List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2960076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus Panel on a Cochlear Coordinate System Applicable in Histologic, Physiologic, and Radiologic Studies of the Human Cochlea. Otology and Neurotology, 2010, 31, 722-730.	0.7	186
2	Predictors of Spoken Language Development Following Pediatric Cochlear Implantation. Ear and Hearing, 2012, 33, 617-639.	1.0	167
3	Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research, 1995, 87, 170-186.	0.9	165
4	Newborn Hearing Screening vs Later Hearing Screening and Developmental Outcomes in Children With Permanent Childhood Hearing Impairment. JAMA - Journal of the American Medical Association, 2010, 304, 1701.	3.8	165
5	Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hearing Research, 1996, 95, 33-48.	0.9	138
6	Does Intervention Improve the Natural Course of Glomus Tumors?. Annals of Otology, Rhinology and Laryngology, 1992, 101, 635-642.	0.6	137
7	The Importance of Human Cochlear Anatomy for the Results of Modiolus-Hugging Multichannel Cochlear Implants. Otology and Neurotology, 2001, 22, 340-349.	0.7	136
8	European multi-centre study of the Nucleus Hybrid L24 cochlear implant. International Journal of Audiology, 2013, 52, 838-848.	0.9	132
9	Effect of Pediatric Bilateral Cochlear Implantation on Language Development. JAMA Pediatrics, 2012, 166, 28.	3.6	110
10	Initial Evaluation of the Clarion CII Cochlear Implant: Speech Perception and Neural Response Imaging. Ear and Hearing, 2002, 23, 184-197.	1.0	105
11	Field patterns in a 3D tapered spiral model of the electrically stimulated cochlea. Hearing Research, 2000, 148, 18-30.	0.9	98
12	Emotion Understanding in Deaf Children with a Cochlear Implant. Journal of Deaf Studies and Deaf Education, 2013, 18, 175-186.	0.7	98
13	Pitch Comparisons between Electrical Stimulation of a Cochlear Implant and Acoustic Stimuli Presented to a Normal-hearing Contralateral Ear. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 625-640.	0.9	97
14	Behavioral problems in school-aged hearing-impaired children: the influence of sociodemographic, linguistic, and medical factors. European Child and Adolescent Psychiatry, 2014, 23, 187-196.	2.8	93
15	Unraveling the electrically evoked compound action potential. Hearing Research, 2005, 205, 143-156.	0.9	91
16	The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: A model approach. Hearing Research, 2006, 214, 17-27.	0.9	90
17	Psychopathology and Its Risk and Protective Factors in Hearing-Impaired Children and Adolescents. JAMA Pediatrics, 2014, 168, 170.	3.3	86
18	A quantitative approach to modeling mammalian myelinated nerve fibers for electrical prosthesis design. IEEE Transactions on Biomedical Engineering, 1994, 41, 556-566.	2.5	82

#	Article	IF	CITATIONS
19	Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss. Developmental Neurobiology, 2015, 75, 1219-1240.	1.5	80
20	Cochlear Implant Outcomes and Quality of Life in Adults with Prelingual Deafness. Laryngoscope, 2007, 117, 1982-1987.	1.1	77
21	Place pitch versus electrode location in a realistic computational model of the implanted human cochlea. Hearing Research, 2014, 315, 10-24.	0.9	76
22	Anatomic Considerations of Cochlear Morphology and Its Implications for Insertion Trauma in Cochlear Implant Surgery. Otology and Neurotology, 2009, 30, 471-477.	0.7	75
23	Current focussing in cochlear implants: An analysis of neural recruitment in a computational model. Hearing Research, 2015, 322, 89-98.	0.9	72
24	Depression in hearing-impaired children. International Journal of Pediatric Otorhinolaryngology, 2011, 75, 1313-1317.	0.4	71
