2021 , 182, 111576	3.9	
354	Further development of mechanically biocompatible metallic biomaterials. <i>Materia Japan</i> , 2021 , 60, 27	3-2280	
353	Influence of Sintering Temperature on Mechanical Properties of Ti-Nb-Zr-Fe Alloys Prepared by Spark Plasma Sintering. <i>Journal of Materials Engineering and Performance</i> , 2021 , 30, 5719-5727	1.6	1
352	Hydroxyapatite coating on titanium alloy TNTZ for increasing osseointegration and reducing inflammatory response in vivo on Rattus norvegicus Wistar rats. <i>Ceramics International</i> , 2021 , 47, 1609	4- <u>5</u> -610	03
351	Collr-based alloys 2021 , 103-126		
350	Antibacterial Cu-Doped Calcium Phosphate Coating on Pure Titanium. <i>Materials Transactions</i> , 2021 , 62, 1052-1055	1.3	O
349	Low Young Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content. Journal of Materials Engineering and Performance, 2020, 29, 2871-2878	1.6	6
348	Factors Leading to Low Elastic Modulus and Current Status of Medically Applied Research of Etype Ti-Nb-based Alloys. <i>Materia Japan</i> , 2020 , 59, 588-593	0.1	2
347	Fatigue Property and Cytocompatibility of a Biomedical Collrino Alloy Subjected to a High Pressure Torsion and a Subsequent Short Time Annealing. <i>Materials Transactions</i> , 2020 , 61, 361-367	1.3	4
346	Relationship between Microstructure and Fatigue Properties of Forged TiBAl2Sn2Zr4Mo4Cr for Aircraft Applications. <i>Materials Transactions</i> , 2020 , 61, 2017-2024	1.3	1
345	Application of atmospheric-pressure plasma treatment to coat Ti-alloy orthodontic wire with white oxide layer. <i>Japanese Journal of Applied Physics</i> , 2020 , 59, SAAC09	1.4	1
344	Relationship between Microstructure and Fatigue Properties of Forged Ti-5Al-2Sn-2Zr-4Mo-4Cr for Aircraft Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2020 , 84, 200-2	0 7 ·4	
343	Microstructure, Mechanical Properties, and Springback of Ti-Nb Alloys Modified by Mo Addition. <i>Journal of Materials Engineering and Performance</i> , 2020 , 29, 5366-5373	1.6	1
342	Fatigue failure of metallic biomaterials 2019 , 153-188		1

(2018-2019)

341	Development of low-Young modulus TiNb-based alloys with Cr addition. <i>Journal of Materials Science</i> , 2019 , 54, 8675-8683	4.3	16	
340	Design and development of metallic biomaterials with biological and mechanical biocompatibility. Journal of Biomedical Materials Research - Part A, 2019 , 107, 944-954	5.4	37	
339	Titanium Alloys 2019 , 213-224		7	
338	Effect of Nb Content on Microstructures and Mechanical Properties of Ti-xNb-2Fe Alloys. <i>Journal of Materials Engineering and Performance</i> , 2019 , 28, 5501-5508	1.6	9	
337	Low-Young - Modulus Materials for Biomedical Applications 2019 , 435-457			
336	Functional Materials Developed in IMR 2019 , 89-103			
335	The plasma electrolytic oxidation (PEO) coatings to enhance in-vitro corrosion resistance of Ti½9Nb½3Ta¼.6Zr alloys: The combined effect of duty cycle and the deposition frequency. Surface and Coatings Technology, 2019 , 374, 345-354	4.4	24	
334	Ti-Based Biomedical Alloys 2019 , 61-76		1	
333	Development of Strengthening and Toughening of Eype Titanium Alloys. <i>Materia Japan</i> , 2019 , 58, 193	-2 6 Ω	1	
332	Suppression of Grain Boundary Formation by Addition of Silicon in a Near-Ditanium Alloy. <i>Materials Transactions</i> , 2019 , 60, 1749-1754	1.3		
331	Low Springback and Low Young Modulus in Ti 129Nb 13Ta 14.6Zr Alloy Modified by Mo Addition. <i>Materials Transactions</i> , 2019 , 60, 1755-1762	1.3	3	
330	Effects of Fe on Microstructures and Mechanical Properties of Till5Nbl25Zr(D, 2, 4, 8)Fe Alloys Prepared by Spark Plasma Sintering. <i>Materials Transactions</i> , 2019 , 60, 1763-1768	1.3	3	
329	High-cycle fatigue properties of an easily hot-workable (#]Ptype titanium alloy butt joint prepared by friction stir welding below (Pransus temperature. <i>Materials Science & Materials Science & Materials A: Structural Materials: Properties, Microstructure and Processing</i> , 2019 , 742, 553-563	5.3	5	
328	Fully Depleted Ti-Nb-Ta-Zr-O Nanotubes: Interfacial Charge Dynamics and Solar Hydrogen Production. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 22997-23008	9.5	59	
327	Synthesis of biphasic calcium phosphate (BCP) coatings on Etype titanium alloys reinforced with rutile-TiO2 compounds: adhesion resistance and in-vitro corrosion. <i>Journal of Sol-Gel Science and Technology</i> , 2018 , 87, 713-724	2.3	16	
326	Recent Progress in Research and Development of Metallic Structural Biomaterials with Mainly Focusing on Mechanical Biocompatibility. <i>Materials Transactions</i> , 2018 , 59, 1-13	1.3	16	
325	In vivo osteoconductivity of surface modified Ti-29Nb-13Ta-4.6Zr alloy with low dissolution of toxic trace elements. <i>PLoS ONE</i> , 2018 , 13, e0189967	3.7	5	
324	Mechanical Performance of Titanium Alloys with Added Lightweight Interstitial Element for Biomedical Applications. <i>Materials Science Forum</i> , 2018 , 941, 2458-2464	0.4		

323	Relationship between Microstructure and Mechanical Strength of Dental Semiprecious Alloys Subjected to Solution Treatment. <i>Materials Science Forum</i> , 2018 , 941, 1105-1110	0.4	
322	Low Young Modulus TiNbD with High Strength and Good Plasticity. <i>Materials Transactions</i> , 2018 , 59, 858-860	1.3	6
321	Effects of Mo Addition on the Mechanical Properties and Microstructures of Ti-Mn Alloys Fabricated by Metal Injection Molding for Biomedical Applications. <i>Materials Transactions</i> , 2017 , 58, 27	1-279	13
320	Change in Mechanical Properties of Biomechanical Till 2Cr Subjected to Heat Treatment and Surface Modification Processing. <i>Materials Transactions</i> , 2017 , 58, 951-957	1.3	
319	Abnormal Deformation Behavior of Oxygen-Modified Type Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2017 , 48, 139-149	2.3	20
318	Improved fatigue properties with maintaining low Young's modulus achieved in biomedical beta-type titanium alloy by oxygen addition. <i>Materials Science & Diniering A: Structural Materials: Properties, Microstructure and Processing</i> , 2017 , 704, 10-17	5.3	34
317	Development and Performance of Low-Cost Beta-Type Ti-Based Alloys for Biomedical Applications Using Mn Additions 2017 , 229-245		
316	Low-Modulus Ti Alloys Suitable for Rods in Spinal Fixation Devices 2017 , 3-21		1
315	Corrosion Behavior of MgZnCa Bulk Amorphous Alloys Fabricated by Spark Plasma Sintering. <i>Acta Metallurgica Sinica (English Letters)</i> , 2016 , 29, 793-799	2.5	12
314	Enhancement of Mechanical Biocompatibility of Titanium Alloys by Deformation-Induced Transformation. <i>Materials Science Forum</i> , 2016 , 879, 125-130	0.4	1
313	Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by Mo addition. <i>Materials and Design</i> , 2016 , 110, 414-424	8.1	37
312	Current Situation and Challenges and Prospects of the Design and Manufacturing Process of the Spinal Implants. <i>Materia Japan</i> , 2016 , 55, 142-146	0.1	1
311	Optimization of Microstructure and Mechanical Properties of Collrino Alloys by High-Pressure Torsion and Subsequent Short Annealing. <i>Materials Transactions</i> , 2016 , 57, 1887-1896	1.3	7
310	A EType Titanium Alloy With Significantly Changeable Young Modulus and Good Mechanical Properties Used for Spinal Fixation Applications 2016 , 1685-1689		
309	Athermal and deformation-induced Ephase transformations in biomedical beta-type alloy TiBCrD.2O. <i>Acta Materialia</i> , 2016 , 106, 162-170	8.4	43
308	Corrosion behavior, mechanical properties and cell cytotoxity of Zr-based bulk metallic glasses. <i>Intermetallics</i> , 2016 , 72, 69-75	3.5	16
307	Microstructural evolution and mechanical properties of biomedical Co-Cr-Mo alloy subjected to high-pressure torsion. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 59, 226-235	4.1	18
306	Biomedical titanium alloys with Young's moduli close to that of cortical bone. <i>International Journal of Energy Production and Management</i> , 2016 , 3, 173-85	5.3	159

