Ethan O Nadler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2961051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Constraints on Dark Matter Properties from Observations of MilkyÂWay Satellite Galaxies. Physical Review Letters, 2021, 126, 091101.	7.8	144
2	The SAGA Survey. II. Building a Statistical Sample of Satellite Systems around Milky Way–like Galaxies. Astrophysical Journal, 2021, 907, 85.	4.5	115
3	Constraints on Dark Matter Microphysics from the Milky Way Satellite Population. Astrophysical Journal Letters, 2019, 878, L32.	8.3	110
4	Milky Way Satellite Census. I. The Observational Selection Function for Milky Way Satellites in DES Y3 and Pan-STARRS DR1. Astrophysical Journal, 2020, 893, 47.	4.5	110
5	Milky Way Satellite Census. II. Galaxy–Halo Connection Constraints Including the Impact of the Large Magellanic Cloud. Astrophysical Journal, 2020, 893, 48.	4.5	101
6	Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies. Astrophysical Journal, 2021, 917, 7.	4.5	56
7	Modeling the Connection between Subhalos and Satellites in Milky Way–like Systems. Astrophysical Journal, 2019, 873, 34.	4.5	55
8	Two Ultra-faint Milky Way Stellar Systems Discovered in Early Data from the DECam Local Volume Exploration Survey. Astrophysical Journal, 2020, 890, 136.	4.5	49
9	The DECam Local Volume Exploration Survey: Overview and First Data Release. Astrophysical Journal, Supplement Series, 2021, 256, 2.	7.7	47
10	Modeling the Impact of Baryons on Subhalo Populations with Machine Learning. Astrophysical Journal, 2018, 859, 129.	4.5	46
11	Search for RR Lyrae stars in DES ultrafaint systems: GrusÂl, KimÂ2, PhoenixÂll, and GrusÂll. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2183-2199.	4.4	35
12	Signatures of Velocity-dependent Dark Matter Self-interactions in Milky Way-mass Halos. Astrophysical Journal, 2020, 896, 112.	4.5	34
13	Bounds on Velocity-dependent Dark Matter–Proton Scattering from Milky Way Satellite Abundance. Astrophysical Journal Letters, 2021, 907, L46.	8.3	31
14	Observational constraints on dark matter scattering with electrons. Physical Review D, 2021, 104, .	4.7	23
15	Snowmass2021 theory frontier white paper: Astrophysical and cosmological probes of dark matter. Journal of High Energy Astrophysics, 2022, 35, 112-138.	6.7	20
16	Identification of RR Lyrae Stars in Multiband, Sparsely Sampled Data from the Dark Energy Survey Using Template Fitting and Random Forest Classification. Astronomical Journal, 2019, 158, 16.	4.7	16
17	Constraints on the epoch of dark matter formation from MilkyÂWay satellites. Physical Review D, 2021, 103, .	4.7	16
18	The Effects of Dark Matter and Baryonic Physics on the Milky Way Subhalo Population in the Presence of the Large Magellanic Cloud. Astrophysical Journal Letters, 2021, 920, L11.	8.3	16

ETHAN O NADLER

#	Article	IF	CITATIONS
19	Milky Way Satellite Census. IV. Constraints on Decaying Dark Matter from Observations of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 128.	4.5	16
20	Color associations in abstract semantic domains. Cognition, 2020, 201, 104306.	2.2	14
21	UniverseMachine: Predicting Galaxy Star Formation over Seven Decades of Halo Mass with Zoom-in Simulations. Astrophysical Journal, 2021, 915, 116.	4.5	12
22	Extending the SAGA Survey (xSAGA). I. Satellite Radial Profiles as a Function of Host-galaxy Properties. Astrophysical Journal, 2022, 927, 121.	4.5	11
23	The Signatures of Self-interacting Dark Matter and Subhalo Disruption on Cluster Substructure. Astrophysical Journal, 2022, 932, 30.	4.5	11
24	Tidal disruption of solitons in self-interacting ultralight axion dark matter. Physical Review D, 2022, 105, .	4.7	9
25	On the apparent power law in CDM halo pseudo-phase space density profiles. Monthly Notices of the Royal Astronomical Society, 2017, 470, 500-511.	4.4	5
26	Searching for Dwarf Galaxies in Gaia DR2 Phase-space Data Using Wavelet Transforms. Astrophysical Journal, 2021, 915, 48.	4.5	5