25	Neurosensory development and cell fate determination in the human cochlea. Neural Development, 2013, 8, 20.	1.1	70
26	Clinical Relevance of Quality of Life Outcome in Cochlear Implantation in Postlingually Deafened Adults. Otology and Neurotology, 2008, 29, 615-621.	0.7	69
27	Multisection CT as a valuable tool in the postoperative assessment of cochlear implant patients. American Journal of Neuroradiology, 2005, 26, 424-9.	1.2	67
28	Low Empathy in Deaf and Hard of Hearing (Pre)Adolescents Compared to Normal Hearing Controls. PLoS ONE, 2015, 10, e0124102.	1.1	60
29	Self-Esteem in Hearing-Impaired Children: The Influence of Communication, Education, and Audiological Characteristics. PLoS ONE, 2014, 9, e94521.	1.1	57
30	Does Hearing Lead to Understanding? Theory of Mind in Toddlers and Preschoolers With Cochlear Implants. Journal of Pediatric Psychology, 2012, 37, 1041-1050.	1.1	55
31	Predicting social functioning in children with a cochlear implant and in normal-hearing children: The role of emotion regulation. International Journal of Pediatric Otorhinolaryngology, 2012, 76, 883-889.	0.4	54
32	Diversity in Cochlear Morphology and Its Influence on Cochlear Implant Electrode Position. Ear and Hearing, 2014, 35, e9-e20.	1.0	54
33	The Influence of Cochlear Implant Electrode Position on Performance. Audiology and Neuro-Otology, 2015, 20, 202-211.	0.6	51
34	Simultaneous and non-simultaneous dual electrode stimulation in cochlear implants: evidence for two neural response modalities. Acta Oto-Laryngologica, 2009, 129, 433-439.	0.3	49
35	Optimizing the Number of Electrodes with High-rate Stimulation of the Clarion CII Cochlear Implant. Acta Oto-Laryngologica, 2003, 123, 138-142.	0.3	48
36	The Facial Nerve Canal: An Important Cochlear Conduction Path Revealed by Clarion Electrical Field Imaging. Otology and Neurotology, 2004, 25, 282-289.	0.7	48

#	Article	IF	CITATIONS
37	Comparison of Bilateral and Unilateral Cochlear Implantation in Adults. JAMA Otolaryngology - Head and Neck Surgery, 2016, 142, 249.	1.2	48
38	A model of myelinated nerve fibres for electrical prosthesis design. Medical and Biological Engineering and Computing, 1994, 32, 391-398.	1.6	46
39	DECIBEL study: Congenital cytomegalovirus infection in young children with permanent bilateral hearing impairment in the Netherlands. Journal of Clinical Virology, 2009, 46, S27-S31.	1.6	46
40	Stimulation of the Facial Nerve by Intracochlear Electrodes in Otosclerosis. Otology and Neurotology, 2009, 30, 1168-1174.	0.7	44
41	Early identification: Language skills and social functioning in deaf and hard of hearing preschool children. International Journal of Pediatric Otorhinolaryngology, 2015, 79, 2221-2226.	0.4	43
42	Improving the accuracy of the boundary element method by the use of second-order interpolation functions [EEG modeling application]. IEEE Transactions on Biomedical Engineering, 2000, 47, 1336-1346.	2.5	42
43	Clinical Evaluation of the Clarion CII HiFocus 1 with and Without Positioner. Ear and Hearing, 2005, 26, 577-592.	1.0	42
44	Bilateral versus unilateral cochlear implantation in young children. International Journal of Pediatric Otorhinolaryngology, 2010, 74, 206-211.	0.4	42
45	Missing Data in the Field of Otorhinolaryngology and Head & Neck Surgery: Need for Improvement. Ear and Hearing, 2017, 38, 1-6.	1.0	42
46	Anxiety in children with hearing aids or cochlear implants compared to normally hearing controls. Laryngoscope, 2012, 122, 654-659.	1.1	39
47	Benefits of simultaneous bilateral cochlear implantation on verbal reasoning skills in prelingually deaf children. Research in Developmental Disabilities, 2016, 58, 104-113.	1.2	38