(2015-2016)

305	Fabrication of low-cost beta-type Ti-Mn alloys for biomedical applications by metal injection molding process and their mechanical properties. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2016 , 59, 497-507	4.1	47
304	Developing biomedical nano-grained Etype titanium alloys using high pressure torsion for improved cell adherence. <i>RSC Advances</i> , 2016 , 6, 7426-7430	3.7	19
303	Improvement in mechanical strength of low-cost Etype TiMn alloys fabricated by metal injection molding through cold rolling. <i>Journal of Alloys and Compounds</i> , 2016 , 664, 272-283	5.7	34
302	Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices 2016 , 215-221		1
301	Beta-Type Titanium Alloys for use as Rods in Spinal Fixation Devices 2016 , 213-221		
300	Grain Refinement Mechanism and Evolution of Dislocation Structure of Collrino Alloy Subjected to High-Pressure Torsion. <i>Materials Transactions</i> , 2016 , 57, 1109-1118	1.3	12
299	Electrochemical Surface Treatment of a Etitanium Alloy to Realize an Antibacterial Property and Bioactivity. <i>Metals</i> , 2016 , 6, 76	2.3	17
298	Osteoanabolic Implant Materials for Orthopedic Treatment. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1740-52	10.1	20
297	Wear Behaviors of Combinations Comprised of Titanium Alloys in Air and Ringer Solution 2016, 1707-	1710	
296	Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. <i>Scripta Materialia</i> , 2016 , 123, 144-148	5.6	43
295	Development of Biomedical Titanium Alloys with a Focus on Controlling Young Modulus 2016 , 1655-1	663	
294	Change in Mechanical Properties of Biomechanical Ti-12Cr Subjected to Heat Treatment and Surface Modification Processing. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2016 , 80, 764-771	0.4	
293	Osteoanabolic Implants: Osteoanabolic Implant Materials for Orthopedic Treatment (Adv. Healthcare Mater. 14/2016). <i>Advanced Healthcare Materials</i> , 2016 , 5, 1682-1682	10.1	2
292	Inhibited grain growth in hydroxyapatitegraphene nanocomposites during high temperature treatment and their enhanced mechanical properties. <i>Ceramics International</i> , 2016 , 42, 11248-11255	5.1	28
291	Enhancing the durability of spinal implant fixture applications made of Ti-6Al-4V ELI by means of cavitation peening. <i>International Journal of Fatigue</i> , 2016 , 92, 360-367	5	6
2 90	Effect of heterogeneous precipitation caused by segregation of substitutional and interstitial elements on mechanical properties of a Eype Ti alloy. <i>Materials Science & Discourse Amp; Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2015 , 643, 109-118	5.3	7
289	EType titanium alloys for spinal fixation surgery with high Young's modulus variability and good mechanical properties. <i>Acta Biomaterialia</i> , 2015 , 24, 361-9	10.8	37
288	Titanium Alloys for Biomedical Applications. <i>Springer Series in Biomaterials Science and Engineering</i> , 2015 , 179-213	0.6	36

287	Wear transition of solid-solution-strengthened Ti-29Nb-13Ta-4.6Zr alloys by interstitial oxygen for biomedical applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 51, 398-408	4.1	12
286	In vitro biocompatibility of Ti-Mg alloys fabricated by direct current magnetron sputtering. <i>Materials Science and Engineering C</i> , 2015 , 54, 1-7	8.3	13
285	Microstructures, mechanical properties and cytotoxicity of low cost beta Ti-Mn alloys for biomedical applications. <i>Acta Biomaterialia</i> , 2015 , 26, 366-76	10.8	61
284	Mechanical properties and cytocompatibility of oxygen-modified Etype Ti-Cr alloys for spinal fixation devices. <i>Acta Biomaterialia</i> , 2015 , 12, 352-361	10.8	37
283	Predominant factor determining wear properties of Eype and (#ptype titanium alloys in metal-to-metal contact for biomedical applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2015 , 41, 208-20	4.1	40
282	Change in Mechanical Strength and Bone Contactability of Biomedical Titanium Alloy with Low Young’s Modulus Subjected to Fine Particle Bombarding Process. <i>Materials Transactions</i> , 2015 , 56, 218-223	1.3	2
281	Differences in Wear Behaviors at Sliding Contacts for β-Type and (α + β)-Type Titanium Alloys in Ringer’s Solution and Air. <i>Materials Transactions</i> , 2015 , 56, 317-326	1.3	14
2 80	Evaluation of Adhesion of Hydroxyapatite Films Fabricated on Biomedical β-Type Titanium Alloy after Immersion in Ringer’s Solution. <i>Materials Transactions</i> , 2015 , 56, 1703-1710	1.3	1
279	Fatigue characteristics of a biomedical Etype titanium alloy with titanium boride. <i>Materials Science</i> & <i>amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2015 , 640, 154-164	5.3	16
278	Enhancing Functionalities of Metallic Materials by Controlling Phase Stability for Use in Orthopedic Implants 2015 , 79-91		4
277	Phase transformation and its effect on mechanical characteristics in warm-deformed Ti-29Nb-13Ta-4.6Zr alloy. <i>Metals and Materials International</i> , 2015 , 21, 202-207	2.4	10
276	Adhesive strength of medical polymer on anodic oxide nanostructures fabricated on biomedical Eype titanium alloy. <i>Materials Science and Engineering C</i> , 2014 , 36, 244-51	8.3	15
275	Effects of micro- and nano-scale wave-like structures on fatigue strength of a beta-type titanium alloy developed as a biomaterial. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 29, 393-402	4.1	18
274	Microstructure and fatigue behaviors of a biomedical TiNbIIaI2r alloy with trace CeO 2 additions. <i>Materials Science & Discours and Processing</i> , 2014 , 619, 112-118	5-3	14
273	Deformation-induced changeable Young's modulus with high strength in Etype Ti-Cr-O alloys for spinal fixture. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 30, 205-13	4.1	41
272	Contribution of [land [precipitates to hardening in as-solutionized Ag-20Pd-12Au-14.5Cu alloys for dental prosthesis applications. <i>Materials Science and Engineering C</i> , 2014 , 37, 204-9	8.3	4
271	Changeable Young modulus with large elongation-to-failure in Etype titanium alloys for spinal fixation applications. <i>Scripta Materialia</i> , 2014 , 82, 29-32	5.6	53
270	Bending springback behavior related to deformation-induced phase transformations in Ti-12Cr and Ti-29Nb-13Ta-4.6Zr alloys for spinal fixation applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 34, 66-74	4.1	11

