
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960975/publications.pdf Version: 2024-02-01

ADDIAAN D LIZEDMAN

#	Article	IF	CITATIONS
1	MPP+-Induced Changes in Cellular Impedance as a Measure for Organic Cation Transporter (SLC22A1-3) Activity and Inhibition. International Journal of Molecular Sciences, 2022, 23, 1203.	1.8	2
2	International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update. Pharmacological Reviews, 2022, 74, 340-372.	7.1	67
3	Oncological drug discovery: Al meets structure-based computational research. Drug Discovery Today, 2022, 27, 1661-1670.	3.2	9
4	Kinetic profiling and functional characterization of 8-phenylxanthine derivatives as A2B adenosine receptor antagonists. Biochemical Pharmacology, 2022, 200, 115027.	2.0	3
5	Impedance-Based Phenotypic Readout of Transporter Function: A Case for Glutamate Transporters. Frontiers in Pharmacology, 2022, 13, .	1.6	2
6	Cancerâ€related somatic mutations alter adenosine A ₁ receptor pharmacology—A focus on mutations in the loops and Câ€terminus. FASEB Journal, 2022, 36, .	0.2	3
7	Cancer-Related Somatic Mutations in Transmembrane Helices Alter Adenosine A1 Receptor Pharmacology. Molecules, 2022, 27, 3742.	1.7	1
8	Targeting the Kv11.1 (hERG) channel with allosteric modulators. Synthesis and biological evaluation of three novel series of LUF7346 derivatives. European Journal of Medicinal Chemistry, 2021, 212, 113033.	2.6	6
9	Molecular probes for the human adenosine receptors. Purinergic Signalling, 2021, 17, 85-108.	1.1	11
10	Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochemical Pharmacology, 2021, 187, 114311.	2.0	29
11	A study of the dopamine transporter using the TRACT assay, a novel in vitro tool for solute carrier drug discovery. Scientific Reports, 2021, 11, 1312.	1.6	8
12	Design and Characterization of an Intracellular Covalent Ligand for CC Chemokine Receptor 2. Journal of Medicinal Chemistry, 2021, 64, 2608-2621.	2.9	13
13	Rollover Cyclometalation vs Nitrogen Coordination in Tetrapyridyl Anticancer Gold(III) Complexes: Effect on Protein Interaction and Toxicity. Jacs Au, 2021, 1, 380-395.	3.6	14
14	Crystal Structure and Subsequent Ligand Design of a Nonriboside Partial Agonist Bound to the Adenosine A _{2A} Receptor. Journal of Medicinal Chemistry, 2021, 64, 3827-3842.	2.9	29
15	G protein-coupled receptors expressed and studied in yeast. The adenosine receptor as a prime example. Biochemical Pharmacology, 2021, 187, 114370.	2.0	5
16	Label-free high-throughput screening assay for the identification of norepinephrine transporter (NET/SLC6A2) inhibitors. Scientific Reports, 2021, 11, 12290.	1.6	4
17	Adenosine receptors in GtoPdb v.2021.2. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	5
18	ldentification of V6.51L as a selectivity hotspot in stereoselective A2B adenosine receptor antagonist recognition. Scientific Reports, 2021, 11, 14171.	1.6	11

#	Article	IF	CITATIONS
19	An Overview of Cell-Based Assay Platforms for the Solute Carrier Family of Transporters. Frontiers in Pharmacology, 2021, 12, 722889.	1.6	31
20	Gonadotrophin-releasing hormone receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	0
21	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337
22	Computational Approaches for De Novo Drug Design: Past, Present, and Future. Methods in Molecular Biology, 2021, 2190, 139-165.	0.4	26
23	Deciphering conformational selectivity in the A2A adenosine G protein-coupled receptor by free energy simulations. PLoS Computational Biology, 2021, 17, e1009152.	1.5	5
24	DrugEx v2: de novo design of drug molecules by Pareto-based multi-objective reinforcement learning in polypharmacology. Journal of Cheminformatics, 2021, 13, 85.	2.8	30
25	Allosteric modulation of G proteinâ€coupled receptors by amiloride and its derivatives. Perspectives for drug discovery?. Medicinal Research Reviews, 2020, 40, 683-708.	5.0	21
26	Affinity, binding kinetics and functional characterization of draflazine analogues for human equilibrative nucleoside transporter 1 (SLC29A1). Biochemical Pharmacology, 2020, 172, 113747.	2.0	16
27	Annotation of Allosteric Compounds to Enhance Bioactivity Modeling for Class A GPCRs. Journal of Chemical Information and Modeling, 2020, 60, 4664-4672.	2.5	2
28	Successive Statistical and Structure-Based Modeling to Identify Chemically Novel Kinase Inhibitors. Journal of Chemical Information and Modeling, 2020, 60, 4283-4295.	2.5	4
29	Quantitative prediction of selectivity between the A1 and A2A adenosine receptors. Journal of Cheminformatics, 2020, 12, 33.	2.8	10
30	Design and pharmacological profile of a novel covalent partial agonist for the adenosine A1 receptor. Biochemical Pharmacology, 2020, 180, 114144.	2.0	10
31	Characterization of cancer-related somatic mutations in the adenosine A2B receptor. European Journal of Pharmacology, 2020, 880, 173126.	1.7	15
32	LUF7244 plus Dofetilide Rescues Aberrant Kv11.1 Trafficking and Produces Functional IKv11.1. Molecular Pharmacology, 2020, 97, 355-364.	1.0	10
33	Novel natural and synthetic inhibitors of solute carriers SGLT1 and SGLT2. Pharmacology Research and Perspectives, 2019, 7, e00504.	1.1	8
34	LUF7244, an allosteric modulator/activator of K _v 11.1 channels, counteracts dofetilideâ€induced torsades de pointes arrhythmia in the chronic atrioventricular block dog model. British Journal of Pharmacology, 2019, 176, 3871-3885.	2.7	16
35	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
36	Label-free detection of transporter activity via GPCR signalling in living cells: A case for SLC29A1, the equilibrative nucleoside transporter 1. Scientific Reports, 2019, 9, 13802.	1.6	16

