Elisabetta Gabano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960482/publications.pdf

Version: 2024-02-01

172457 214800 2,451 82 29 47 citations h-index g-index papers 83 83 83 2661 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pt(<scp>iv</scp>) antitumor prodrugs: dogmas, paradigms, and realities. Dalton Transactions, 2022, 51, 2121-2134.	3.3	40
2	Formulations of highly antiproliferative hydrophobic Pt(IV) complexes into lipidic nanoemulsions as delivery vehicles. Inorganica Chimica Acta, 2022, 535, 120859.	2.4	3
3	Application of the anthraquinone drug rhein as an axial ligand in bifunctional Pt(<scp>iv</scp>) complexes to obtain antiproliferative agents against human glioblastoma cells. Dalton Transactions, 2022, 51, 6014-6026.	3.3	1
4	Freshening up Old Methods for New Students: A Colorful Laboratory Experiment to Measure the Formation Constants of Ni(II) Complexes Containing Ethane-1,2-Diamine. Journal of Chemical Education, 2022, 99, 1473-1478.	2.3	1
5	Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This "Green― Method?. Molecules, 2022, 27, 4249.	3.8	12
6	Pt(<scp>iv</scp>) complexes based on cyclohexanediamines and the histone deacetylase inhibitor 2-(2-propynyl)octanoic acid: synthesis, characterization, cell penetration properties and antitumor activity. Dalton Transactions, 2021, 50, 4663-4672.	3.3	11
7	<i>Cis,cis,trans</i> -[Pt ^{IV} Cl ₂ (NH ₃) ₂ (perillato) ₂], a dual-action prodrug with excellent cytotoxic and antimetastatic activity. Dalton Transactions, 2021, 50, 3161-3177.		8
8	A Comparative Study of the Effects of Platinum (II) Complexes on \hat{l}^2 -Amyloid Aggregation: Potential Neurodrug Applications. International Journal of Molecular Sciences, 2021, 22, 3015.	4.1	20
9	Can the Self-Assembling of Dicarboxylate Pt(IV) Prodrugs Influence Their Cell Uptake?. Bioinorganic Chemistry and Applications, 2021, 2021, 1-8.	4.1	1
10	Unsymmetric Cisplatin-Based Pt(IV) Conjugates Containing a PARP-1 Inhibitor Pharmacophore Tested on Malignant Pleural Mesothelioma Cell Lines. Molecules, 2021, 26, 4740.	3.8	8
11	Role of Metal Ions in Dopamine Oxidation. Journal of Chemical Education, 2021, 98, 4031-4036.	2.3	1
12	Can an Elusive Platinum(III) Oxidation State be Exposed in an Isolated Complex?. Angewandte Chemie - International Edition, 2020, 59, 15595-15598.	13.8	3
13	Can an Elusive Platinum(III) Oxidation State be Exposed in an Isolated Complex?. Angewandte Chemie, 2020, 132, 15725-15728.	2.0	1
14	A multi-methodological inquiry of the behavior of cisplatin-based Pt(IV) derivatives in the presence of bioreductants with a focus on the isolated encounter complexes. Journal of Biological Inorganic Chemistry, 2020, 25, 655-670.	2.6	22
15	Synthesis and characterization of cyclohexane-1 <i>R</i> ,2 <i>R</i> -diamine-based Pt(<scp>iv</scp>) dicarboxylato anticancer prodrugs: their selective activity against human colon cancer cell lines. Dalton Transactions, 2019, 48, 435-445.	3.3	13
16	Antiproliferative Activity of Pt(IV) Conjugates Containing the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Ketoprofen and Naproxen â€. International Journal of Molecular Sciences, 2019, 20, 3074.	4.1	31
17	A view on multi-action Pt(IV) antitumor prodrugs. Inorganica Chimica Acta, 2019, 492, 32-47.	2.4	71
18	Elusive Intermediates in the Breakdown Reactivity Patterns of Prodrug Platinum(IV) Complexes. Journal of the American Society for Mass Spectrometry, 2019, 30, 1881-1894.	2.8	8