269	Developments of titanium alloys with high mechanical biocompatibility for biomedical applications. Keikinzoku/Journal of Japan Institute of Light Metals, 2014 , 64, 374-381	0.3	1
268	Mechanical Properties, Microstructures, and Biocompatibility of Low-Cost Type Ti-Mn Alloys for Biomedical Applications. <i>Ceramic Transactions</i> , 2014 , 21-30	0.1	3
267	Endurance of Low-Modulus EType Titanium Alloys for Spinal Fixation 2014 , 205-212		
266	Microstructural Analysis of Biomedical Co-Cr-Mo Alloy Subjected to High-Pressure Torsion Processing. <i>Key Engineering Materials</i> , 2014 , 616, 263-269	0.4	1
265	Effect of Subsurface Deformation on Sliding Wear Behavior of Ti-29Nb-13Ta-4.6Zr Alloys for Biomedical Applications. <i>Key Engineering Materials</i> , 2014 , 616, 270-274	0.4	
264	A review of surface modification of a novel low modulus Etype titanium alloy for biomedical applications. <i>International Journal of Surface Science and Engineering</i> , 2014 , 8, 138	1	7
263	Biomedical Polymer Surface Modification of Beta-Type Titanium Alloy for Implants through Anodic Oxide Nanostructures. <i>Materials Science Forum</i> , 2014 , 783-786, 1261-1264	0.4	2
262	Wear Properties of Ti-6Al-4V/Ti-29Nb-13Ta-4.6Zr Combination for Spinal Implants. <i>Advanced Materials Research</i> , 2014 , 922, 424-428	0.5	2
261	Mechanical Performance and Biocompatibility of Biomedical Beta-Type Titanium Alloy Subjected to Micro-Shot Peening. <i>Materials Science Forum</i> , 2014 , 783-786, 1215-1220	0.4	
260	Optimization of Mo Content in Beta-Type Ti-Mo Alloys for Obtaining Larger Changeable Young Modulus during Deformation for Use in Spinal Fixation Applications. <i>Materials Science Forum</i> , 2014 , 783-786, 1307-1312	0.4	1
259	Relationship between Heterogeneous Microstructure and Fatigue Strength of Ti-Nb-Ta-Zr Alloy for Biomedical Materials Subjected to Aging Treatments. <i>Materials Science Forum</i> , 2014 , 783-786, 1313-131	6 .4	
258	Color tone and interfacial microstructure of white oxide layer on commercially pure Ti and TiNbIIaIr alloys. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 11RD02	1.4	12
257	Nanostructure and Fatigue Behavior of Type Titanium Alloy Subjected to High-Pressure Torsion after Aging Treatment. <i>Advanced Materials Research</i> , 2014 , 891-892, 9-14	0.5	
256	Precipitation of Iphase and hardening in dental-casting Ag-20Pd-12Au-14.5Cu alloys subjected to aging treatments. <i>Materials Science and Engineering C</i> , 2014 , 36, 329-35	8.3	2
255	Hardening behavior after high-temperature solution treatment of Ag-20Pd-12Au-xCu alloys with different Cu contents for dental prosthetic restorations. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2014 , 35, 123-31	4.1	3
254	Reduction in anisotropy of mechanical properties of coilable (#Ptype titanium alloy thin sheet through simple heat treatment for use in next-generation aircraft applications. <i>Materials Science & Materials Properties, Microstructure and Processing</i> , 2014 , 594, 103-110	5.3	12
253	Nanostructure Of Etype Titanium Alloys Through Severe Plastic Deformation. <i>Advanced Materials Letters</i> , 2014 , 5, 378-383	2.4	9
252	Mechanical Properties of Biomedical Type Titanium Alloy with Rare-Earth Metal Oxide Particles Formed by Rare-Earth Metal Addition 2014 , 129-135		1

251 Endurance of Low-Modulus Type Titanium Alloys for Spinal Fixation **2014**, 205-212

250	Deformation Induced Changeable Young's Modulus in Ternary Ti-Cr-O Alloys for Spinal Fixation Applications 2013 , 1635-1641		
249	Enhancement of adhesive strength of hydroxyapatite films on Ti-29Nb-13Ta-4.6Zr by surface morphology control. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 18, 232-9	4.1	14
248	Deformation-induced phase in modified Ti-29Nb-13Ta-4.6Zr alloy by Cr addition. <i>Acta Biomaterialia</i> , 2013 , 9, 8027-35	10.8	45
247	Experimental application of pulsed laser-induced water jet for endoscopic submucosal dissection: mechanical investigation and preliminary experiment in swine. <i>Digestive Endoscopy</i> , 2013 , 25, 255-63	3.7	12
246	Biocompatibility of Ti-alloys for long-term implantation. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2013 , 20, 407-15	4.1	492
245	Phase Constitution and Heat Treatment Behavior of Low Cost Ti-Mn System Alloys. <i>Key Engineering Materials</i> , 2013 , 551, 217-222	0.4	1
244	Research and Development of Low-Cost Titanium Alloys for Biomedical Applications. <i>Key Engineering Materials</i> , 2013 , 551, 133-139	0.4	7
243	Comparison of Mechanical Properties of a Biomedical Titanium Alloy Added with Pure Rare Earth and Rare Earth Oxides. <i>Materials Science Forum</i> , 2013 , 750, 147-151	0.4	
242	Advances in Development of Titanium Alloys for Spinal Fixation Applications-Titanium Alloys with High Fatigue Strength and Low Springback for Spinal Fixation Applications <i>Key Engineering Materials</i> , 2013 , 575-576, 446-452	0.4	1
241	Development of Changeable Young's Modulus with Good Mechanical Properties in EType Ti-Cr-O Alloys. <i>Key Engineering Materials</i> , 2013 , 575-576, 453-460	0.4	
240	White-Ceramic Conversion on Ti-29Nb-13Ta-4.6Zr Surface for Dental Applications. <i>Advances in Materials Science and Engineering</i> , 2013 , 2013, 1-9	1.5	9
239	Improvement of adhesive strength of segmented polyurethane on Ti-29Nb-13Ta-4.6Zr alloy through HDL reatment for biomedical applications. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2013 , 101, 776-83	3.5	7
238	Mechanical Properties of Ti-12Cr Alloy with Self-Tunable Young's Modulus for Use in Spinal Fixation Devices 2013 , 1551-1556		
237	Effects of Alloying Elements on the HAp Formability on Ti Alloys after Alkali Treatment. <i>Materials Transactions</i> , 2013 , 54, 1295-1301	1.3	3
236	Mechanical Properties and Biocompatibility of Low Cost-Type Ti-Mn System Binary Alloys for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2013 , 77, 253-258	0.4	9
235	Development of Titanium Alloys with High Mechanical Biocompatibility with Focusing on Controlling Elastic Modulus. <i>Materia Japan</i> , 2013 , 52, 219-228	0.1	8
234	Effect of Oxide Particles Formed through Addition of Rare-Earth Metal on Mechanical Properties of Biomedical β-Type Titanium Alloy. <i>Materials Transactions</i> , 2013 , 54, 1361-1367	1.3	6

Mechanical Properties of Ti-12Cr Alloy with Self-Tunable Young® Modulus for Use in Spinal Fixation Devices **2013**, 1551-1556

232	Deformation Induced Changeable Young Modulus in Ternary Ti-Cr-O Alloys for Spinal Fixation Applications 2013 , 1635-1641		
231	Effect of Zr on super-elasticity and mechanical properties of Ti24at% Nb(0, 2, 4)at% Zr alloy subjected to aging treatment. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 536, 197-206	5.3	64
230	Microstructural factors determining mechanical properties of laser-welded Ti월.5Al②.5Cr③.2Fe③.1C alloy for use in next-generation aircraft. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2012 , 550, 55-65	5.3	17
229	Formation of L10-type ordered I phase in as-solutionized dental AgPdAuIu alloys and hardening behavior. <i>Materials Science and Engineering C</i> , 2012 , 32, 503-509	8.3	8
228	Improvement in fatigue strength while keeping low Young's modulus of a Etype titanium alloy through yttrium oxide dispersion. <i>Materials Science and Engineering C</i> , 2012 , 32, 542-549	8.3	25
227	Effect of terminal functional groups of silane layers on adhesive strength between biomedical Ti-29Nb-13Ta-4.6Zr alloy and segment polyurethanes. <i>Surface and Coatings Technology</i> , 2012 , 206, 3137	7- 3 : 1 41	22
226	Development of thermo-mechanical processing for fabricating highly durable Eype Ti-Nb-Ta-Zr rod for use in spinal fixation devices. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 9, 207-16	4.1	39
225	Heterogeneous structure and mechanical hardness of biomedical Eype Ti-29Nb-13Ta-4.6Zr subjected to high-pressure torsion. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2012 , 10, 235-45	4.1	44
224	Improvement in Fatigue Strength of Biomedical Etype TiNbITaIr Alloy While Maintaining Low YoungI Modulus Through Optimizing IPhase Precipitation. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2012 , 43, 294-302	2.3	73
223	Development of New Titanium-Molybdenum Alloys with Changeable Young's Modulus for Spinal Fixture Devices. <i>Journal of Solid Mechanics and Materials Engineering</i> , 2012 , 6, 695-700		
222	Specific characteristics of mechanically and biologically compatible titanium alloy rods for use in spinal fixation applications. <i>Materials Letters</i> , 2012 , 86, 178-181	3.3	13
221	Mechanism of unique hardening of dental AgPdAuIIu alloys in relation with constitutional phases. <i>Journal of Alloys and Compounds</i> , 2012 , 519, 15-24	5.7	13
220	Development of new metallic alloys for biomedical applications. <i>Acta Biomaterialia</i> , 2012 , 8, 3888-903	10.8	974
219	Micro-arc oxidation treatment to improve the hard-tissue compatibility of TiØ9NbØ3TaØ.6Zr alloy. <i>Applied Surface Science</i> , 2012 , 262, 34-38	6.7	53
218	Difference of Microstructure and Fatigue Properties between Forged and Rolled Ti-6Al-4V. <i>Key Engineering Materials</i> , 2012 , 508, 161-165	0.4	2
217	PHOSPHATE GLASSES AND GLASS-CERAMICS FOR BIOMEDICAL APPLICATIONS. <i>Phosphorus Research Bulletin</i> , 2012 , 26, 8-15	0.3	18
216	Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications. <i>Acta Biomaterialia</i> , 2012 , 8, 1990-7	10.8	133