#	Article	IF	CITATIONS
37	Squalene-Adenosine Nanoparticles: Ligands of Adenosine Receptors or Adenosine Prodrug?. Journal of Pharmacology and Experimental Therapeutics, 2019, 369, 144-151.	1.3	15
38	An exploration strategy improves the diversity of de novo ligands using deep reinforcement learning: a case for the adenosine A2A receptor. Journal of Cheminformatics, 2019, 11, 35.	2.8	58
39	Drug–Target Association Kinetics in Drug Discovery. Trends in Biochemical Sciences, 2019, 44, 861-871.	3.7	42
40	Long residence time adenosine A1 receptor agonists produce sustained wash-resistant antilipolytic effect in rat adipocytes. Biochemical Pharmacology, 2019, 164, 45-52.	2.0	17
41	Development of Covalent Ligands for G Protein-Coupled Receptors: A Case for the Human Adenosine A ₃ Receptor. Journal of Medicinal Chemistry, 2019, 62, 3539-3552.	2.9	31
42	A live cell NanoBRET binding assay allows the study of ligand-binding kinetics to the adenosine A3 receptor. Purinergic Signalling, 2019, 15, 139-153.	1.1	35
43	TLR-Induced IL-12 and CCL2 Production by Myeloid Cells Is Dependent on Adenosine A3 Receptor–Mediated Signaling. Journal of Immunology, 2019, 202, 2421-2430.	0.4	7
44	Identification of novel small molecule inhibitors for solute carrier SGLT1 using proteochemometric modeling. Journal of Cheminformatics, 2019, 11, 15.	2.8	17
45	Advances and Challenges in Computational Target Prediction. Journal of Chemical Information and Modeling, 2019, 59, 1728-1742.	2.5	76
46	Proteochemometricsâ€^â€^â€^recent developments in bioactivity and selectivity modeling. Drug Discovery Today: Technologies, 2019, 32-33, 89-98.	4.0	25
47	Lymphoblast-derived hiPS cell lines generated from four individuals of a family of genetically unrelated parents and their female monozygotic twins. Stem Cell Research, 2019, 41, 101654.	0.3	1
48	Synthesis and Pharmacological Evaluation of Triazolopyrimidinone Derivatives as Noncompetitive, Intracellular Antagonists for CC Chemokine Receptors 2 and 5. Journal of Medicinal Chemistry, 2019, 62, 11035-11053.	2.9	11
49	Application of portfolio optimization to drug discovery. Information Sciences, 2019, 475, 29-43.	4.0	9
50	Covalent Allosteric Probe for the Metabotropic Glutamate ReceptorÂ2: Design, Synthesis, and Pharmacological Characterization. Journal of Medicinal Chemistry, 2019, 62, 223-233.	2.9	17
51	Adenosine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	3
52	Gonadotrophin-releasing hormone receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	0
53	Hydroxycarboxylic acid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	1
54	Data-driven approaches used for compound library design, hit triage and bioactivity modeling in high-throughput screening. Briefings in Bioinformatics, 2018, 19, bbw105.	3.2	17

#	Article	IF	CITATIONS
55	A twoâ€state model for the kinetics of competitive radioligand binding. British Journal of Pharmacology, 2018, 175, 1719-1730.	2.7	14
56	Intracellular Receptor Modulation: Novel Approach to Target GPCRs. Trends in Pharmacological Sciences, 2018, 39, 547-559.	4.0	43
57	Selective Photoaffinity Probe That Enables Assessment of Cannabinoid CB ₂ Receptor Expression and Ligand Engagement in Human Cells. Journal of the American Chemical Society, 2018, 140, 6067-6075.	6.6	68
58	A binding kinetics study of human adenosine A3 receptor agonists. Biochemical Pharmacology, 2018, 153, 248-259.	2.0	11
59	Constitutive activity of the metabotropic glutamate receptor 2 explored with a whole-cell label-free biosensor. Biochemical Pharmacology, 2018, 152, 201-210.	2.0	16
60	Species differences and mechanism of action of A3 adenosine receptor allosteric modulators. Purinergic Signalling, 2018, 14, 59-71.	1.1	17
61	Molecular Basis of Ligand Dissociation from G Protein-Coupled Receptors and Predicting Residence Time. Methods in Molecular Biology, 2018, 1705, 197-206.	0.4	3
62	Kinetics of human cannabinoid 1 (CB1) receptor antagonists: Structure-kinetics relationships (SKR) and implications for insurmountable antagonism. Biochemical Pharmacology, 2018, 151, 166-179.	2.0	9
63	Pyrrolone Derivatives as Intracellular Allosteric Modulators for Chemokine Receptors: Selective and Dual-Targeting Inhibitors of CC Chemokine Receptors 1 and 2. Journal of Medicinal Chemistry, 2018, 61, 9146-9161.	2.9	21
64	An Affinity-Based Probe for the Human Adenosine A _{2A} Receptor. Journal of Medicinal Chemistry, 2018, 61, 7892-7901.	2.9	39
65	Impact of allosteric modulation: Exploring the binding kinetics of glutamate and other orthosteric ligands of the metabotropic glutamate receptor 2. Biochemical Pharmacology, 2018, 155, 356-365.	2.0	6
66	Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chemical Reviews, 2017, 117, 38-66.	23.0	51
67	Kinetics for Drug Discovery: an industry-driven effort to target drug residence time. Drug Discovery Today, 2017, 22, 896-911.	3.2	165
68	A novel CCR2 antagonist inhibits atherogenesis in apoE deficient mice by achieving high receptor occupancy. Scientific Reports, 2017, 7, 52.	1.6	50
69	Phenotypic screening of cannabinoid receptor 2 ligands shows different sensitivity to genotype. Biochemical Pharmacology, 2017, 130, 60-70.	2.0	4
70	A covalent antagonist for the human adenosine A2A receptor. Purinergic Signalling, 2017, 13, 191-201.	1.1	22
71	Structure-Activity Relationships of the Sustained Effects of Adenosine A2A Receptor Agonists Driven by Slow Dissociation Kinetics. Molecular Pharmacology, 2017, 91, 25-38.	1.0	18
72	From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action. Scientific Reports, 2017, 7, 14169.	1.6	7