#	Article	IF	Citations
19	Conjugation between maleimide-containing Pt(IV) prodrugs and furan or furan-containing drug delivery vectors via Diels-Alder cycloaddition. Inorganica Chimica Acta, 2019, 488, 195-200.	2.4	9
20	A step towards development of promising trypanocidal agents: Synthesis, characterization and inÂvitro biological evaluation of ferrocenyl Mannich base-type derivatives. European Journal of Medicinal Chemistry, 2019, 163, 569-582.	5 . 5	11
21	Transition metal carbonyl clusters in biology: A futile or niche research area?. Inorganica Chimica Acta, 2018, 470, 3-10.	2.4	8
22	Hybrid inorganic (nonporous silica)/organic (alginate) core-shell platform for targeting a cisplatin-based Pt(IV) anticancer prodrug. Journal of Inorganic Biochemistry, 2018, 189, 185-191.	3.5	9
23	The cisplatin-based Pt(<scp>iv</scp>)-diclorofibrato multi-action anticancer prodrug exhibits excellent performances also under hypoxic conditions. Dalton Transactions, 2018, 47, 8268-8282.	3.3	32
24	Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. European Journal of Medicinal Chemistry, 2018, 155, 459-482.	5.5	25
25	Pt(IV)/Re(I) Chitosan Conjugates as a Flexible Platform for the Transport of Therapeutic and/or Diagnostic Anticancer Agents. Inorganics, 2018, 6, 4.	2.7	6
26	Cisplatin and valproate released from the bifunctional [Pt ^(IV) Cl ₂] antitumor prodrug or from liposome formulations: who does what?. Dalton Transactions, 2017, 46, 1559-1566.	3.3	27
27	May glutamine addiction drive the delivery of antitumor cisplatin-based Pt(IV) prodrugs?. Journal of Inorganic Biochemistry, 2017, 167, 27-35.	3.5	29
28	An unsymmetric cisplatin-based Pt(<scp>iv</scp>) derivative containing 2-(2-propynyl)octanoate: a very efficient multi-action antitumor prodrug candidate. Dalton Transactions, 2017, 46, 14174-14185.	3.3	39
29	How to obtain Pt(<scp>iv</scp>) complexes suitable for conjugation to nanovectors from the oxidation of [PtCl(terpyridine)] ⁺ . Dalton Transactions, 2017, 46, 10246-10254.	3.3	11
30	Polyanionic Biopolymers for the Delivery of Pt(II) Cationic Antiproliferative Complexes. Bioinorganic Chemistry and Applications, 2016, 2016, 1-7.	4.1	2
31	Functionalized nonporous silica nanoparticles as carriers for Pt(<scp>iv</scp>) anticancer prodrugs. Dalton Transactions, 2016, 45, 17233-17240.	3.3	14
32	Anthracene-terpyridine metal complexes as new G-quadruplex DNA binders. Journal of Inorganic Biochemistry, 2016, 160, 275-286.	3.5	39
33	Antiproliferative activity of a series of cisplatin-based Pt(<scp>iv</scp>)-acetylamido/carboxylato prodrugs. Dalton Transactions, 2016, 45, 5300-5309.	3.3	42
34	Prediction of logP for Pt(II) and Pt(IV) complexes: Comparison of statistical and quantum-chemistry based approaches. Journal of Inorganic Biochemistry, 2016, 156, 1-13.	3.5	45
35	Synthesis of PtIV-Biomolecule Conjugates through Click Chemistry. European Journal of Inorganic Chemistry, 2015, 2015, 5335-5341.	2.0	5
36	Cellular trafficking, accumulation and DNA platination of a series of cisplatin-based dicarboxylato Pt(IV) prodrugs. Journal of Inorganic Biochemistry, 2015, 150, 1-8.	3.5	44