48	Causes of permanent childhood hearing impairment. Laryngoscope, 2011, 121, 409-416.	1.1	37
49	Use of Electrically Evoked Compound Action Potentials for Cochlear Implant Fitting: A Systematic Review. Ear and Hearing, 2018, 39, 401-411.	1.0	37
50	A new method for dealing with the stimulus artefact in electrically evoked compound action potential measurements. Acta Oto-Laryngologica, 2004, 124, 137-143.	0.3	36
51	Dutch Cochlear Implant Group (CI-ON) Consensus Protocol on Postmeningitis Hearing Evaluation and Treatment. Otology and Neurotology, 2010, 31, 1281-1286.	0.7	36
52	Stable benefits of bilateral over unilateral cochlear implantation after two years: A randomized controlled trial. Laryngoscope, 2017, 127, 1161-1168.	1.1	35
53	Cochlear Coordinates in Regard to Cochlear Implantation. Otology and Neurotology, 2010, 31, 738-744.	0.7	34
54	Assessing the Placement of a Cochlear Electrode Array by Multidimensional Scaling. IEEE Transactions on Biomedical Engineering, 2012, 59, 307-310.	2.5	34

#	Article	IF	CITATIONS
55	Cost–Utility of Bilateral Versus Unilateral Cochlear Implantation in Adults. Otology and Neurotology, 2016, 37, 38-45.	0.7	34
56	Evaluation of 4 Multisection CT Systems in Postoperative Imaging of a Cochlear Implant: A Human Cadaver and Phantom Study. American Journal of Neuroradiology, 2008, 29, 1382-1388.	1.2	33
57	Spread of Excitation and Channel Interaction in Single- and Dual-Electrode Cochlear Implant Stimulation. Ear and Hearing, 2012, 33, 367-376.	1.0	32
58	Electrode Migration in Cochlear Implant Patients: Not an Exception. Audiology and Neuro-Otology, 2012, 17, 275-281.	0.6	32
59	Uncomplicated differentiation of stem cells into bipolar neurons and myelinating glia. Biochemical and Biophysical Research Communications, 2008, 376, 358-362.	1.0	31
60	Social competence and empathy in young children with cochlear implants and with normal hearing. Laryngoscope, 2013, 123, 518-523.	1.1	31
61	Effect of unilateral and simultaneous bilateral cochlear implantation on tinnitus: A Prospective Study. Laryngoscope, 2016, 126, 956-961.	1.1	30
62	Biofilms on tracheoesophageal voice prostheses: a confocal laser scanning microscopy demonstration of mixed bacterial and yeast biofilms. Biofouling, 2010, 26, 519-526.	0.8	29
63	Speech Intelligibility as a Predictor of Cochlear Implant Outcome in Prelingually Deafened Adults. Ear and Hearing, 2011, 32, 445-458.	1.0	29
64	Distribution and Development of Peripheral Glial Cells in the Human Fetal Cochlea. PLoS ONE, 2014, 9, e88066.	1.1	29
65	Symptoms of Psychopathology in Hearing-Impaired Children. Ear and Hearing, 2015, 36, e190-e198.	1.0	29
66	Effects of parameter manipulations on spread of excitation measured with electrically-evoked compound action potentials. International Journal of Audiology, 2012, 51, 465-474.	0.9	28
67	Threshold Levels of Dual Electrode Stimulation in Cochlear Implants. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 781-790.	0.9	28
68	Preliminary findings on associations between moral emotions and social behavior in young children with normal hearing and with cochlear implants. European Child and Adolescent Psychiatry, 2015, 24, 1369-1380.	2.8	28
69	Perceptual Characteristics of Adductor Spasmodic Dysphonia. Annals of Otology, Rhinology and Laryngology, 2000, 109, 741-748.	0.6	27
70	Visualization of Human Inner Ear Anatomy with High-Resolution MR Imaging at 7T: Initial Clinical Assessment. American Journal of Neuroradiology, 2015, 36, 378-383.	1.2	27
71	Stimulus level effects on neural excitation and eCAP amplitude. Hearing Research, 2011, 280, 166-176.	0.9	26