215	Optimization of Cr content of metastable Eype Ti-Cr alloys with changeable Young's modulus for spinal fixation applications. <i>Acta Biomaterialia</i> , 2012 , 8, 2392-400	10.8	90
214	Microstructure and Mechanical Properties of a Biomedical EType Titanium Alloy Subjected to Severe Plastic Deformation after Aging Treatment. <i>Key Engineering Materials</i> , 2012 , 508, 152-160	0.4	6
213	Microstructural Change of IPhase and Hardness Change in As-Solutionized Dental Ag-20Pd-12Au-14.5Cu Alloy. <i>Key Engineering Materials</i> , 2012 , 508, 166-171	0.4	
212	Young Modulus Changeable Titanium Alloys for Orthopaedic Applications. <i>Materials Science Forum</i> , 2012 , 706-709, 557-560	0.4	1
211	Influence of Fe Content of Ti-Mn-Fe Alloys on Phase Constitution and Heat Treatment Behavior. <i>Materials Science Forum</i> , 2012 , 706-709, 1893-1898	0.4	20
210	Young's Modulus Changeable EType Binary Ti-Cr Alloys for Spinal Fixation Applications. <i>Key Engineering Materials</i> , 2012 , 508, 117-123	0.4	2
209	Effect of Deformation-Induced & Omega; Phase on the Mechanical Properties of Metastable & beta;-Type Ti– V Alloys. <i>Materials Transactions</i> , 2012 , 53, 1379-1384	1.3	27
208	Microstructures and Mechanical Properties of Ternary Ti^ ^ndash;10Cr^ ^ndash;(V, Fe, Mo) Alloys with Self-tunable Young's Moduli for Biomedical Applications. <i>ISIJ International</i> , 2012 , 52, 1655-1660	1.7	2
207	Titanium and Its Alloys. Journal of the Japan Society for Technology of Plasticity, 2012, 53, 983-988	0.3	
206	Low Modulus Titanium Alloys for Inhibiting Bone Atrophy 2011 ,		13
206	Low Modulus Titanium Alloys for Inhibiting Bone Atrophy 2011 , High mechanical functionalization of TiAlarea system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 705-710	0.3	13 5
	High mechanical functionalization of TiAlCrEeC system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> ,	0.3	
205	High mechanical functionalization of TiAlarea system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 705-710 Fabrication of hydroxyapatite film on Tiagy%Nbas%Taa.6%Zr using a MOCVD technique.		
205	High mechanical functionalization of TiAltreet system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 705-710 Fabrication of hydroxyapatite film on Ti29%Nbf13%Taf1.6%Zr using a MOCVD technique. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 24-29 Improvement in Fatigue Strength of Biomedical β-Type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young’s Modulus through Optimizing ω-Phase	0.3	5
205	High mechanical functionalization of TiAltret system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 705-710 Fabrication of hydroxyapatite film on Ti29%Nbf13%Ta8.6%Zr using a MOCVD technique. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 24-29 Improvement in Fatigue Strength of Biomedical β-Type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young’s Modulus through Optimizing ω-Phase Precipitation. <i>Materials Transactions</i> , 2011 , Heterogeneous Phase Precipitation and Peculiar Aging Strengthening in Biomedical Type Ti-Nb-Ta-Zr Alloy Having Vortical Structure. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute</i>	0.3	5
205 204 203 202	High mechanical functionalization of TiAltreet system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011, 61, 705-710 Fabrication of hydroxyapatite film on Tia9%Nbia3%Tail.6%Zr using a MOCVD technique. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011, 61, 24-29 Improvement in Fatigue Strength of Biomedical β-Type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young’s Modulus through Optimizing ω-Phase Precipitation. <i>Materials Transactions</i> , 2011, Heterogeneous Phase Precipitation and Peculiar Aging Strengthening in Biomedical Prype Ti-Nb-Ta-Zr Alloy Having Vortical Structure. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2011, 75, 198-206 Creation of Functionality by Ubiquitous Elements in Titanium Alloys. <i>Nippon Kinzoku</i>	0.3	5 1 8
205 204 203 202 201	High mechanical functionalization of TiAltrHett system alloy for next-generation aircraft applications through microstructural control. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011, 61, 705-710 Fabrication of hydroxyapatite film on Titay Nbta 3%Tata.6%Zr using a MOCVD technique. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011, 61, 24-29 Improvement in Fatigue Strength of Biomedical β-Type Ti–Nb–Ta–Zr Alloy while Maintaining Low Young’s Modulus through Optimizing ω-Phase Precipitation. <i>Materials Transactions</i> , 2011, Heterogeneous Phase Precipitation and Peculiar Aging Strengthening in Biomedical Type Ti-Nb-Ta-Zr Alloy Having Vortical Structure. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2011, 75, 198-206 Creation of Functionality by Ubiquitous Elements in Titanium Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2011, 75, 21-28 Mechanical Properties and Biocompatibilities of Zr-Nb System Alloys with Different Nb Contents for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2011	0.3 1.3 0.4	5 1 8 21

(2010-2011)

197	Relationship between various deformation-induced products and mechanical properties in metastable Ti-30Zr-Mo alloys for biomedical applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2011 , 4, 2009-16	4.1	32
196	Self-adjustment of Young's modulus in biomedical titanium alloys during orthopaedic operation. <i>Materials Letters</i> , 2011 , 65, 688-690	3.3	105
195	Improvements in the Superelasticity and Change in Deformation Mode of Type TiNb24Zr2 Alloys Caused by Aging Treatments. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2011 , 42, 2843-2849	2.3	21
194	Microstructures and mechanical properties of metastable Ti-30Zr-(Cr, Mo) alloys with changeable Young's modulus for spinal fixation applications. <i>Acta Biomaterialia</i> , 2011 , 7, 3230-6	10.8	105
193	Effects of TiB on the mechanical properties of TiØ9NbØ3TaØ.6Zr alloy for use in biomedical applications. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2011 , 528, 5600-5609	5.3	20
192	Relationship between microstructures and mechanical properties of TiB.5%AlB%MoII.6%VII.5%FeII.3%SiII.03%C for next-generation aircraft applications. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2011 , 61, 711-717	0.3	1
191	Effect of Oxygen on Phase Precipitation and Mechanical Functionality in Ti-29Nb-13Ta-4.6Zr. <i>Key Engineering Materials</i> , 2010 , 436, 179-184	0.4	1
190	Bending Fatigue and Spring Back Properties of Implant Rods Made of EType Titanium Alloy for Spinal Fixture. <i>Advanced Materials Research</i> , 2010 , 89-91, 400-404	0.5	5
189	Preparation of Ti-Based and Zr-Based Bio-Metallic Wires by Arc-Melting Type Melt-Extraction Method. <i>Materials Science Forum</i> , 2010 , 638-642, 2127-2132	0.4	
188	Phase Constitution and Heat Treatment Behavior of Ti-7mass% Mn-Al Alloys. <i>Materials Science Forum</i> , 2010 , 654-656, 855-858	0.4	14
187	Effect of Y2O3 on Mechanical Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. <i>Materials Science Forum</i> , 2010 , 654-656, 2138-2141	0.4	4
186	Formability of TiØ9NbØ3TaØ.6Zr Biomaterial at High Temperatures. <i>Key Engineering Materials</i> , 2010 , 443, 620-625	0.4	1
185	Improvement of the fatigue life of titanium alloys for biomedical devices through microstructural control. <i>Expert Review of Medical Devices</i> , 2010 , 7, 481-8	3.5	18
184	Relationship between Unique Hardening Behavior and Microstructure of Dental Silver Alloy Subjected to Solution Treatment. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2010 , 74, 337-344	0.4	11
183	Structure and Mechanical Properties of Melt-Extracted Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High Bending Ductility. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2010 , 74, 515-	51 9	
182	Fabrication of Beta-Ti-Type Ti-Nb-Ta-Zr (TNTZ) Wire with High-Ductility by Arc-Melt-Type Melt-Extraction Method. <i>Materials Transactions</i> , 2010 , 51, 377-380	1.3	
181	Quality improvement of a Etype titanium alloy cast for biomedical applications by using a calcia mold. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2010 , 60, 170-176	0.3	
180	Effects of Nb and O Contents on Microstructures and Mechanical Functionalities of Biomedical TiNbIIaIrD System Alloys. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2010 , 96, 93-100	0.5	