#	Article	IF	CITATIONS
73	A New Class of Fluorinated A _{2A} Adenosine Receptor Agonist with Application to Lastâ€Step Enzymatic [¹⁸ F]Fluorination for PET Imaging. ChemBioChem, 2017, 18, 2156-2164.	1.3	12
74	A Novel Selective Inverse Agonist of the CB ₂ Receptor as a Radiolabeled Tool Compound for Kinetic Binding Studies. Molecular Pharmacology, 2017, 92, 389-400.	1.0	17
75	Label-free technology and patient cells: from early drug development to precision medicine. Drug Discovery Today, 2017, 22, 1808-1815.	3.2	28
76	Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set. Journal of Cheminformatics, 2017, 9, 45.	2.8	219
77	Structure–Affinity Relationships and Structure–Kinetics Relationships of Pyrido[2,1- <i>f</i>]purine-2,4-dione Derivatives as Human Adenosine A ₃ Receptor Antagonists. Journal of Medicinal Chemistry, 2017, 60, 7555-7568.	2.9	26
78	Reduced hepatitis B and D viral entry using clinically applied drugs as novel inhibitors of the bile acid transporter NTCP. Scientific Reports, 2017, 7, 15307.	1.6	72
79	Structure–Affinity Relationships and Structure–Kinetic Relationships of 1,2-Diarylimidazol-4-carboxamide Derivatives as Human Cannabinoid 1 Receptor Antagonists. Journal of Medicinal Chemistry, 2017, 60, 9545-9564.	2.9	6
80	Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3- <i>a</i>]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2. Journal of Medicinal Chemistry, 2017, 60, 6704-6720.	2.9	35
81	Synthesis and evaluation of N-substituted 2-amino-4,5-diarylpyrimidines as selective adenosine A1 receptor antagonists. European Journal of Medicinal Chemistry, 2017, 125, 586-602.	2.6	9
82	Small molecule absorption by PDMS in the context of drug response bioassays. Biochemical and Biophysical Research Communications, 2017, 482, 323-328.	1.0	312
83	Molecular mechanism of positive allosteric modulation of the metabotropic glutamate receptor 2 by JNJâ€46281222. British Journal of Pharmacology, 2016, 173, 588-600.	2.7	39
84	A new <scp>hERG</scp> allosteric modulator rescues genetic and drugâ€induced longâ€ <scp>QT</scp> syndrome phenotypes in cardiomyocytes from isogenic pairs of patient induced pluripotent stem cells. EMBO Molecular Medicine, 2016, 8, 1065-1081.	3.3	77
85	Structure of CC chemokine receptor 2 with orthosteric and allosteric antagonists. Nature, 2016, 540, 458-461.	13.7	220
86	Equilibrium and kinetic selectivity profiling on the human adenosine receptors. Biochemical Pharmacology, 2016, 105, 34-41.	2.0	18
87	Allosteric Modulation of K _v 11.1 (hERG) Channels Protects Against Drug-Induced Ventricular Arrhythmias. Circulation: Arrhythmia and Electrophysiology, 2016, 9, e003439.	2.1	24
88	5′-Substituted Amiloride Derivatives as Allosteric Modulators Binding in the Sodium Ion Pocket of the Adenosine A _{2A} Receptor. Journal of Medicinal Chemistry, 2016, 59, 4769-4777.	2.9	30
89	Getting personal: Endogenous adenosine receptor signaling in lymphoblastoid cell lines. Biochemical Pharmacology, 2016, 115, 114-122.	2.0	5
90	Data-Driven Derivation of an "Informer Compound Set―for Improved Selection of Active Compounds in High-Throughput Screening. Journal of Chemical Information and Modeling, 2016, 56, 1622-1630.	2.5	14

#	Article	IF	CITATIONS
91	Characterization of 12 GnRH peptide agonists – a kinetic perspective. British Journal of Pharmacology, 2016, 173, 128-141.	2.7	29
92	Predicting Binding Affinities for GPCR Ligands Using Free-Energy Perturbation. ACS Omega, 2016, 1, 293-304.	1.6	108
93	The Added Value of Assessing Ligand–Receptor Binding Kinetics in Drug Discovery. ACS Medicinal Chemistry Letters, 2016, 7, 819-821.	1.3	27
94	Kinetic binding and activation profiles of endogenous tachykinins targeting the NK1 receptor. Biochemical Pharmacology, 2016, 118, 88-95.	2.0	14
95	Interacting with GPCRs: Using Interaction Fingerprints for Virtual Screening. Journal of Chemical Information and Modeling, 2016, 56, 2053-2060.	2.5	12
96	In search of novel ligands using a structure-based approach: a case study on the adenosine A2A receptor. Journal of Computer-Aided Molecular Design, 2016, 30, 863-874.	1.3	20
97	Kinetic Profile of Neuropeptide–Receptor Interactions. Trends in Neurosciences, 2016, 39, 830-839.	4.2	8
98	Controlling the Dissociation of Ligands from the Adenosine A _{2A} Receptor through Modulation of Salt Bridge Strength. Journal of Medicinal Chemistry, 2016, 59, 6470-6479.	2.9	151
99	Getting from A to B—exploring the activation motifs of the class B adhesion G proteinâ€coupled receptor subfamily G member 4/GPR112. FASEB Journal, 2016, 30, 1836-1848.	0.2	17
100	Analysis of Iterative Screening with Stepwise Compound Selection Based on Novartis In-house HTS Data. ACS Chemical Biology, 2016, 11, 1255-1264.	1.6	42
101	Scintillation proximity assay (SPA) as a new approach to determine a ligand's kinetic profile. A case in point for the adenosine A1 receptor. Purinergic Signalling, 2016, 12, 115-126.	1.1	38
102	On the Relation between HERG Channel Block in Cell Line and Action Potential Prolongation in Human iPSC Cardiomyocytes. Biophysical Journal, 2016, 110, 527a.	0.2	0
103	Persistent GnRH receptor activation in pituitary αT3-1 cells analyzed with a label-free technology. Biosensors and Bioelectronics, 2016, 79, 721-727.	5.3	9
104	Human G protein-coupled receptor studies in Saccharomyces cerevisiae. Biochemical Pharmacology, 2016, 114, 103-115.	2.0	22
105	Molecular Basis of Ligand Dissociation from the Adenosine A _{2A} Receptor. Molecular Pharmacology, 2016, 89, 485-491.	1.0	72
106	The role of the C-terminus of the human hydroxycarboxylic acid receptors 2 and 3 in G protein activation using Gα-engineered yeast cells. European Journal of Pharmacology, 2016, 770, 70-77.	1.7	5
107	Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors. Purinergic Signalling, 2015, 11, 581-594.	1.1	20
108	Evaluation of (4â€Arylpiperidinâ€1â€yl)cyclopentanecarboxamides As Highâ€Affinity and Longâ€Residenceâ€Tim Antagonists for the CCR2 Receptor. ChemMedChem, 2015, 10, 1249-1258.	e 1.6	7