72	Integrated use of volume conduction and neural models to simulate the response to cochlear implants. Simulation Modelling Practice and Theory, 2000, 8, 75-97.	0.4	25

#	Article	IF	CITATIONS
73	Detection of Bacterial Biofilm on Cochlear Implants Removed Because of Device Failure, Without Evidence of Infection. Otology and Neurotology, 2010, 31, 1320-1324.	0.7	25
74	Neural excitation patterns induced by phased-array stimulation in the implanted human cochlea. Acta Oto-Laryngologica, 2011, 131, 362-370.	0.3	25
75	Comparison of the HiFocus Mid-Scala and HiFocus 1J Electrode Array: Angular Insertion Depths and Speech Perception Outcomes. Audiology and Neuro-Otology, 2016, 21, 316-325.	0.6	25
76	Stimulation strategies and electrode design in computational models of the electrically stimulated cochlea: An overview of existing literature. Network: Computation in Neural Systems, 2016, 27, 107-134.	2.2	25
77	Factors Influencing Speech Perception in Adults With a Cochlear Implant. Ear and Hearing, 2021, 42, 949-960.	1.0	25
78	Thin Titanium Nitride Films Deposited using DC Magnetron Sputtering used for Neural Stimulation and Sensing Purposes. Procedia Engineering, 2012, 47, 726-729.	1.2	24
79	Cytomegalovirus DNA detection in dried blood spots and perilymphatic fluids from pediatric and adult cochlear implant recipients with prelingual deafness. Journal of Clinical Virology, 2013, 56, 113-117.	1.6	24
80	Hearing Restoration in Cochlear Nerve Deficiency: the Choice Between Cochlear Implant or Auditory Brainstem Implant, a Meta-analysis. Otology and Neurotology, 2018, 39, 428-437.	0.7	24
81	3D mesh generation to solve the electrical volume conduction problem in the implanted inner ear. Simulation Modelling Practice and Theory, 2000, 8, 57-73.	0.4	23
82	Evidence-Based Inclusion Criteria for Cochlear Implantation in Patients With Postlingual Deafness. Ear and Hearing, 2018, 39, 1008-1014.	1.0	23
83	Assessment of cervical dilatation during labor: a review. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1991, 41, 165-171.	0.5	22
84	Ultrasound assessment of cervical dynamics during the first stage of labor. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1994, 53, 123-127.	0.5	22
85	A central spectrum theory of binaural processing. The binaural edge pitch revisited. Journal of the Acoustical Society of America, 1986, 80, 442-451.	0.5	21
86	Transmitter release in inner hair cell synapses: a model analysis of spontaneous and driven rate properties of cochlear nerve fibres. Hearing Research, 1997, 113, 247-260.	0.9	21
87	Effects of Pulse Width, Pulse Rate and Paired Electrode Stimulation on Psychophysical Measures of Dynamic Range and Speech Recognition in Cochlear Implants. Ear and Hearing, 2012, 33, 489-496.	1.0	21
88	Objective and Subjective Measures of Simultaneous vs Sequential Bilateral Cochlear Implants in Adults. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 881.	1.2	21
89	Psychophysical Assessment of Spatial Spread of Excitation in Electrical Hearing with Single and Dual Electrode Contact Maskers. Ear and Hearing, 2006, 27, 645-657.	1.0	20
90	Intracochlear Position of Cochlear Implants Determined Using CT Scanning versus Fitting Levels: Higher Threshold Levels at Basal Turn. Audiology and Neuro-Otology, 2016, 21, 54-67.	0.6	20

#	Article	IF	CITATIONS
91	Friendship and Emotion Control in Pre-Adolescents With or Without Hearing Loss. Journal of Deaf Studies and Deaf Education, 2018, 23, 209-218.	0.7	20
92	Prosody perception and production by children with cochlear implants. Journal of Child Language, 2019, 46, 111-141.	0.8	20
93	Detection of Translocation of Cochlear Implant Electrode Arrays by Intracochlear Impedance Measurements. Ear and Hearing, 2021, 42, 1397-1404.	1.0	20