179	Effect of Young modulus in metallic implants on atrophy and bone remodeling 2010, 90-99		4
178	Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2010 , 3, 41-50	4.1	14
177	The commercial potential of MIM titanium alloy. Metal Powder Report, 2009, 64, 17-20	2	5
176	Ti I 25Ta alloy with the best mechanical compatibility in Ti I 1a alloys for biomedical applications. <i>Materials Science and Engineering C</i> , 2009 , 29, 1061-1065	8.3	109
175	Passive films and corrosion resistance of Ti⊞f alloys in 5% HCl solution. <i>Surface and Coatings Technology</i> , 2009 , 204, 180-186	4.4	19
174	Effects of Nd Content on the Dynamic Elastic Modulus and Mechanical Properties of Titanium-Neodymium Alloys. <i>Materials Transactions</i> , 2009 , 50, 368-372	1.3	4
173	Isothermal Aging Behavior of Beta Titanium–Manganese Alloys. <i>Materials Transactions</i> , 2009 , 50, 2737-2743	1.3	38
172	Effect of Oxygen Content on Microstructure and Mechanical Properties of Biomedical Ti-29Nb-13Ta-4.6Zr Alloy under Solutionized and Aged Conditions. <i>Materials Transactions</i> , 2009 , 50, 271	1.3 72	0 ⁵⁷
171	High Mechanical Functionalization of Metallic Biomaterials through Thermomechanical Treatments. Journal of Biomechanical Science and Engineering, 2009, 4, 345-355	0.8	3
170	Anomalous Thermal Expansion of Cold-Rolled Ti-Nb-Ta-Zr Alloy. <i>Materials Transactions</i> , 2009 , 50, 423-42	26 .3	27
169	Microstructures and mechanical properties of TiB0mass% Ta alloy for biomedical applications. Journal of Alloys and Compounds, 2008, 466, 535-542	5.7	81
168	Development of allergy-free titanium alloys for brass instruments and their characteristics. Keikinzoku/Journal of Japan Institute of Light Metals, 2008 , 58, 604-610	0.3	
167	Mechanical Properties of Implant Rods made of Low-Modulus Type Titanium Alloy, Ti-29Nb-13Ta-4.6Zr, for Spinal Fixture. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 674-678	0.4	11
166	Btrategy for Ubiquitous Titanium Alloys[]Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008 , 72, 915	0.4	2
165	Biologically and Mechanically Biocompatible Titanium Alloys. <i>Materials Transactions</i> , 2008 , 49, 2170-217	'8 .3	128
164	Wear and Mechanical Properties, and Cell Viability of Gas-Nitrided Beta-Type Ti-Nb-Ta-Zr System Alloy for Biomedical Applications. <i>Materials Transactions</i> , 2008 , 49, 166-174	1.3	16
163	Fretting-Fatigue Properties and Fracture Mechanism of Semi-Precious Alloy for Dental Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2008 , 72, 63-71	0.4	4
162	Change in Fatigue Strength of Biomedical EType Titanium Alloy through Heat Treatment Processes. Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 893-898	0.1	2

161	Metallic biomaterials. <i>Journal of Artificial Organs</i> , 2008 , 11, 105-10	1.8	204
160	Surface hardening of biomedical TiØ9NbØ3TaØ.6Zr and TiØAlØV ELI by gas nitriding. <i>Materials Science & Microstructure and Processing</i> , 2008 , 486, 193-201	5.3	49
159	Mechanical biocompatibilities of titanium alloys for biomedical applications. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 30-42	4.1	829
158	In situ X-ray analysis of mechanism of nonlinear super elastic behavior of TiNbIIaIr system beta-type titanium alloy for biomedical applications. <i>Materials Science and Engineering C</i> , 2008 , 28, 406	-4 ⁸ ·3	39
157	Changes in mechanical properties of Ti alloys in relation to alloying additions of Ta and Hf. <i>Materials Science & Discourse and Processing</i> , 2008 , 483-484, 153-156	5.3	39
156	Titanium and Its Alloys 2008 , 2876-2892		1
155	Mechanical characteristics and microstructure of drawn wire of Till9Nbfl3Tall.6Zr for biomedical applications. <i>Materials Science and Engineering C</i> , 2007 , 27, 154-161	8.3	54
154	Formability of Hydroxyapatite on Beta-Type Ti-Nb-Ta-Zr Alloy for Biomedical Applications through Alkaline Treatment Process. <i>Key Engineering Materials</i> , 2007 , 352, 297-300	0.4	
153	Recent Research and Development in Metallic Materials for Biomedical, Dental and Healthcare Products Applications. <i>Materials Science Forum</i> , 2007 , 539-543, 193-200	0.4	20
152	Bioactive Ceramic Surface Modification of β-Type Ti-Nb-Ta-Zr System Alloy by Alkali Solution Treatment. <i>Materials Transactions</i> , 2007 , 48, 293-300	1.3	19
151	Frictional wear characteristics of biomedical Ti-29Nb-13Ta-4.6Zr alloy with various microstructures in air and simulated body fluid. <i>Biomedical Materials (Bristol)</i> , 2007 , 2, S167-74	3.5	14
150	Multifunctional low-rigidity Lype Ti-Nb-Ta-Zr system alloys as biomaterials 2007 , 75-84		1
149	Nanotube oxide coating on Til 9Nb 13Ta 14.6Zr alloy prepared by self-organizing anodization. <i>Electrochimica Acta</i> , 2006 , 52, 94-101	6.7	88
148	Feasibility Study on Smart Coating for Failure Prevention under Thermo-mechanical Fatigue Loading. <i>Journal of Intelligent Material Systems and Structures</i> , 2006 , 17, 1099-1103	2.3	2
147	Effect of loading rate on absorbed energy and fracture surface area in wrought aluminum alloys. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2006 , 56, 15-20	0.3	
146	Effect of Aging Treatment on Mechanical Properties of Ti-29Nb-13Ta-4.6Zr Alloy for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2006 , 70, 295-303	0.4	13
145	Analysis of Tensile Deformation Behaviors of Ti-XNb-10Ta-5Zr Alloys for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2006 , 70, 572-578	0.4	4
144	Effect of Microstructure on Tensile Properties and Static Fracture Toughness of Dental Gold Alloy. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2006, 70, 337-342	0.4	1