#	Article	IF	CITATIONS
109	The Role of Target Binding Kinetics in Drug Discovery. ChemMedChem, 2015, 10, 1793-1796.	1.6	37
110	Indanes—Properties, Preparation, and Presence in Ligands for G Protein Coupled Receptors. Medicinal Research Reviews, 2015, 35, 1097-1126.	5.0	36
111	Affinity and kinetics study of anthranilic acids as HCA2 receptor agonists. Bioorganic and Medicinal Chemistry, 2015, 23, 4013-4025.	1.4	5
112	When structure–affinity relationships meet structure–kinetics relationships: 3-((Inden-1-yl)amino)-1-isopropyl-cyclopentane-1-carboxamides as CCR2 antagonists. European Journal of Medicinal Chemistry, 2015, 93, 121-134.	2.6	23
113	<scp>K_v11.1</scp> (<scp>hERG</scp>)â€induced cardiotoxicity: a molecular insight from a binding kinetics study of prototypical <scp>K_v11.1</scp> (<scp>hERG</scp>) inhibitors. British Journal of Pharmacology, 2015, 172, 940-955.	2.7	32
114	Structure-kinetics relationships of Capadenoson derivatives as adenosine A 1 receptor agonists. European Journal of Medicinal Chemistry, 2015, 101, 681-691.	2.6	28
115	Whole-cell biosensor for label-free detection of GPCR-mediated drug responses in personal cell lines. Biosensors and Bioelectronics, 2015, 74, 233-242.	5.3	34
116	Structure–Affinity Relationships (SARs) and Structure–Kinetics Relationships (SKRs) of K _v 11.1 Blockers. Journal of Medicinal Chemistry, 2015, 58, 5916-5929.	2.9	22
117	Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A 1 adenosine receptor. A position-dependent effect study. European Journal of Medicinal Chemistry, 2015, 101, 185-204.	2.6	13
118	Sodium Ion Binding Pocket Mutations and Adenosine A _{2A} Receptor Function. Molecular Pharmacology, 2015, 87, 305-313.	1.0	79
119	Scanning mutagenesis in a yeast system delineates the role of the NPxxY(x) 5,6 F motif and helix 8 of the adenosine A 2B receptor in G protein coupling. Biochemical Pharmacology, 2015, 95, 290-300.	2.0	18
120	Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules. Journal of Cheminformatics, 2015, 7, 15.	2.8	29
121	Synthesis and biological evaluation of negative allosteric modulators of the Kv11.1(hERG) channel. European Journal of Medicinal Chemistry, 2015, 106, 50-59.	2.6	16
122	Polypharmacology modelling using proteochemometrics (PCM): recent methodological developments, applications to target families, and future prospects. MedChemComm, 2015, 6, 24-50.	3.5	109
123	A3Adenosine Receptor Allosteric Modulator Induces an Anti-Inflammatory Effect:In VivoStudies and Molecular Mechanism of Action. Mediators of Inflammation, 2014, 2014, 1-8.	1.4	27
124	Caffeine increases light responsiveness of the mouse circadian pacemaker. European Journal of Neuroscience, 2014, 40, 3504-3511.	1.2	54
125	Molecular mechanism of allosteric modulation at <scp>GPCRs</scp> : insight from a binding kinetics study at the human <scp>A</scp> ₁ adenosine receptor. British Journal of Pharmacology, 2014, 171, 5295-5312.	2.7	20
126	Discovery and Mapping of an Intracellular Antagonist Binding Site at the Chemokine Receptor CCR2. Molecular Pharmacology, 2014, 86, 358-368.	1.0	35

#	Article	IF	CITATIONS
127	Allosteric modulators of the hERG K+ channel. Toxicology and Applied Pharmacology, 2014, 274, 78-86.	1.3	23
128	A yeast screening method to decipher the interaction between the adenosine A2B receptor and the C-terminus of different G protein I±-subunits. Purinergic Signalling, 2014, 10, 441-453.	1.1	16
129	Bias in chemokine receptor signalling. Trends in Immunology, 2014, 35, 243-252.	2.9	75
130	Drugâ€Target Residence Time—A Case for G Proteinâ€Coupled Receptors. Medicinal Research Reviews, 2014, 34, 856-892.	5.0	145
131	How Diverse Are Diversity Assessment Methods? A Comparative Analysis and Benchmarking of Molecular Descriptor Space. Journal of Chemical Information and Modeling, 2014, 54, 230-242.	2.5	62
132	Design and synthesis of novel small molecule CCR2 antagonists: Evaluation of 4-aminopiperidine derivatives. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5377-5380.	1.0	8
133	Selecting an Optimal Number of Binding Site Waters To Improve Virtual Screening Enrichments Against the Adenosine A _{2A} Receptor. Journal of Chemical Information and Modeling, 2014, 54, 1737-1746.	2.5	49
134	Binding Kinetics of ZM241385 Derivatives at the Human Adenosine A _{2A} Receptor. ChemMedChem, 2014, 9, 752-761.	1.6	45
135	Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A ₁ Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. Journal of Medicinal Chemistry, 2014, 57, 7673-7686.	2.9	26
136	Domains for activation and inactivation in G protein-coupled receptors – A mutational analysis of constitutive activity of the adenosine A2B receptor. Biochemical Pharmacology, 2014, 92, 348-357.	2.0	9
137	Agonists for the Adenosine A ₁ Receptor with Tunable Residence Time. A Case for Nonribose 4-Amino-6-aryl-5-cyano-2-thiopyrimidines. Journal of Medicinal Chemistry, 2014, 57, 3213-3222.	2.9	47
138	Insights into Molecular Basis of hERG Inhibition by Studying a Library of Dofetilide Derivatives. Biophysical Journal, 2014, 106, 138a.	0.2	0
139	The Role of a Sodium Ion Binding Site in the Allosteric Modulation of the A2A Adenosine G Protein-Coupled Receptor. Structure, 2013, 21, 2175-2185.	1.6	118
140	Removal of Human Ether-Ã-go-go Related Gene (hERG) K ⁺ Channel Affinity through Rigidity: A Case of Clofilium Analogues. Journal of Medicinal Chemistry, 2013, 56, 9427-9440.	2.9	30
141	Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets. Journal of Cheminformatics, 2013, 5, 42.	2.8	73
142	Benchmarking of protein descriptor sets in proteochemometric modeling (part 1): comparative study of 13 amino acid descriptor sets. Journal of Cheminformatics, 2013, 5, 41.	2.8	82
143	Complementarity between in Silico and Biophysical Screening Approaches in Fragment-Based Lead Discovery against the A2A Adenosine Receptor. Journal of Chemical Information and Modeling, 2013, 53, 2701-2714.	2.5	65
144	Structure–Kinetic Relationships—An Overlooked Parameter in Hit-to-Lead Optimization: A Case of Cyclopentylamines as Chemokine Receptor 2 Antagonists. Journal of Medicinal Chemistry, 2013, 56, 7706-7714.	2.9	60