94	Benefit of contralateral routing of signals for unilateral cochlear implant users. Journal of the Acoustical Society of America, 2016, 140, 393-401.	0.5	19
95	Can You Hear What I Think? Theory of Mind in Young Children With Moderate Hearing Loss. Ear and Hearing, 2017, 38, 588-597.	1.0	19
96	Variations in cochlear duct shape revealed on clinical CT images with an automatic tracing method. Scientific Reports, 2017, 7, 17566.	1.6	19
97	Talk with me! Parental linguistic input to toddlers with moderate hearing loss. Journal of Child Language, 2020, 47, 186-204.	0.8	19
98	Ototopical drops containing a novel antibacterial synthetic peptide: Safety and efficacy in adults with chronic suppurative otitis media. PLoS ONE, 2020, 15, e0231573.	1.1	19
99	Speech recognition with a cochlear implant using triphasic charge-balanced pulses. Acta Oto-Laryngologica, 2004, 124, 371-375.	0.3	18
100	Cochlear reimplantation with same device: Surgical and audiologic results. Laryngoscope, 2011, 121, 1517-1524.	1.1	18
101	Class III Î ² -tubulin, a novel biomarker in the human melanocyte lineage. Differentiation, 2013, 85, 173-181.	1.0	18
102	Tinnitus after Simultaneous and Sequential Bilateral Cochlear Implantation. Frontiers in Surgery, 2017, 4, 65.	0.6	18
103	Pediatric Auditory Brainstem Implant Users Compared With Cochlear Implant Users With Additional Disabilities. Otology and Neurotology, 2019, 40, 936-945.	0.7	18
104	Intelligibility of the Patient's Speech Predicts the Likelihood of Cochlear Implant Success in Prelingually Deaf Adults. Ear and Hearing, 2016, 37, e302-e310.	1.0	17
105	A Novel Algorithm to Derive Spread of Excitation Based on Deconvolution. Ear and Hearing, 2016, 37, 572-581.	1.0	17
106	Progression of Contralateral Hearing Loss in Patients With Sporadic Vestibular Schwannoma. Frontiers in Neurology, 2020, 11, 796.	1.1	16
107	Population-Based Prediction of Fitting Levels for Individual Cochlear Implant Recipients. Audiology and Neuro-Otology, 2015, 20, 1-16.	0.6	15
108	Children With Cochlear Implants and Their Parents: Relations Between Parenting Style and Children's Social-Emotional Functioning. Ear and Hearing, 2017, 38, 321-331.	1.0	15

#	Article	IF	CITATIONS
109	Selection Criteria for Cochlear Implantation in the United Kingdom and Flanders: Toward a Less Restrictive Standard. Ear and Hearing, 2021, 42, 68-75.	1.0	15
110	A fast, stochastic, and adaptive model of auditory nerve responses to cochlear implant stimulation. Hearing Research, 2016, 341, 130-143.	0.9	14
111	Isolation, expansion and neural differentiation of stem cells from human plucked hair: a further step towards autologous nerve recovery. Cytotechnology, 2016, 68, 1849-1858.	0.7	14
112	Cost-benefit Analysis of Cochlear Implants: A Societal Perspective. Ear and Hearing, 2021, 42, 1338-1350.	1.0	13
113	Clinical Ototoxicity of Teicoplanin. Annals of Otology, Rhinology and Laryngology, 2004, 113, 310-312.	0.6	12
114	Evaluation of the Benefit for Cochlear Implantees of Two Assistive Directional Microphone Systems in an Artificial Diffuse Noise Situation. Ear and Hearing, 2007, 28, 99-110.	1.0	12
115	Development of Insertion Models Predicting Cochlear Implant Electrode Position. Ear and Hearing, 2016, 37, 473-482.	1.0	12
116	The Precision of eCAP Thresholds Derived From Amplitude Growth Functions. Ear and Hearing, 2018, 39, 701-711.	1.0	12
117	Dynamic Current Focusing: A Novel Approach to Loudness Coding in Cochlear Implants. Ear and Hearing, 2019, 40, 34-44.	1.0	12
118	Dynamic current focusing for loudness encoding in cochlear implants: a take-home trial. International Journal of Audiology, 2019, 58, 553-564.	0.9	12