143	Tensile Deformation Behavior of Ti-30Nb-10Ta-XZr Alloys for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2006 , 70, 89-95	0.4	7
142	Microstructural Modification in a Beta Titanium Alloy for Implant Applications. <i>Materials Transactions</i> , 2006 , 47, 90-95	1.3	10
141	Notch fatigue properties of a Ti-29Nb-13Ta-4.6Zr alloy for biomedical applications. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2005 , 55, 575-581	0.3	11
140	Effect of Microstructure on Tensile Properties and Static Fracture Toughness of Dental Gold Alloy. <i>Materials Transactions</i> , 2005 , 46, 1540-1544	1.3	1
139	Contact pressure and fretting fatigue characteristics of highly workable titanium alloy with equiaxed .ALPHA. and Widmanstaetten .ALPHA. structure. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2005 , 55, 661-667	0.3	5
138	Mechanical Properties and Cyto-Toxicity of Newly Designed .BETA. Type Ti Alloys for Dental Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2005 , 69, 96-102	0.4	
137	Assessment of Thermo-Mechanical Fatigue Behaviors of Cast Al-Si Alloys by Experiments and Multi-Step Numerical Simulation. <i>Materials Transactions</i> , 2005 , 46, 111-117	1.3	6
136	Image-Based Mechanical Analysis of Multifilamentary Microstructure Formation in Al–Fe Heavily Deformed In-Situ Composites. <i>Materials Transactions</i> , 2005 , 46, 2229-2236	1.3	10
135	Influences of spatial distribution of Si particles on crack propagation in model Al-Si cast alloys. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2005 , 55, 75-81	0.3	2
134	Mechanical Properties of Biocompatible Beta-Type Titanium Alloy Coated with Calcium Phosphate Invert Glass-Ceramic Layer. <i>Materials Transactions</i> , 2005 , 46, 1564-1569	1.3	17
133	Fatigue Characteristics of Low Cost β Titanium Alloys for Healthcare and Medical Applications. <i>Materials Transactions</i> , 2005 , 46, 1570-1577	1.3	13
132	Effect of Microstructure on Fatigue Strength of Bovine Compact Bones. <i>JSME International Journal Series A-Solid Mechanics and Material Engineering</i> , 2005 , 48, 472-480		14
131	Microstructure and fretting fatigue characteristics of highly workable titanium alloy with equiaxed .ALPHA. and Widmanstaetten .ALPHA. structure. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2005 , 55, 654-660	0.3	
130	Corrosion resistance and biocompatibility of Tilla alloys for biomedical applications. <i>Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2005 , 398, 28-36	5.3	191
129	Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments. <i>Materials Science and Engineering C</i> , 2005 , 25, 248-254	8.3	128
128	Mechanical properties of TiB.5AlBVDMoDFe and possibility for healthcare applications. <i>Materials Science and Engineering C</i> , 2005 , 25, 296-303	8.3	15
127	Relationships between tensile deformation behavior and microstructure in TiNbITaI2r system alloys. <i>Materials Science and Engineering C</i> , 2005 , 25, 363-369	8.3	114
126	Mechanical properties and microstructures of low cost (litanium alloys for healthcare applications. <i>Materials Science and Engineering C</i> , 2005 , 25, 304-311	8.3	40

(2004-2005)

125	Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications. <i>Materials Science and Engineering C</i> , 2005 , 25, 417-425	8.3	44
124	Effect of Ta content on mechanical properties of TiBONb&TaBZr. <i>Materials Science and Engineering C</i> , 2005 , 25, 370-376	8.3	52
123	Japanese research and development on metallic biomedical, dental, and healthcare materials. <i>Jom</i> , 2005 , 57, 18-24	2.1	47
122	Numerical simulation of fracture of model Al-Si alloys. <i>Metallurgical and Materials Transactions A:</i> Physical Metallurgy and Materials Science, 2005 , 36, 2979-2992	2.3	4
121	Dental Precision Casting of Ti-29Nb-13Ta-4.6Zr Using Calcia Mold. <i>Materials Science Forum</i> , 2005 , 475-479, 2303-2308	0.4	6
120	Effects of Striker Edge Radius on Load-Deflection Curve and Absorbed Energy in Instrumented Charpy Impact Test. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2005 , 91, 485-492	0.5	2
119	Assessment of Fracture Toughness by CT and Round Bar Specimens in a HT780 Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2005, 91, 415-420	0.5	
118	Recent Applications, Research and Development in Titanium and Its Alloys. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2004, 90, 462-471	0.5	10
117	Apatite Formation on Calcium Phosphate Invert Glasses in Simulated Body Fluid. <i>Journal of the American Ceramic Society</i> , 2004 , 84, 450-52	3.8	56
116	Effects of Ta content on Young modulus and tensile properties of binary Tilla alloys for biomedical applications. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2004 , 371, 283-290	5.3	267
115	Decomposition of martensite Aduring aging treatments and resulting mechanical properties of Tilla alloys. <i>Materials Science & Discourse and Processing</i> , 2004 , 384, 92-101	5.3	94
114	NOVEL METHOD FOR APATITE COATING ON Ti-29Nb-13Ta-4.6Zr ALLOY. <i>Phosphorus Research Bulletin</i> , 2004 , 17, 258-261	0.3	2
113	CALCIUM PHOSPHATE GLASS-CERAMIC COATING ON A TITANIUM ALLOY. <i>Phosphorus Research Bulletin</i> , 2004 , 17, 29-36	0.3	4
112	Fatigue, Fretting Fatigue and Corrosion Characteristics of Biocompatible Beta Type Titanium Alloy Conducted with Various Thermo-Mechanical Treatments. <i>Materials Transactions</i> , 2004 , 45, 1540-1548	1.3	42
111	Tensile Deformation Behavior of Ti-Nb-Ta-Zr Biomedical Alloys. <i>Materials Transactions</i> , 2004 , 45, 1113-7	11139	77
110	Dynamic Young's Modulus and Mechanical Properties of Ti−Hf Alloys. <i>Materials Transactions</i> , 2004 , 45, 1549-1554	1.3	24
109	Fretting Fatigue Characteristics with Relating Contact Pressure and Surface Roughness of Highly Workable Titanium Alloy, Ti-4.5Al-3V-2Mo-2Fe. <i>Materials Transactions</i> , 2004 , 45, 1586-1593	1.3	5
108	Tensile Properties and Surface Reaction Layer of Biomaterial, Ti-29Nb-13Ta-4.6Zr, Cast by Dental Precision Casting Process Using Various Investment Materials. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2004 , 90, 154-161	0.5	12

107	Morphology of Calcium Phosphate Invert Glass-Ceramic Layer Coated on Surface of Beta Type Titanium Alloy for Biomedical Applications. <i>Materia Japan</i> , 2004 , 43, 1034-1034	0.1	
106	Relationship between Tensile Properties and Casting Defect of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications Cast by Dental Precision Casting Process Using Various Investment Materials. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2004 , 90, 827-834	0.5	
105	Effects of contact pressure and surface roughness on fretting fatigue characteristics of a high workable Ti-4.5%Al-3%V-2%Mo-2%Fe alloy. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2003 , 53, 563-569	0.3	3
104	Fretting fatigue and frictional wear characteristics of a high workable Ti-4.5%Al-3%V-2%Mo-Fe alloy. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2003 , 53, 251-257	0.3	
103	Aging Characteristics and Mechanical Properties of Ti-29Nb-13Ta-4.6Zr Coated with Calcium Phosphate Invert Glass-Ceramic for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2003 , 67, 604-613	0.4	13
102	Effect of Nb Content on Microstructure, Tensile Properties and Elastic Modulus of Ti-XNb-10Ta-5Zr Alloys for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2003 , 67, 681-687	0.4	15
101	Microstructures and Mechanical Properties of Ti-Ni and Ti-Ni-Co Type Shape Memory Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2003 , 67, 595-603	0.4	4
100	Recent research and development in titanium alloys for biomedical applications and healthcare goods. <i>Science and Technology of Advanced Materials</i> , 2003 , 4, 445-454	7.1	644
99	Bioactive calcium phosphate invert glass-ceramic coating on beta-type Ti-29Nb-13Ta-4.6Zr alloy. <i>Biomaterials</i> , 2003 , 24, 283-90	15.6	64
98	Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. <i>Biomaterials</i> , 2003 , 24, 2673-83	15.6	434
98 97		15.6 3.8	434
	Joining of Calcium Phosphate Invert Glass-Ceramics on a EType Titanium Alloy. Journal of the		
97	Joining of Calcium Phosphate Invert Glass-Ceramics on a EType Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033 Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660 OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental	3.8	14
97 96	Joining of Calcium Phosphate Invert Glass-Ceramics on a EType Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033 Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660 OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International	3.8 0.4 0	14
97 96 95	Biomaterials, 2003, 24, 2673-83 Joining of Calcium Phosphate Invert Glass-Ceramics on a EType Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033 Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660 OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental OS07W0159 Effects of microstructures on fatigue properties of dental drawn and cast Ag-Pd-Cu-Au-Zn alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics, 2003, 2003.2, _OS07W0159OS07W0157 Effect of Nb content on mechanical properties of Ti-Nb-Ta-Zr quaternary alloys fabricated by powder metallurgy processing for biomedical applications. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on	3.8 0.4 0	14
97 96 95 94	Joining of Calcium Phosphate Invert Glass-Ceramics on a Type Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033 Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660 OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental OS07W0159 Effects of microstructures on fatigue properties of dental drawn and cast Ag-Pd-Cu-Au-Zn alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, OS07W0159-OS07W0157 Effect of Nb content on mechanical properties of Ti-Nb-Ta-Zr quaternary alloys fabricated by powder metallurgy processing for biomedical applications. The Abstracts of ATEM	3.8 0.4 0	14
9796959493	Joining of Calcium Phosphate Invert Glass-Ceramics on a Elrype Titanium Alloy. Journal of the American Ceramic Society, 2003, 86, 1031-1033 Effects of Thermomechanical Processings on Fatigue Properties of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2003, 67, 652-660 OS11W0187 Effects of frictional wear characteristics and microstructure on fretting fatigue strength of high workable titanium alloy, Ti-4.5Al-3V-2Mo-2Fe. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental OS07W0159 Effects of microstructures on fatigue properties of dental drawn and cast Ag-Pd-Cu-Au-Zn alloys. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Mear Characteristics of Surface Oxidation Treated New Biomedical β-type Titanium Alloy in Simulated Body Environment. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2002	3.8 0.4 0 7W015	14 27 9

