
Laura M Cornaglia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study of the sorption properties of alkali zirconate-based sorbents at high temperature in the presence of water and low CO2 concentration. Journal of Alloys and Compounds, 2022, 895, 162419.	5.5	7
2	New PdNiAu ternary alloys as potential material for hydrogen separation processes. International Journal of Hydrogen Energy, 2022, 47, 11589-11600.	7.1	1
3	Coupling of CO2 capture and methanation processes using catalysts based on silica recovered from rice husks. Fuel, 2022, 324, 124604.	6.4	3
4	Synthesis of Pt-zeolite coated palladium alloys as catalytic membranes for hydrogen production. International Journal of Hydrogen Energy, 2021, 46, 2255-2268.	7.1	3
5	Isolation of ibuprofen enantiomers and racemic esters through electrodialysis. Journal of Membrane Science, 2021, 618, 118714.	8.2	10
6	K-doping effect in the kinetics of CO2 capture at high temperature over lithium silicates obtained from rice husks: In situ/operando techniques. Ceramics International, 2021, 47, 1558-1570.	4.8	8
7	Advances in hydrogen selective membranes based on palladium ternary alloys. International Journal of Hydrogen Energy, 2021, 46, 15572-15594.	7.1	40
8	PdAu and PdAuAg composite membranes with reduced film thickness using YSZ as a stainless-steel support modifier. Journal of Alloys and Compounds, 2021, 877, 160184.	5.5	5
9	Development of catalytic membranes over PdAu selective films for hydrogen production through the dry reforming of methane. Molecular Catalysis, 2020, 481, 100643.	2.0	8
10	A coke-resistant catalyst for the dry reforming of methane based on Ni nanoparticles confined within rice husk-derived mesoporous materials. Catalysis Communications, 2020, 135, 105898.	3.3	23
11	Ni mesostructured catalysts obtained from rice husk ashes by microwave-assisted synthesis for CO2 methanation. Journal of CO2 Utilization, 2020, 42, 101328.	6.8	19
12	Comparative study of lithium-based CO2 sorbents at high temperature: Experimental and modeling kinetic analysis of the carbonation reaction. Journal of Environmental Chemical Engineering, 2020, 8, 104173.	6.7	15
13	NaA zeolite membranes on modified porous stainless steel supports: a comparative study of different SiO2 sources. Brazilian Journal of Chemical Engineering, 2020, 37, 383-397.	1.3	3
14	Determination of the Metal Dispersion of Supported Catalysts Using XPS. Topics in Catalysis, 2019, 62, 822-837.	2.8	9
15	The effect of the Li:Na molar ratio on the structural and sorption properties of mixed zirconates for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 2019, 7, 102927.	6.7	22
16	Reactivity of rice husk-derived lithium silicates followed by in situ Raman spectroscopy. Journal of Alloys and Compounds, 2019, 778, 699-711.	5.5	26
17	Pt encapsulated into NaA zeolite as catalyst for the WGS reaction. Applied Catalysis A: General, 2019, 572, 176-184.	4.3	15
18	Pure Hydrogen Production for Low Temperature Fuel Cells. Catalysis Letters, 2018, 148, 1015-1026.	2.6	5

LAURA M CORNAGLIA

#	Article	IF	CITATIONS
19	Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S. Journal of Membrane Science, 2018, 563, 351-359.	8.2	30
20	Catalytic behavior of Ru nanoparticles supported on carbon fibers for the ethanol steam reforming reaction. Catalysis Communications, 2018, 114, 19-23.	3.3	19
21	Effect of the porous stainless steel substrate shape on the ZrO2 deposition by vacuum assisted dip-coating. International Journal of Hydrogen Energy, 2017, 42, 7986-7996.	7.1	14
22	Well-dispersed Rh nanoparticles with high activity for the dry reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 16127-16138.	7.1	37
23	NaA zeolite membranes synthesized on top of APTES-modified porous stainless steel substrates. Journal of Membrane Science, 2016, 512, 93-103.	8.2	29
24	Hydrogen production from ethylene glycol reforming catalyzed by Ni and Ni–Pt hydrotalcite-derived catalysts. International Journal of Hydrogen Energy, 2016, 41, 22000-22008.	7.1	28
25	Operando Raman spectroscopic studies of lithium zirconates during CO ₂ capture at high temperature. RSC Advances, 2016, 6, 8222-8231.	3.6	37
26	Surface composition of PdCuAu ternary alloys: a combined LEIS and XPS study. Surface and Interface Analysis, 2015, 47, 745-754.	1.8	16
27	Influence of La incorporation on the catalytic activity of Ru/ETS-10 catalysts for hydrogen production. Applied Catalysis A: General, 2015, 504, 391-398.	4.3	6
28	PdCuAu ternary alloy membranes: Hydrogen permeation properties in the presence of H2S. Journal of Membrane Science, 2015, 479, 246-255.	8.2	32
29	Study of the performance of Rh/La2O3–SiO2 and Rh/CeO2 catalysts for SR of ethanol in a conventional fixed-bed reactor and a membrane reactor. International Journal of Hydrogen Energy, 2015, 40, 4154-4166.	7.1	24
30	Activity and stability of a CuO/CeO2 catalyst for methanol steam reforming. International Journal of Hydrogen Energy, 2015, 40, 13379-13387.	7.1	47
31	Recent advances in catalysts, palladium alloys and high temperature WGS membrane reactors. International Journal of Hydrogen Energy, 2015, 40, 3423-3437.	7.1	59
32	Pd-based binary and ternary alloy membranes: Morphological and perm-selective characterization in the presence of H2S. Journal of Membrane Science, 2014, 450, 299-307.	8.2	52
33	Supported Rh nanoparticles on CaO–SiO2 binary systems for the reforming of methane by carbon dioxide in membrane reactors. Applied Catalysis A: General, 2014, 474, 114-124.	4.3	24
34	XPS study of the surface properties and Ni particle size determination of Niâ€supported catalysts. Surface and Interface Analysis, 2014, 46, 521-529.	1.8	57
35	Comparison of Ru/La2O2CO3 performance in two different membrane reactors for hydrogen production. Catalysis Today, 2013, 213, 135-144.	4.4	23
36	PdAu membranes supported on top of vacuum-assisted ZrO2-modified porous stainless steel substrates. Journal of Membrane Science, 2013, 428, 1-10.	8.2	44