119	Use of the Brief Shame and Guilt Questionnaire in Deaf and Hard of Hearing Children and Adolescents. Assessment, 2020, 27, 194-205.	1.9	12
120	The School Career of Children With Hearing Loss in Different Primary Educational Settings—A Large Longitudinal Nationwide Study. Journal of Deaf Studies and Deaf Education, 2021, 26, 405-416.	0.7	12
121	The relation between polarity sensitivity and neural degeneration in a computational model of cochlear implant stimulation. Hearing Research, 2022, 415, 108413.	0.9	12
122	Autonomous virtual mobile robot for three-dimensional medical image exploration: Application to micro-CT cochlear images. Artificial Intelligence in Medicine, 2008, 43, 1-15.	3.8	11
123	The impact of internodal segmentation in biophysical nerve fiber models. Journal of Computational Neuroscience, 2014, 37, 307-315.	0.6	11
124	Development of a Squelch Effect in Adult Patients After Simultaneous Bilateral Cochlear Implantation. Otology and Neurotology, 2016, 37, 1300-1306.	0.7	11
125	Terrible Twos or Early Signs of Psychopathology? Developmental Patterns in Early Identified Preschoolers With Cochlear Implants Compared With Hearing Controls. Ear and Hearing, 2018, 39, 495-502.	1.0	11
126	Quality of life of children with hearing loss in special and mainstream education: A longitudinal study. International Journal of Pediatric Otorhinolaryngology, 2020, 128, 109701.	0.4	11

#	Article	IF	CITATIONS
127	Unravelling the temporal properties of human eCAPs through an iterative deconvolution model. Hearing Research, 2020, 395, 108037.	0.9	11
128	Learning Effects in Psychophysical Tests of Spectral and Temporal Resolution. Ear and Hearing, 2018, 39, 475-481.	1.0	10
129	Benefits of the HiRes 120 coding strategy combined with the Harmony processor in an adult European multicentre study. Acta Oto-Laryngologica, 2012, 132, 179-187.	0.3	9
130	Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation. Hearing Research, 2017, 351, 19-33.	0.9	9
131	Concern for Others: A Study on Empathy in Toddlers with Moderate Hearing Loss. Journal of Deaf Studies and Deaf Education, 2017, 22, 178-186.	0.7	9
132	Design and fabrication of stiff silicon probes: A step towards sophisticated cochlear implant electrodes. Procedia Engineering, 2011, 25, 1012-1015.	1.2	8
133	Influence of Widening Electrode Separation on Current Steering Performance. Ear and Hearing, 2011, 32, 221-229.	1.0	8
134	Human Dermal Fibroblasts Demonstrate Positive Immunostaining for Neuron- and Glia- Specific Proteins. PLoS ONE, 2015, 10, e0145235.	1.1	8
135	Comparison of Multipole Stimulus Configurations With Respect to Loudness and Spread of Excitation. Ear and Hearing, 2017, 38, 487-496.	1.0	8
136	Emotions in Deaf and Hard-of-Hearing and Typically Hearing Children. Journal of Deaf Studies and Deaf Education, 2021, 26, 469-482.	0.7	8
137	An improved system approach towards future cochlear implants. , 2013, 2013, 5163-6.		7
138	TUBB3: Neuronal Marker or Melanocyte Mimic?. Cell Transplantation, 2014, 23, 1471-1473.	1.2	7
139	Lentiviral transduction and subsequent loading with nanoparticles do not affect cell viability and proliferation in hairâ€follicleâ€bulgeâ€derived stem cells <i>in vitro</i> . Contrast Media and Molecular Imaging, 2016, 11, 550-560.	0.4	7
140	Neuronal differentiation of hair-follicle-bulge-derived stem cells co-cultured with mouse cochlear modiolus explants. PLoS ONE, 2017, 12, e0187183.	1.1	7
141	No Difference in Behavioral and Self-Reported Outcomes for Simultaneous and Sequential Bilateral Cochlear Implantation: Evidence From a Multicenter Randomized Controlled Trial. Frontiers in Neuroscience, 2019, 13, 54.	1.4	7