(2001-2002)

89	Aging behavior of the Ti-29Nb-13Ta-4.6Zr new beta alloy for medical implants. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2002 , 33, 487-493	2.3	66
88	Improvement in mechanical properties of dental cast Ti-6Al-7Nb by thermochemical processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 503-510	2.3	13
87	Microstructure and fretting fatigue characteristics of a Ti-4.5%Al-3% V-2%Mo-2%Fe alloy <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 2002 , 52, 371-377	0.3	3
86	Fatigue Properties of Cast Ag-Pd-Cu-Au-Zn Alloy for Dental Applications in the Relation with Casting Defects. <i>Materials Transactions</i> , 2002 , 43, 3160-3166	1.3	6
85	???????Ti??Ti-29Nb-13Ta-4.6Zr???. <i>Materia Japan</i> , 2002 , 41, 221-223	0.1	18
84	Development of Low Rigidity β-type Titanium Alloy for Biomedical Applications. <i>Materials Transactions</i> , 2002 , 43, 2970-2977	1.3	264
83	Effect of Nb on Microstructural Characteristics of Ti-Nb-Ta-Zr Alloy for Biomedical Applications. <i>Materials Transactions</i> , 2002 , 43, 2964-2969	1.3	36
82	Microstructure and Fatigue Crack Initiation and Propagation Characteristics of Cast α+β Type Titanium Alloys Conducted with Thermochemical Heat Processing for Dental Applications. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2002 , 66, 1098-1106	0.4	3
81	Fatigue Properties and Microstructure of Newly Developed Ti-29Nb-14Ta-4.6Zr for Biomedical Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2002 , 66, 715-722	0.4	19
80	Effect of .BETA. Phase Stability at Room Temperature on Mechanical Properties in .BETARich .ALPHA.+.BETA. Type Ti-4.5Al-3V-2Mo-2Fe Alloy <i>ISIJ International</i> , 2002 , 42, 191-199	1.7	14
79	605 Fretting Fatigue Characteristics and Microstructure of Ti-4.5Al-3V-2Mo-2Fe for Aircraft Applications. <i>The Proceedings of the JSME Materials and Processing Conference (M&P)</i> , 2002 , 10.2, 452-45	57	
78	Effect of Cooling Rate on Microstructure and Fracture Characteristics of β-Rich α + β Type Ti-4.5Al-3V-2Mo-2Fe Alloy. <i>Materials Transactions</i> , 2001 , 42, 1339-1348	1.3	17
77	BIOMIMETIC APATITE FORMATION ON CALCIUM PHOSPHATE INVERT GLASSES. <i>Phosphorus Research Bulletin</i> , 2001 , 12, 39-44	0.3	6
76	Effect of microstructure on fracture characteristics of Ti-6Al-2Sn-2Zr-2Mo-2Cr-Si. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2001 , 32, 2795-2804	2.3	13
75	Calcium phosphate invert glass-ceramic coatings joined by self-development of compositionally gradient layers on a titanium alloy. <i>Biomaterials</i> , 2001 , 22, 577-82	15.6	40
74	Fracture characteristics and microstructural factors in single and duplex annealed Ti월.5AlBVØMoØFe. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 2001 , 308, 216-224	5.3	23
73	Fatigue characteristics of ultra high molecular weight polyethylene with different molecular weight for implant material. <i>Journal of Materials Science: Materials in Medicine</i> , 2001 , 12, 267-72	4.5	17
72	Machinable calcium pyrophosphate glass-ceramics. <i>Journal of Materials Research</i> , 2001 , 16, 876-880	2.5	16

71	Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy. Dental Materials Journal, 2001, 20, 156	5-6.3	2
70	Friction Wear Property of Newly Designed β-type Biomedical Titanium Alloys in Air and Ringer's Solution. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2001 , 87, 500-507	0.5	2
69	Effect of Microstructure on Fracture Characteristics of Ti-6Al-2Sn-2Mo-2Zr-2Cr-Si Alloy. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2001 , 87, 55-62	0.5	
68	Alloying titanium and tantalum by cold crucible levitation melting (CCLM) furnace. <i>Materials Science</i> & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 280, 208-213	5.3	55
67	The role of microstructures on the strengthening mechanisms of a thermomechanically processed 2091 Alli alloy. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,</i> 2000 , 284, 14-24	5.3	10
66	An investigation of the effect of fatigue deformation on the residual mechanical properties of Ti-6Al-4V ELI. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 1937-1948	2.3	25
65	Effects of microstructure on the short fatigue crack initiation and propagation characteristics of biomedical Atitanium alloys. <i>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science</i> , 2000 , 31, 1949-1958	2.3	63
64	Heat Treatment Processes and Mechanical Properties of New β-type Biomedical Ti-29Nb-13Ta-4.6Zr Alloy. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2000 , 86, 610	-61%	14
63	Tensile Properties and Cyto-toxicity of New Biomedical β-type Titanium Alloys. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2000 , 86, 602-609	0.5	21
62	Effects of Thermochemical Treatment on Mechanical Properties of Cast Ti-6Al-7Nb Alloy for Dental Applications. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 2000 , 64, 895-902	0.4	3
61	Effects of Microstructure and Simulated Body Environment on Fatigue Crack Propagation Behavior of Ti-5Al-2.5Fe for Biomedical Use. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 2000 , 86, 492-498	0.5	
60	Effect of Molecular Weight on Fatigue Characteristics of Ultra-High Molecular Weight Polyethylene for Implant Material. <i>Zairyo/Journal of the Society of Materials Science, Japan</i> , 2000 , 49, 35-40	0.1	
59	Relationship between fracture toughness and microstructure of TiBAlaSnaZraMo alloy reinforced with TiB particles. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1999 , 263, 319-325	5.3	24
58	Corrosion wear fracture of new Itype biomedical titanium alloys. <i>Materials Science & Materials Science & Microstructure and Processing</i> , 1999 , 263, 193-199	5.3	141
57	Recent titanium R&D for biomedical applications in japan. <i>Jom</i> , 1999 , 51, 32-34	2.1	52
56	Relationship between Fatigue Life, Changing of Mechanical Properties and Dislocation Structure during Fatigue in Pure Titanium. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1999 , 63, 1527-1534	0.4	3
55	Mechanical properties of biomedical titanium alloys. <i>Materials Science & Diagnosting A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 243, 231-236	5.3	1370
54	Fracture characteristics of fatigued TiBAlBV ELI as an implant material. <i>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing</i> , 1998 , 243, 237-243	5.3	60

(1991-1998)