#	Article	IF	CITATIONS
145	Structure-Based Identification of OATP1B1/3 Inhibitors. Molecular Pharmacology, 2013, 83, 1257-1267.	1.0	110
146	Functional selectivity of adenosine A1 receptor ligands?. Purinergic Signalling, 2013, 9, 91-100.	1.1	21
147	Strategies To Reduce hERG K ⁺ Channel Blockade. Exploring Heteroaromaticity and Rigidity in Novel Pyridine Analogues of Dofetilide. Journal of Medicinal Chemistry, 2013, 56, 2828-2840.	2.9	35
148	Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data. PLoS Computational Biology, 2013, 9, e1002899.	1.5	42
149	Multiple Binding Sites for Small-Molecule Antagonists at the CC Chemokine Receptor 2. Molecular Pharmacology, 2013, 84, 551-561.	1.0	48
150	Dual-Point Competition Association Assay: A Fast and High-Throughput Kinetic Screening Method for Assessing Ligand-Receptor Binding Kinetics. Journal of Biomolecular Screening, 2013, 18, 309-320.	2.6	65
151	5′-AMP impacts lymphocyte recirculation through activation of A2Breceptors. Journal of Leukocyte Biology, 2013, 94, 89-98.	1.5	4
152	Adenosine A _{2B} Receptor Agonism Inhibits Neointimal Lesion Development After Arterial Injury in Apolipoprotein E–Deficient Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 2197-2205.	1.1	20
153	Protection from Myocardial Ischemia/Reperfusion Injury by a Positive Allosteric Modulator of the A ₃ Adenosine Receptor. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 210-217.	1.3	29
154	A Novel Nonribose Agonist, LUF5834, Engages Residues That Are Distinct from Those of Adenosine-Like Ligands to Activate the Adenosine A _{2a} Receptor. Molecular Pharmacology, 2012, 81, 475-487.	1.0	39
155	Effects of pyrazole partial agonists on HCA ₂ â€mediated flushing and VLDLâ€triglyceride levels in mice. British Journal of Pharmacology, 2012, 167, 818-825.	2.7	5
156	Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science, 2012, 337, 232-236.	6.0	860
157	Novel 3,6,7-Substituted Pyrazolopyrimidines as Positive Allosteric Modulators for the Hydroxycarboxylic Acid Receptor 2 (GPR109A). Journal of Medicinal Chemistry, 2012, 55, 3563-3567.	2.9	13
158	Multi-Objective Evolutionary Design of Adenosine Receptor Ligands. Journal of Chemical Information and Modeling, 2012, 52, 1713-1721.	2.5	26
159	Functional efficacy of adenosine A _{2A} receptor agonists is positively correlated to their receptor residence time. British Journal of Pharmacology, 2012, 166, 1846-1859.	2.7	153
160	Fragment Screening of GPCRs Using Biophysical Methods: Identification of Ligands of the Adenosine A _{2A} Receptor with Novel Biological Activity. ACS Chemical Biology, 2012, 7, 2064-2073.	1.6	77
161	Identifying Novel Adenosine Receptor Ligands by Simultaneous Proteochemometric Modeling of Rat and Human Bioactivity Data. Journal of Medicinal Chemistry, 2012, 55, 7010-7020.	2.9	45
162	A Prospective Cross-Screening Study on G-Protein-Coupled Receptors: Lessons Learned in Virtual Compound Library Design. Journal of Medicinal Chemistry, 2012, 55, 5311-5325.	2.9	28

#	Article	IF	CITATIONS
163	The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation. Biochemical Pharmacology, 2012, 84, 76-87.	2.0	57
164	Determination of different putative allosteric binding pockets at the lutropin receptor by using diverse drug-like low molecular weight ligands. Molecular and Cellular Endocrinology, 2012, 351, 326-336.	1.6	33
165	Adenosine A2B receptor agonism inhibits vascular smooth muscle cell proliferation and intimal hyperplasia in ApoE deficient mice. Vascular Pharmacology, 2012, 56, 349-350.	1.0	0
166	Understanding of Molecular Substructures that Contribute to hERG K+ Channel Blockade: Synthesis and Biological Evaluation of E-4031 Analogues. ChemMedChem, 2012, 7, 107-113.	1.6	16
167	Three "hotspots―important for adenosine A2B receptor activation: a mutational analysis of transmembrane domains 4 and 5 and the second extracellular loop. Purinergic Signalling, 2012, 8, 23-38.	1.1	19
168	Activity of LUF6000 and LUF6096 as positive allosteric modulators (PAMs) for the A3 adenosine receptor (AR) is speciesâ€dependent. FASEB Journal, 2012, 26, 851.3.	0.2	0
169	International Union of Basic and Clinical Pharmacology. LXXXII: Nomenclature and Classification of Hydroxy-carboxylic Acid Receptors (GPR81, GPR109A, and GPR109B). Pharmacological Reviews, 2011, 63, 269-290.	7.1	162
170	International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors—An Update. Pharmacological Reviews, 2011, 63, 1-34.	7.1	1,135
171	Allosteric modulation of adenosine receptors. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1309-1318.	1.4	60
172	Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets. MedChemComm, 2011, 2, 16-30.	3.5	138
173	Functionally biased modulation of A3 adenosine receptor agonist efficacy and potency by imidazoquinolinamine allosteric enhancers. Biochemical Pharmacology, 2011, 82, 658-668.	2.0	61
174	Functional selectivity of adenosine receptor ligands. Purinergic Signalling, 2011, 7, 171-192.	1.1	41
175	Putative role of the adenosine A3 receptor in the antiproliferative action of N 6-(2-isopentenyl)adenosine. Purinergic Signalling, 2011, 7, 453-462.	1.1	15
176	Substructureâ€Based Virtual Screening for Adenosine A _{2A} Receptor Ligands. ChemMedChem, 2011, 6, 2302-2311.	1.6	24
177	Structure–activity relationships of trans-substituted-propenoic acid derivatives on the nicotinic acid receptor HCA2 (GPR109A). Bioorganic and Medicinal Chemistry Letters, 2011, 21, 2736-2739.	1.0	12
178	G Protein-Coupled Receptor Heteromerization: A Role in Allosteric Modulation of Ligand Binding. Molecular Pharmacology, 2011, 79, 1044-1052.	1.0	75
179	Allosteric Modulation of Purine and Pyrimidine Receptors. Advances in Pharmacology, 2011, 61, 187-220.	1.2	31
180	GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A _{2B} receptor. FASEB Journal, 2011, 25, 632-643.	0.2	44