#	Article	IF	CITATIONS
37	Host–guest inclusion systems of Pt(IV)-bis(benzoato) anticancer drug candidates and cyclodextrins. Inorganica Chimica Acta, 2015, 432, 115-127.	2.4	29
38	Unprecedented one-pot synthesis of an unsymmetrical cisplatin-based Pt(⟨scp⟩iv⟨ scp⟩)–acetamidato complex. Chemical Communications, 2015, 51, 8051-8053.	4.1	21
39	Functional fluorescent nonporous silica nanoparticles as carriers for Pt(IV) anticancer prodrugs. Journal of Inorganic Biochemistry, 2015, 151, 132-142.	3.5	22
40	Application of microwave-assisted heating to the synthesis of Pt(II) complexes. Inorganica Chimica Acta, 2015, 437, 16-19.	2.4	10
41	<i>trans</i> , <i>cis</i> , <i>cis</i> , <i>cis</i> , <i>cis</i> , <ii>â€Bis(benzoato)dichlorido(cyclohexaneâ€1 <i>R</i>,2 <i>R</i>,2 <i>R</i>,2 €diamine)platinur a Prodrug Candidate for the Treatment of Oxaliplatinâ€Refractory Colorectal Cancer. ChemMedChem, 2014, 9, 1299-1305.</ii>	n(IV): 3.2	22
42	Pros and cons of bifunctional platinum(iv) antitumor prodrugs: two are (not always) better than one. Dalton Transactions, 2014, 43, 9813.	3.3	103
43	Biological activity of a series of cisplatin-based aliphatic bis(carboxylato) Pt(IV) prodrugs: How long the organic chain should be?. Journal of Inorganic Biochemistry, 2014, 140, 219-227.	3.5	39
44	A New Entry to Asymmetric Platinum(IV) Complexes via Oxidative Chlorination. Inorganic Chemistry, 2014, 53, 9326-9335.	4.0	68
45	Study of the synthesis, antiproliferative properties, and interaction with DNA and polynucleotides of cisplatin-like Pt(II) complexes containing carcinogenic polyaromatic amines. Journal of Biological Inorganic Chemistry, 2013, 18, 791-801.	2.6	15
46	The hexacarbonyldicobalt derivative of aspirin acts as a CO-releasing NSAID on malignant mesothelioma cells. Metallomics, 2013, 5, 1604.	2.4	19
47	Antiproliferative activity of Pt(IV)-bis(carboxylato) conjugates on malignant pleural mesothelioma cells. Journal of Inorganic Biochemistry, 2013, 129, 52-57.	3.5	66
48	Molecular interaction fields vs. quantum-mechanical-based descriptors in the modelling of lipophilicity of platinum(<scp>iv</scp>) complexes. Dalton Transactions, 2013, 42, 3482-3489.	3.3	39
49	Synthesis and Biological Studies of Pyrazolylâ€Diamine Pt ^{ll} Complexes Containing Polyaromatic DNAâ€Binding Groups. ChemBioChem, 2012, 13, 2352-2362.	2.6	14
50	Solvolysis of a Series of Cisplatin-Like Complexes - Comparison between DNA-Biosensor and Conductivity Data. European Journal of Inorganic Chemistry, 2012, 2012, 5625-5631.	2.0	9
51	Synthesis, characterization and antiproliferative activity on mesothelioma cell lines of bis(carboxylato)platinum(iv) complexes based on picoplatin. Dalton Transactions, 2012, 41, 3313.	3.3	38
52	Metallo-drugs in the treatment of malignant pleural mesothelioma. Inorganica Chimica Acta, 2012, 393, 64-74.	2.4	15
53	Antiproliferative Activity of Pt ^{II} Complexes with Carboxylated Phosphanes in Chelated or Ringâ€Opened Forms. European Journal of Inorganic Chemistry, 2012, 2012, 3441-3448.	2.0	10
54	Revisiting [PtCl ₂ (<i>cis</i> -1,4-DACH)]: An Underestimated Antitumor Drug with Potential Application to the Treatment of Oxaliplatin-Refractory Colorectal Cancer. Journal of Medicinal Chemistry, 2012, 55, 7182-7192.	6.4	65