53	Design and mechanical properties of new Laype titanium alloys for implant materials. <i>Materials Science & Microstructure and Processing</i> , 1998 , 243, 244-249	5.3	903
52	Effect of Microstructure on Fracture Characteristics of Compact Bone <i>Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A</i> , 1998 , 64, 312-318		8
51	Development of .BETA. Type Titanium Alloys for Impant Materials <i>Materia Japan</i> , 1998 , 37, 843-846	0.1	20
50	Change in Mechanical Properties of Ti-6Al-4V ELI during Fatigue Failure Process. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1998 , 62, 140-149	0.4	7
49	Fracture Toughness and Microstructure in TiB Particulate-reinforced Ti-6Al-2Sn-4Zr-2Mo Composites. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1998 , 84, 452-457	0.5	1
48	Effect of Microstructure on Small Fatigue Crack Initiation and Propagation Characteristics of Ti-6Al-7Nb Alloy. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1998 , 62, 952-960	0.4	7
47	Microstructure and fracture characteristics in reactive sintering TiAl intermetallic compound <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1997 , 47, 521-526	0.3	3
46	Fracture characteristics, microstructure, and tissue reaction of Ti-5Al-2.5Fe for orthopedic surgery. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3925-39:	35 ^{2.3}	18
45	Practure characteristics of light alloys. <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1996 , 46, 352-360	0.3	
44	Strength, toughness and microstructural parameters in 2091 Al-Li system alloy <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1995 , 45, 127-132	0.3	2
43	Effects of Fe and Ca on impact fatigue characteristics of AC2B-T6 aluminum casting alloys <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1995 , 45, 88-94	0.3	2
42	Effect of stress triaxiality on fracture behavior of 2091 aluminum alloys <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1995 , 45, 654-659	0.3	3
41	Fracture Characteristics and Microstructures of Intermetallic Compound Ti-24Al-11Nb(at%). <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1995 , 59, 708-716	0.4	4
40	Effects of Aging Treatments on Fracture Characteristics of 6061 Aluminum Alloy Reinforced with SiC Whisker. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1994 , 58, 468-475	0.4	12
39	Microstructural Control by Retrogression and Reaging Treatment in SiC Whisker Reinforced Aluminum Alloy Composite. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1994 , 58, 1086-1094	0.4	1
38	Strength and toughness of microstructually controlled .ALPHA.+.BETA. type titanium alloys by thermochemical processings with hydrogen <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1992 , 42, 638-643	0.3	3
37	Strength, Toughness and Thermomechanical Processings in Ti-15V-3Cr-3Sn-3Al Alloys. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1992 , 78, 1862-1869	0.5	6
36	Toughness and Strength of Microstructurally Controlled Titanium Alloys <i>ISIJ International</i> , 1991 , 31, 848-855	1.7	28

35	Fatigue Crack Propagation Characteristics in SiCp/6061-T6 Composite. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1991 , 55, 72-78	0.4	7
34	Fracture Characteristics of Titanium-based Intermetallic Compound Ti3Al. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1991 , 55, 1023-1030	0.4	1
33	Impact Fatigue Properties of Carburized SCM415 Steels. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1991 , 77, 155-162	0.5	2
32	Effect of Thermomechanical Treatment Conditions on Mechanical Properties of Ti-10V-2Fe-3Al Alloys. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1990 , 76, 1712-1719	0.5	1
31	Evaluation of dynamic crack initiation and growth toughness by computer aided charpy impact testing system. <i>Nuclear Engineering and Design</i> , 1989 , 111, 27-33	1.8	20
30	Effects of Strain-induced Transformation and Temperature on Fracture Toughness of Titanium Alloys. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1989 , 75, 537-544	0.5	1
29	Mechanical properties of SiC whisker reinforced aluminum alloys <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1988 , 38, 593-599	0.3	4
28	Evaluation of fracture toughness of aluminum alloys by tear test <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1988 , 38, 9-15	0.3	8
27	Effects of Triaxiality and Microstructure on the Ductile Fracture Morphology of Al-Zn-Mg-Cu-Zr Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1988 , 52, 26-33	0.4	6
26	Effect of Microstructure on Impact Toughness of Al-Li Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1988 , 52, 34-42	0.4	1
25	Effect of Substructure Formed in Prior β Grain on Crack Initiation and Propagation Toughness of Ti-6 Al-2 Sn-4 Zr-6 Mo Alloy. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1988 , 74, 543-550	0.5	5
24	Impact toughness of Al-Li system alloys at low temperatures <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1987 , 37, 816-823	0.3	5
23	Fatigue crack propagation in Al-Si alloy castings <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1987 , 37, 824-830	0.3	11
22	Effect of Microstructural Factor on Impact Toughness of Ti-6Al-2Sn-4Zr-6Mo Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1987, 73, 1397-1404	0.5	3
21	On the accuracy of measurement of dynamic elastic-plastic fracture toughness parameters by the instrumented charpy test. <i>Engineering Fracture Mechanics</i> , 1987 , 26, 83-94	4.2	18
20	Impact Toughness of Hydrogen Charged Ti-6Al-2Sn-4Zr-6Mo Alloy. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1987 , 73, 1405-1412	0.5	1
19	Toughness and Microstructural Factor of Ti-6Al-4V Alloy. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1986 , 72, 633-640	0.5	4
18	Mechanical properties and Portevin-Le Chatelier effect in Al-Si alloy <i>Keikinzoku/Journal of Japan Institute of Light Metals</i> , 1986 , 36, 555-561	0.3	8

LIST OF PUBLICATIONS

17	Instrumented Impact Testing of Ceramics. <i>Transactions of the Japan Institute of Metals</i> , 1986 , 27, 775-7	⁷ 83	14
16	Effect of Hydrogen Charging on the Impact Toughness of Ti-6Al-4V Alloys. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1986 , 50, 449-455	0.4	1
15	On Accuracy of Measurement of Dynamic Elastic-Plastic Fracture Toughness by Instrumented Charpy Test. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1986 , 72, 2133-2140	0.5	6
14	Evaluation of Dynamic Fracture Toughness Parameters by Instrumented Charpy Test. <i>Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan</i> , 1985 , 71, 1934-1940	0.5	2
13	Dissolution of Ferrous Alloys into Molten Pure Aluminium under Forced Flow. <i>Transactions of the Japan Institute of Metals</i> , 1984 , 25, 429-439		3
12	Dissolution of Ferrous Alloys into Molten Aluminium. <i>Transactions of the Japan Institute of Metals</i> , 1982 , 23, 780-787		16
11	On the Alloy Layers Formed by the Reaction between Ferrous Alloys and Molten Aluminium. <i>Transactions of the Japan Institute of Metals</i> , 1982 , 23, 709-717		8
10	Dissolution of Ferrous Alloys into Molten Aluminium. <i>Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals</i> , 1978 , 42, 549-555	0.4	3
9	Recent Progress in Mechanically Biocompatible Titanium-Based Materials. <i>Advances in Bioinformatics and Biomedical Engineering Book Series</i> , 206-212	0.4	
8	Strengthening Behaviors of Low-Precious Ag-Pd-Au-Zn Alloys for Dental Applications. <i>Ceramic Transactions</i> ,63-71	0.1	
7	Evaluation of Long-Term Mechanical and Biological Biocompatibility of Low-Cost Type Ti-Mn Alloys for Biomedical Applications. <i>Ceramic Transactions</i> ,1-12	0.1	
6	Metal-polymer Hybrid Biomaterials with High Mechanical and Biological Compatibilities397-408		
5	Titanium Alloys with Changeable Young's Modulus For Preventing Stress Shielding and Springback. <i>Ceramic Transactions</i> ,65-72	0.1	1
4	Mechanical Properties of Biomedical Type Titanium Alloy with Rare-Earth Metal Oxide Particles Formed by Rare-Earth Metal Addition129-135		
3	Functionality of Porous Titanium Improved by Biopolymer Filling. Ceramic Transactions,91-101	0.1	1
2	Effect of TiB2 or Y2O3 Additions on Mechanical Biofunctionality of Ti-29Nb-13Ta-4.6Zr for Biomedical Applications. <i>Ceramic Transactions</i> ,75-81	0.1	4
1	Microstructure, Mechanical Properties, and Cytotoxicity of Type Ti-Nb-Cr Alloys Designed by Electron Parameter. <i>Journal of Materials Engineering and Performance</i> ,1	1.6	О