#	Article	IF	CITATIONS
181	The Structure of the Adenosine Receptors. Advances in Pharmacology, 2011, 61, 1-40.	1.2	9
182	Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development. PLoS ONE, 2011, 6, e27518.	1.1	47
183	Structure-Based Discovery of Novel Chemotypes for Adenosine A _{2A} Receptor Antagonists. Journal of Medicinal Chemistry, 2010, 53, 1799-1809.	2.9	231
184	The crystallographic structure of the human adenosine A2A receptor in a high-affinity antagonist-bound state: implications for GPCR drug screening and design. Current Opinion in Structural Biology, 2010, 20, 401-414.	2.6	45
185	A novel chemogenomics analysis of G protein-coupled receptors (GPCRs) and their ligands: a potential strategy for receptor de-orphanization. BMC Bioinformatics, 2010, 11, 316.	1.2	47
186	Characterization of [3H]LUF5834: A novel non-ribose high-affinity agonist radioligand for the adenosine A1 receptor. Biochemical Pharmacology, 2010, 80, 1180-1189.	2.0	12
187	Prospective Validation of a Comprehensive In silico hERG Model and its Applications to Commercial Compound and Drug Databases. ChemMedChem, 2010, 5, 716-729.	1.6	87
188	Small molecule antagonists for chemokine CCR3 receptors. Medicinal Research Reviews, 2010, 30, 778-817.	5.0	50
189	Mining protein dynamics from sets of crystal structures using "consensus structures― Protein Science, 2010, 19, 742-752.	3.1	14
190	Ligand Binding and Subtype Selectivity of the Human A2A Adenosine Receptor. Journal of Biological Chemistry, 2010, 285, 13032-13044.	1.6	83
191	Hybrid Ortho/Allosteric Ligands for the Adenosine A ₁ Receptor. Journal of Medicinal Chemistry, 2010, 53, 3028-3037.	2.9	84
192	Regulation of Second Messenger Systems and Intracellular Pathways. , 2010, , 61-73.		5
193	Adenosine A ₁ Receptor Binding Activity of Methoxy Flavonoids from <i>Orthosiphon stamineus</i> . Planta Medica, 2009, 75, 132-136.	0.7	63
194	Exploring Chemical Substructures Essential for hERG K ⁺ Channel Blockade by Synthesis and Biological Evaluation of Dofetilide Analogues. ChemMedChem, 2009, 4, 1722-1732.	1.6	27
195	Allosteric modulation of adenosine receptors. Purinergic Signalling, 2009, 5, 51-61.	1.1	34
196	Chemogenomics: Looking at biology through the lens of chemistry. Statistical Analysis and Data Mining, 2009, 2, 149-160.	1.4	10
197	Substructure Mining of GPCR Ligands Reveals Activity-Class Specific Functional Groups in an Unbiased Manner. Journal of Chemical Information and Modeling, 2009, 49, 348-360.	2.5	33
198	A Series of 2,4-Disubstituted Quinolines as a New Class of Allosteric Enhancers of the Adenosine A ₃ Receptor. Journal of Medicinal Chemistry, 2009, 52, 926-931.	2.9	58

#	Article	IF	CITATIONS
199	Substituted Terphenyl Compounds as the First Class of Low Molecular Weight Allosteric Inhibitors of the Luteinizing Hormone Receptor. Journal of Medicinal Chemistry, 2009, 52, 2036-2042.	2.9	44
200	Novel 2- and 4-Substituted 1 <i>H</i> -Imidazo[4,5- <i>c</i>]quinolin-4-amine Derivatives as Allosteric Modulators of the A ₃ Adenosine Receptor. Journal of Medicinal Chemistry, 2009, 52, 2098-2108.	2.9	37
201	Internalization and desensitization of adenosine receptors. Purinergic Signalling, 2008, 4, 21-37.	1.1	101
202	Flexible modulation of agonist efficacy at the human A3 adenosine receptor by the imidazoquinoline allosteric enhancer LUF6000. BMC Pharmacology, 2008, 8, 20.	0.4	39
203	G proteinâ€coupled receptors of the hypothalamic–pituitary–gonadal axis: A case for gnrh, LH, FSH, and GPR54 receptor ligands. Medicinal Research Reviews, 2008, 28, 975-1011.	5.0	48
204	Selective Human Adenosine A ₃ Antagonists based on Pyrido[2,1â€ <i>f</i>]purineâ€2,4â€diones: Novel Features of hA ₃ Antagonist Binding. ChemMedChem, 2008, 3, 111-119.	1.6	16
205	A new generation of adenosine receptor antagonists: From di- to trisubstituted aminopyrimidines. Bioorganic and Medicinal Chemistry, 2008, 16, 2741-2752.	1.4	38
206	Synthesis and evaluation of homodimeric GnRHR antagonists having a rigid bis-propargylated benzene core. Bioorganic and Medicinal Chemistry, 2008, 16, 3744-3758.	1.4	17
207	The 2.6 Angstrom Crystal Structure of a Human A _{2A} Adenosine Receptor Bound to an Antagonist. Science, 2008, 322, 1211-1217.	6.0	1,688
208	Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting. Bioinformatics, 2008, 24, 18-25.	1.8	83
209	2-Amino-6-furan-2-yl-4-substituted Nicotinonitriles as A _{2A} Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2008, 51, 4449-4455.	2.9	139
210	False Positives in a Reporter Gene Assay: Identification and Synthesis of Substituted <i>N</i> -Pyridin-2-ylbenzamides as Competitive Inhibitors of Firefly Luciferase. Journal of Medicinal Chemistry, 2008, 51, 4724-4729.	2.9	58
211	Tracing evolutionary pressure. Bioinformatics, 2008, 24, 908-915.	1.8	35
212	[³ H]Org 43553, the First Low-Molecular-Weight Agonistic and Allosteric Radioligand for the Human Luteinizing Hormone Receptor. Molecular Pharmacology, 2008, 73, 518-524.	1.0	45
213	Amiloride Derivatives and a Nonpeptidic Antagonist Bind at Two Distinct Allosteric Sites in the Human Gonadotropin-Releasing Hormone Receptor. Molecular Pharmacology, 2008, 73, 1808-1815.	1.0	25
214	An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences. Bioinformatics, 2007, 23, 687-693.	1.8	23
215	Designing Active Template Molecules by Combining Computational De Novo Design and Human Chemist's Expertise. Journal of Medicinal Chemistry, 2007, 50, 1925-1932.	2.9	16
216	Nicotinic acid receptor subtypes and their ligands. Medicinal Research Reviews, 2007, 27, 417-433.	5.0	85