#	Article	IF	CITATIONS
55	Pt(ii) complexes with bidentate and tridentate pyrazolyl-containing chelators: synthesis, structural characterization and biological studies. Dalton Transactions, 2011, 40, 5781.	3.3	23
56	Studies on Log Po/w of Quinoxaline di-N-Oxides: A Comparison of RP-HPLC Experimental and Predictive Approaches. Molecules, 2011, 16, 7893-7908.	3.8	7
57	Molecular and statistical modeling of reduction peak potential and lipophilicity of platinum(IV) complexes. Journal of Biological Inorganic Chemistry, 2011, 16, 361-372.	2.6	59
58	Electrochemical Biosensor Assay of the Interaction between $[PtCln(NH3)4-n](2-n)$ (n = 0-4) Complexes and ds-DNA. European Journal of Inorganic Chemistry, 2011, 2011, 1635-1639.	2.0	4
59	Electrostatic Interaction of Negatively Charged Core–Shell Nanoparticles with Antitumoral Cationic Platinumâ€Based Complexes. European Journal of Inorganic Chemistry, 2011, 2011, 3289-3294.	2.0	5
60	Evaluation of Platinum–Ethacrynic Acid Conjugates in the Treatment of Mesothelioma. ChemMedChem, 2011, 6, 2287-2293.	3.2	33
61	Synthesis, characterization, structure, molecular modeling studies and biological activity of sterically crowded Pt(II) complexes containing bis(imidazole) ligands. Journal of Inorganic Biochemistry, 2011, 105, 400-409.	3.5	17
62	Biological activity of enantiomeric complexes [PtCl2L2] (L2ÂisÂaromatic bisphosphanes and aromatic) Tj ETQq0	0 <u>0 rg</u> BT /	Overlock 10 T
63	Antiproliferative Pt(IV) complexes: synthesis, biological activity, and quantitative structure–activity relationship modeling. Journal of Biological Inorganic Chemistry, 2010, 15, 1157-1169.	2.6	123
64	The Drug Targeting and Delivery Approach Applied to Pt-Antitumour Complexes. A Coordination Point of View. Current Medicinal Chemistry, 2009, 16, 4544-4580.	2.4	71
65	The Relevance of Polar Surface Area (PSA) in Rationalizing Biological Properties of Several <i>cis</i> â€Diamminemalonatoplatinum(II) Derivatives. ChemMedChem, 2009, 4, 1677-1685.	3.2	20
66	Electrochemical evaluation of the interaction between antitumoral titanocene dichloride and biomolecules. Inorganica Chimica Acta, 2009, 362, 1303-1306.	2.4	22
67	Poly(methylmetacrylate) (PMMA) core–shell nanospheres act as efficient pharmacophores for the antiproliferative [PtCl3(NH3)]┠complex by forming ionic couples. Inorganica Chimica Acta, 2009, 362, 4099-4109.	2.4	10
68	Functionalized thymidine derivatives as carriers for the \hat{I}^3 -emitter technetium tricarbonyl moiety. Inorganica Chimica Acta, 2009, 362, 4785-4790.	2.4	10
69	Assessment of the In Vivo Antiproliferative Activity of a Novel Platinum Particulate Pharmacophore., 2009, , 19-25.		0
70	The influence of temperature on antiproliferative effects, cellular uptake and DNA platination of the clinically employed Pt(II)-drugs. Journal of Inorganic Biochemistry, 2008, 102, 629-635.	3.5	59
71	Stepwise assembly of platinum–folic acid conjugates. Inorganica Chimica Acta, 2008, 361, 1447-1455.	2.4	24

Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 6 18 Trend in cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different cytotoxic activity of a series of cis-[APtCl2] (A=ethylenediamine methylated at different cytotoxic activity of cytotoxic activity o

72

#	Article	IF	CITATIONS
73	Electrochemical studies of a series of antimetastatic mono- and di-ruthenium complexes [Na][trans-RullICl4(DMSO)(L)] and [Na]2[{trans-RullICl4(DMSO)}2(ν-L)] (L=N-donor heterocyclic bridging) Tj I	ETQq1 10	.784314 rg8
74	Bioinorganic Chemistry: The Study of the Fate of Platinum-Based Antitumour Drugs. Current Chemical Biology, 2007, 1, 278-289.	0.5	6
75	Inhibition of Stat3 increases doxorubicin sensitivity in a human metastatic breast cancer cell line. Cancer Letters, 2007, 258, 181-188.	7.2	79
76	Bioinorganic Chemistry: The Study of the Fate of Platinum-Based Antitumour Drugs. Current Chemical Biology, 2007, 1, 278-289.	0.5	8
77	195Pt NMR spectroscopy: A chemometric approach. Coordination Chemistry Reviews, 2006, 250, 2158-2174.	18.8	53
78	The RP-HPLC measurement and QSPR analysis of logPo/w values of several Pt(II) complexes. Journal of Inorganic Biochemistry, 2006, 100, 1199-1207.	3.5	88
79	Synthesis and characterisation of estrogenic carriers for cytotoxic Pt(ii) fragments: biological activity of the resulting complexes. Organic and Biomolecular Chemistry, 2005, 3, 3531.	2.8	44
80	Cytotoxicity of cis-Platinum(II) Conjugate Models. The Effect of Chelating Arms and Leaving Groups on Cytotoxicity:  A Quantitative Structureâ^'Activity Relationship Approach. Journal of Medicinal Chemistry, 2005, 48, 857-866.	6.4	73
81	Uptake of antitumor platinum(II)-complexes by cancer cells, assayed by inductively coupled plasma mass spectrometry (ICP-MS). Journal of Inorganic Biochemistry, 2004, 98, 73-78.	3.5	217
82	Platinum(II) and technetium(I) complexes anchored to ethynylestradiol: a way to drug targeting and delivery. Inorganica Chimica Acta, 2004, 357, 2157-2166.	2.4	40