142	Effect of neural adaptation and degeneration on pulse-train ECAPs: A model study. Hearing Research, 2019, 377, 167-178.	0.9	7
143	Channel discrimination along all contacts of the cochlear implant electrode array and its relation to speech perception. International Journal of Audiology, 2019, 58, 262-268.	0.9	7
144	Test/Retest Variability of the eCAP Threshold in Advanced Bionics Cochlear Implant Users. Ear and Hearing, 2019, 40, 1457-1466.	1.0	7

#	Article	IF	CITATIONS
145	The Temporal Fine Structure of Background Noise Determines the Benefit of Bimodal Hearing for Recognizing Speech. JARO - Journal of the Association for Research in Otolaryngology, 2020, 21, 527-544.	0.9	7
146	Hearing Status Affects Children's Emotion Understanding in Dynamic Social Situations: An Eye-Tracking Study. Ear and Hearing, 2021, 42, 1024-1033.	1.0	7
147	Human vestibular schwannoma reduces density of auditory nerve fibers in the osseous spiral lamina. Hearing Research, 2022, 418, 108458.	0.9	7
148	Unilateral submandibular suppurative sialadenitis in a premature infant. Acta Paediatrica, International Journal of Paediatrics, 2003, 92, 1491-1493.	0.7	5
149	Hair follicle bulge cultures yield class III β-tubulin-positive melanoglial cells. Histochemistry and Cell Biology, 2015, 144, 87-91.	0.8	5
150	Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs. BioMed Research International, 2018, 2018, 1-15.	0.9	5
151	Short and long-term adaptation in the auditory nerve stimulated with high-rate electrical pulse trains are better described by a power law. Hearing Research, 2020, 398, 108090.	0.9	5
152	Effectiveness of Phantom Stimulation in Shifting the Pitch Percept in Cochlear Implant Users. Ear and Hearing, 2020, 41, 1258-1269.	1.0	5
153	SoftVoice Improves Speech Recognition and Reduces Listening Effort in Cochlear Implant Users. Ear and Hearing, 2021, 42, 381-392.	1.0	5
154	Prolonged Insertion Time Reduces Translocation Rate of a Precurved Electrode Array in Cochlear Implantation. Otology and Neurotology, 2022, 43, e427-e434.	0.7	5
155	An objective method to measure electrode independence in cochlear implant patients with a dual-masker forward masking technique. Hearing Research, 2009, 253, 3-14.	0.9	4
156	Social Emotions in Deaf Children with a CI Between One and Five Years of Age. Cochlear Implants International, 2010, 11, 315-318.	0.5	4
157	Silicon Probes for Cochlear Auditory Nerve Stimulation and Measurement. Advanced Materials Research, 0, 254, 82-85.	0.3	4
158	Titanium nitride (TiN) as a gate material in BiCMOS devices for biomedical implants. , 2013, , .		4
159	Simulating intracochlear electrocochleography with a combined model of acoustic hearing and electric current spread in the cochlea. Journal of the Acoustical Society of America, 2020, 147, 2049-2060.	0.5	4
160	Multimodal imaging of hair follicle bulge-derived stem cells in a mouse model of traumatic brain injury. Cell and Tissue Research, 2020, 381, 55-69.	1.5	4
161	An iterative deconvolution model to extract the temporal firing properties of the auditory nerve fibers in human eCAPs. MethodsX, 2021, 8, 101240.	0.7	4
162	The Developmental Trajectory of Empathy and Its Association with Early Symptoms of Psychopathology in Children with and without Hearing Loss. Research on Child and Adolescent Psychopathology, 2021, 49, 1151-1164.	1.4	4

#	Article	IF	CITATIONS
163	Basic Measures of Prosody in Spontaneous Speech of Children With Early and Late Cochlear Implantation. Journal of Speech, Language, and Hearing Research, 2018, 61, 3075-3094.	0.7	4