#	Article	IF	CITATIONS
217	Synthesis and evaluation of homo-bivalent GnRHR ligands. Bioorganic and Medicinal Chemistry, 2007, 15, 4841-4856.	1.4	53
218	2,6,8-Trisubstituted 1-Deazapurines as Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2007, 50, 828-834.	2.9	34
219	Structureâ^'Activity Relationships of New 1H-Imidazo[4,5-c]quinolin-4-amine Derivatives as Allosteric Enhancers of the A3Adenosine Receptor. Journal of Medicinal Chemistry, 2006, 49, 3354-3361.	2.9	51
220	Structure-affinity relationships of adenosine A2B receptor ligands. Medicinal Research Reviews, 2006, 26, 667-698.	5.0	41
221	Heterodimers of C protein-coupled receptors as novel and distinct drug targets. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 437-443.	0.5	5
222	2,6-Disubstituted and 2,6,8-Trisubstituted Purines as Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2006, 49, 2861-2867.	2.9	45
223	Substructure Mining Using Elaborate Chemical Representation. Journal of Chemical Information and Modeling, 2006, 46, 597-605.	2.5	76
224	A two-entropies analysis to identify functional positions in the transmembrane region of class A G protein-coupled receptors. Proteins: Structure, Function and Bioinformatics, 2006, 63, 1018-1030.	1.5	35
225	Allosteric modulation, thermodynamics and binding to wild-type and mutant (T277A) adenosine A1 receptors of LUF5831, a novel nonadenosine-like agonist. British Journal of Pharmacology, 2006, 147, 533-541.	2.7	27
226	Synthesis and biological evaluation of 2-aminothiazoles and their amide derivatives on human adenosine receptors. Lack of effect of 2-aminothiazoles as allosteric enhancers. Bioorganic and Medicinal Chemistry, 2005, 13, 2079-2087.	1.4	35
227	A "locked-on,―constitutively active mutant of the adenosine A1 receptor. European Journal of Pharmacology, 2005, 510, 1-8.	1.7	22
228	Pharmacokinetic/pharmacodynamic modelling of the anti-hyperalgesic and anti-nociceptive effect of adenosine A1 receptor partial agonists in neuropathic pain. European Journal of Pharmacology, 2005, 514, 131-140.	1.7	10
229	Brain penetration of synthetic adenosine A1 receptor agonists in situ: role of the rENT1 nucleoside transporter and binding to blood constituents. European Journal of Pharmaceutical Sciences, 2005, 24, 59-66.	1.9	22
230	Structure-activity relationships of inverse agonists for G-protein-coupled receptors. Medicinal Research Reviews, 2005, 25, 398-426.	5.0	27
231	Structure—Activity Relationships of Inverse Agonists for G-Protein-Couplet Receptors. ChemInform, 2005, 36, no.	0.1	0
232	Allosteric Modulation of the Adenosine Family of Receptors. Mini-Reviews in Medicinal Chemistry, 2005, 5, 545-553.	1.1	65
233	Techniques: How to boost GPCR mutagenesis studies using yeast. Trends in Pharmacological Sciences, 2005, 26, 533-539.	4.0	30
234	A Series of Ligands Displaying a Remarkable Agonisticâ~'Antagonistic Profile at the Adenosine A1Receptor. Journal of Medicinal Chemistry, 2005, 48, 2045-2053.	2.9	108

#	Article	IF	CITATIONS
235	Synthesis and Biological Evaluation of a New Series of 2,3,5-Substituted [1,2,4]-Thiadiazoles as Modulators of Adenosine A1Receptors and Their Molecular Mechanism of Action. Journal of Medicinal Chemistry, 2005, 48, 1145-1151.	2.9	46
236	Inhibition of Nucleoside Transport Proteins by C8-Alkylamine-Substituted Purines. Journal of Medicinal Chemistry, 2005, 48, 321-329.	2.9	19
237	Random Mutagenesis of the Human Adenosine A2B Receptor Followed by Growth Selection in Yeast. Identification of Constitutively Active and Gain of Function Mutations. Molecular Pharmacology, 2004, 65, 702-710.	1.0	45
238	Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. British Journal of Pharmacology, 2004, 143, 705-714.	2.7	71
239	Allosteric modulation of G protein-coupled receptors: perspectives and recent developments. Drug Discovery Today, 2004, 9, 752-758.	3.2	85
240	The mouse brain adenosine A1 receptor: functional expression and pharmacology. European Journal of Pharmacology, 2004, 487, 73-79.	1.7	10
241	Population pharmacokinetic–pharmacodynamic modelling of the anti-hyperalgesic effect of 5′deoxy-N6-cylopentyladenosine in the mononeuropathic rat. European Journal of Pharmacology, 2004, 504, 7-15.	1.7	4
242	Non-Xanthine Antagonists for the Adenosine A1 Receptor. Chemistry and Biodiversity, 2004, 1, 1591-1626.	1.0	16
243	2,4,6-Trisubstituted Pyrimidines as a New Class of Selective Adenosine A1Receptor Antagonists. Journal of Medicinal Chemistry, 2004, 47, 6529-6540.	2.9	94
244	Synthesis and Biological Evaluation of 2,3,5-Substituted [1,2,4]Thiadiazoles as Allosteric Modulators of Adenosine Receptors. Journal of Medicinal Chemistry, 2004, 47, 663-672.	2.9	79
245	Inhibition of Nucleoside Transport by New Analogues of 4-Nitrobenzylthioinosine:Â Replacement of the Ribose Moiety by Substituted Benzyl Groups. Journal of Medicinal Chemistry, 2004, 47, 5441-5450.	2.9	18
246	Functional role of adenosine receptor subtypes in the regulation of blood–brain barrier permeability: possible implications for the design of synthetic adenosine derivatives. European Journal of Pharmaceutical Sciences, 2003, 19, 13-22.	1.9	29
247	Blood–brain barrier transport of synthetic adenosine A1 receptor agonists in vitro: structure transport relationships. European Journal of Pharmaceutical Sciences, 2003, 20, 347-356.	1.9	14
248	Differential allosteric modulation by amiloride analogues of agonist and antagonist binding at A1 and A3 adenosine receptors. Biochemical Pharmacology, 2003, 65, 525-534.	2.0	54
249	Partial adenosine A1 receptor agonists inhibit sarin-induced epileptiform activity in the hippocampal slice. European Journal of Pharmacology, 2003, 471, 97-104.	1.7	14
250	Inhibition of nucleoside transport By new analogues of nitrobenzylthioinosine. Bioorganic and Medicinal Chemistry, 2003, 11, 899-908.	1.4	15
251	N6-Cyclopentyl-2-(3-phenylaminocarbonyltriazene-1-yl)adenosine (TCPA), a Very Selective Agonist with High Affinity for the Human Adenosine A1 Receptor. Journal of Medicinal Chemistry, 2003, 46, 1492-1503.	2.9	41
252	Low efficacy adenosine A1 agonists inhibit striatal acetylcholine release in rats improving central selectivity of action. Neuroscience Letters, 2003, 343, 57-61.	1.0	6