LAURA M CORNAGLIA

#	Article	IF	CITATIONS
37	Stability of Ni and Rh–Ni catalysts derived from hydrotalcite-like precursors for the partial oxidation of methane. International Journal of Hydrogen Energy, 2013, 38, 5616-5626.	7.1	29
38	Hydrogen production through CO2 reforming of CH4 over Pt/CeZrO2/Al2O3 catalysts using a Pd–Ag membrane reactor. Catalysis Today, 2012, 193, 64-73.	4.4	25
39	PdAgAu alloy with high resistance to corrosion by H2S. International Journal of Hydrogen Energy, 2012, 37, 18547-18555.	7.1	46
40	Optimization and characterization of electroless co-deposited PdRu membranes: Effect of the plating variables on morphology. Journal of Membrane Science, 2011, 382, 252-261.	8.2	20
41	Novel PdAgCu ternary alloy: Hydrogen permeation and surface properties. Applied Surface Science, 2011, 257, 6626-6635.	6.1	60
42	The effect of electroless plating time on the morphology, alloy formation and H2 transport properties of Pd–Ag composite membranes. International Journal of Hydrogen Energy, 2011, 36, 4068-4078.	7.1	30
43	Pd based membrane reactor for ultra pure hydrogen production through the dry reforming of methane. Experimental and modeling studies. Applied Catalysis A: General, 2011, 400, 185-194.	4.3	31
44	Surface characterization of Pd–Ag composite membranes after annealing at various temperatures. Journal of Membrane Science, 2011, 369, 267-276.	8.2	54
45	Novel PdAgCu ternary alloy as promising materials for hydrogen separation membranes: Synthesis and characterization. Surface Science, 2011, 605, 62-71.	1.9	44
46	Dry reforming of methane in membrane reactors using Pd and Pd–Ag composite membranes on a NaA zeolite modified porous stainless steel support. Journal of Membrane Science, 2010, 364, 17-26.	8.2	55
47	Kinetic and Stability Studies of Ru/La2O3 Used in the Dry Reforming of Methane. Topics in Catalysis, 2008, 51, 98-106.	2.8	94
48	Kinetic Studies of the Dry Reforming of Methane over the Rh/La2O3â^'SiO2 Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 7543-7549.	3.7	41
49	Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. Journal of Catalysis, 2007, 245, 25-34.	6.2	167
50	Characterization of Pd–Ag membranes after exposure to hydrogen flux at high temperatures. Journal of Membrane Science, 2007, 306, 56-65.	8.2	23
51	Quantitative determination of the number of surface active sites and the turnover frequency for methanol oxidation over bulk metal vanadates. Catalysis Today, 2003, 78, 257-268.	4.4	100
52	The nature of the cobalt salt affects the catalytic properties of promoted VPO. Studies in Surface Science and Catalysis, 2000, 130, 1727-1732.	1.5	6
53	Title is missing!. Catalysis Letters, 1999, 63, 131-133.	2.6	3
54	Dissociation of perfluorinated ethers on Al2O3 thin films. Tribology Letters, 1998, 4, 67-73.	2.6	3

#	Article	IF	CITATIONS
55	Formation of a solid solution of vanadium in TiO2(anatase) on vanadium–titanium solids with high vanadium content. Journal of Materials Chemistry, 1995, 5, 1443-1449.	6.7	12
56	4.9 The Role of Acid-Base and Redox Features in the Catalytic Behavior of Vanadium-Phosphorous-Oxygen Formulations. Studies in Surface Science and Catalysis, 1994, 90, 429-440.	1.5	9