164	A multi-channel simultaneous data acquisition and waveform generator system designed for medical applications. Journal of Medical Engineering and Technology, 1994, 18, 54-60.	0.8	3
165	APSCI Panel Discussion I: Imaging and Surgical Issues. Ear and Hearing, 2007, 28, 119S-123S.	1.0	3
166	Restoring speech perception with cochlear implants by spanning defective electrode contacts. Acta Oto-Laryngologica, 2013, 133, 394-399.	0.3	3
167	In Vivo Inner Ear Imaging at 7 T. Otology and Neurotology, 2015, 36, 1458-1459.	0.7	3
168	The perception of emotion and focus prosody with varying acoustic cues in cochlear implant simulations with varying filter slopes. Journal of the Acoustical Society of America, 2017, 141, 3349-3363.	0.5	3
169	Reducing interaction in simultaneous paired stimulation with CI. PLoS ONE, 2017, 12, e0171071.	1.1	3
170	The effect of stimulus level on excitation patterns of individual electrode contacts in cochlear implants. Hearing Research, 2022, 420, 108490.	0.9	3
171	Concept and initial testing of a new, basally perimodiolar electrode design. International Congress Series, 2004, 1273, 105-108.	0.2	2
172	Development of probes for cochlear implants. , 2011, , .		2
173	The effect of spectral smearing on the identification of pureF0intonation contours in vocoder simulations of cochlear implants. Cochlear Implants International, 2015, 16, 77-87.	0.5	2
174	Take-Home Trial Comparing Fast Fourier Transformation-Based and Filter Bank-Based Cochlear Implant Speech Coding Strategies. BioMed Research International, 2017, 2017, 1-7.	0.9	2
175	Imaging Bioluminescent Exogenous Stem Cells in the Intact Guinea Pig Cochlea. Anatomical Record, 2020, 303, 427-440.	0.8	2
176	Personalizing Transient Noise Reduction Algorithm Settings for Cochlear Implant Users. Ear and Hearing, 2021, Publish Ahead of Print, 1602-1614.	1.0	2
177	The influence of stimulus intensity on spike timing and the compound action potential in the electrically stimulated cochlea: a model study. , 0, , .		2
178	Refractoriness and frequency following behavior in a model of electrical stimulation of mammalian myelinated nerve fibers. , 1992, , .		1
179	European Adult Multi-Centre HiRes®120 Study — An Update on 65 Subjects. Cochlear Implants International, 2010, 11, 406-411	0.5	1
180	Saccades Matter: Reduced Need for Caloric Testing of Cochlear Implant Candidates by Joint Analysis of v-HIT Gain and Corrective Saccades. Frontiers in Neurology, 2021, 12, 676812.	1.1	1

#	Article	IF	CITATIONS
181	Auditory Prosthesis. , 2014, , 1-6.		1
182	Short- and long-latency components of the eCAP reveal different refractory properties. Hearing Research, 2022, 420, 108522.	0.9	1
183	The influence of cochlear anatomy on the outcome of cochlear implants. Clinical Otolaryngology, 2001, 26, 347-347.	0.0	Ο
184	Long term Cochlear Implant electrode improvement for stimulation and sensing neuronal activity. , 2012, , .		0
185	<i>Reply:</i> . American Journal of Neuroradiology, 2014, 35, E11-E11.	1.2	0
186	Temporal bone imaging. South African Journal of Radiology, 2015, 19, .	0.1	0
187	Answer to quiz case: Temporal bone imaging. South African Journal of Radiology, 2015, 19, .	0.1	0
188	Residual Hearing Affects Contralateral Routing of Signals in Cochlear Implant Users. Audiology and Neuro-Otology, 2021, , 1-8.	0.6	0
189	Saccades matter: Reduced need for caloric testing of cochlear implant candidates by joint analysis of v-HIT gain and corrective saccades. Journal of the Neurological Sciences, 2021, 429, 118506.	0.3	0
190	Accelerated Long-Term Hearing Loss Progression After Recovery From Idiopathic Sudden Sensorineural Hearing Loss. Frontiers in Neurology, 2021, 12, 738942.	1.1	0
191	Auditory Prosthesis. , 2022, , 310-314.		0