#	Article	IF	CITATIONS
253	Inverse agonism at adenosine A1 receptors. International Congress Series, 2003, 1249, 87-99.	0.2	0
254	Medicinal Chemistry of Adenosine A1 Receptor Ligands. Current Topics in Medicinal Chemistry, 2003, 3, 355-367.	1.0	40
255	5â€~-Deoxy Congeners of 9-(3-Amido-3-deoxy-β-d-xylofuranosyl)-N6-cyclopentyladenine: New Adenosine A1Receptor Antagonists and Inverse Agonists. Journal of Medicinal Chemistry, 2002, 45, 1845-1852.	2.9	13
256	Selective Allosteric Enhancement of Agonist Binding and Function at Human A3 Adenosine Receptors by a Series of Imidazoquinoline Derivatives. Molecular Pharmacology, 2002, 62, 81-89.	1.0	63
257	Temperature dependence of the affinity enhancement of selective adenosine A1 receptor agonism: a thermodynamic analysis. European Journal of Pharmacology, 2002, 448, 123-131.	1.7	6
258	Modulation of agonist responses at the A1 adenosine receptor by an irreversible antagonist, receptor–G protein uncoupling and by the G protein activation state. Biochemical Pharmacology, 2002, 64, 1251-1265.	2.0	15
259	Therapeutic efficacy of the adenosine A 1 receptor agonist N 6 -cyclopentyladenosine (CPA) against organophosphate intoxication. Archives of Toxicology, 2002, 76, 650-656.	1.9	24
260	Thiazole and Thiadiazole Analogues as a Novel Class of Adenosine Receptor Antagonists. Journal of Medicinal Chemistry, 2001, 44, 749-762.	2.9	142
261	Allosteric Modulation of A3 Adenosine Receptors by a Series of 3-(2-Pyridinyl)isoquinoline Derivatives. Molecular Pharmacology, 2001, 60, 1057-1063.	1.0	82
262	Synthesis and use of FSCPX, an irreversible adenosine A1 antagonist, as a â€~Receptor Knock-Down' tool. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 815-818.	1.0	23
263	Allosteric modulation of G protein-coupled receptors. Il Farmaco, 2001, 56, 67-70.	0.9	8
264	Receptors coupling to G proteins: Is there a signal behind the sequence?. Proteins: Structure, Function and Bioinformatics, 2000, 41, 448-459.	1.5	56
265	Site-directed mutagenesis studies of human A2A adenosine receptors. Biochemical Pharmacology, 2000, 60, 661-668.	2.0	71
266	Allosteric modulation of A2A adenosine receptors by amiloride analogues and sodium ions. Biochemical Pharmacology, 2000, 60, 669-676.	2.0	102
267	Why Are A _{2B} Receptors Low-Affinity Adenosine Receptors? Mutation of Asn273 to Tyr Increases Affinity of Human A _{2B} Receptor for 2-(1-Hexynyl)adenosine. Molecular Pharmacology, 2000, 58, 1349-1356.	1.0	65
268	Isoquinoline and Quinazoline Urea Analogues as Antagonists for the Human Adenosine A3Receptor. Journal of Medicinal Chemistry, 2000, 43, 2227-2238.	2.9	127
269	TinyGRAP database: a bioinformatics tool to mine G-protein-coupled receptor mutant data. Trends in Pharmacological Sciences, 1999, 20, 475-477.	4.0	50
270	Medicinal chemistry of the human adenosine A3 receptor. Drug Development Research, 1998, 45, 182-189.	1.4	2

#	Article	IF	CITATIONS
271	A Novel Class of Adenosine A3 Receptor Ligands. 1. 3-(2-Pyridinyl)isoquinoline Derivatives. Journal of Medicinal Chemistry, 1998, 41, 3987-3993.	2.9	64
272	5â€~-Substituted Adenosine Analogs as New High-Affinity Partial Agonists for the Adenosine A1Receptor. Journal of Medicinal Chemistry, 1998, 41, 102-108.	2.9	49
273	A Novel Class of Adenosine A3 Receptor Ligands. 2. Structure Affinity Profile of a Series of Isoquinoline and Quinazoline Compounds. Journal of Medicinal Chemistry, 1998, 41, 3994-4000.	2.9	72
274	N6-Cyclopentyl-3â€~-substituted-xylofuranosyladenosines: A New Class of Non-Xanthine Adenosine A1Receptor Antagonists. Journal of Medicinal Chemistry, 1997, 40, 3765-3772.	2.9	25
275	Biological activities of N6,C8-disubstituted adenosine derivatives as partial agonists at rat brain adenosine A1 receptors. European Journal of Pharmacology, 1997, 334, 299-307.	1.7	14
276	Physiological indirect effect modeling of the antilipolytic effects of adenosine A1-receptor agonists. Journal of Pharmacokinetics and Pharmacodynamics, 1997, 25, 673-694.	0.6	16
277	Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. European Journal of Pharmacology, 1996, 308, 311-314.	1.7	63
278	Structural Aspects of Bile Acids Involved in the Regulation of Cholesterol 7alpha-Hydroxylase and Sterol 27-Hydroxylase. FEBS Journal, 1995, 228, 596-604.	0.2	19
279	8-substituted adenosine and theophylline-7-riboside analogues as potential partial agonists for the adenosine A1 receptor. European Journal of Pharmacology, 1995, 290, 189-199.	2.7	34
280	Ribose-Modified Adenosine Analogs as Potential Partial Agonists for the Adenosine Receptor. Journal of Medicinal Chemistry, 1995, 38, 4000-4006.	2.9	73
281	Nucleoside transport inhibition and platelet aggregation in human blood: R75231 and its enantiomers, draflazine and R88016. European Journal of Pharmacology, 1994, 266, 57-62.	2.7	18
282	Full and partial agonistic behaviour and thermodynamic binding parameters of adenosine A1 receptor ligands. European Journal of Pharmacology, 1994, 267, 55-61.	2.7	27
283	1H-Imidazo[4,5-c]quinolin-4-amines: novel non-xanthine adenosine antagonists. Journal of Medicinal Chemistry, 1991, 34, 1202-1206.	2.9	69
284	Receptor Binding Profiles of Amiloride Analogues Provide no Evidence for a Link Between Receptors and the Na ⁺ /H ⁺ Exchange, But Indicate a Common Structure on Receptor Proteins. Journal of Receptors and Signal Transduction, 1991, 11, 891-907.	1.2	20
285	Inhibition of nucleoside uptake in human erythrocytes by a new series of compounds related to lidoflazine and mioflazine. European Journal of Pharmacology, 1990, 189, 419-422.	2.7	10
286	A model for the antagonist binding site on the adenosine A1 receptor, based on steric, electrostatic, and hydrophobic properties. Journal of Medicinal Chemistry, 1990, 33, 1708-1713.	2.9	52
287	Pharmacology of purinergic receptors: implications for drug design. Trends in Pharmacological Sciences, 1990, 11, 342-343.	4.0	0
288	Influence of the molecular structure of N6-(ω-aminoalkyl)adenosines on adenosine receptor affinity and intrinsic activity. European Journal of Pharmacology, 1989, 172, 185-193.	2.7	51

4

#	Article	IF	CITATIONS
289	Inhibition of nucleoside transport by a new series of compounds related to lidoflazine and mioflazine. European Journal of Pharmacology, 1989, 172, 273-281.	2.7	38

290 Computational Approaches to Fragment and Substructure Discovery and Evaluation. , 0, , 199-222.