Christian E H Schmelzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2959941/publications.pdf

Version: 2024-02-01

212478 252626 2,377 65 28 46 citations g-index h-index papers 67 67 67 3194 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Elastic fibers: formation, function, and fate during aging and disease. FEBS Journal, 2022, 289, 3704-3730.	2.2	41
2	Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces. BBA Advances, 2022, 2, 100039.	0.7	7
3	Role of elastin and elastin-derived peptides in arterial stiffness: from synthesis to potential therapeutic interventions., 2022,, 299-313.		3
4	Tissue response to biphasic calcium phosphate covalently modified with either heparin or hyaluronic acid in a mouse subcutaneous implantation model. Journal of Biomedical Materials Research - Part A, 2021, 109, 1353-1365.	2.1	5
5	Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts. Soft Matter, 2021, 17, 8394-8410.	1.2	7
6	A guide to the composition and functions of the extracellular matrix. FEBS Journal, 2021, 288, 6850-6912.	2.2	320
7	Unique molecular networks: Formation and role of elastin crossâ€links. IUBMB Life, 2020, 72, 842-854.	1.5	35
8	Towards the Therapeutic Use of TSP-1 (Thrombospondin-1)/CD47 Targeting TAX2 Peptide as an Antithrombotic Agent. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 41, e1-e17.	1.1	7
9	Engineering osteogenic microenvironments by combination of multilayers from collagen type I and chondroitin sulfate with novel cationic liposomes. Materials Today Bio, 2020, 7, 100071.	2.6	10
10	Extracellular Matrix Stiffness and Composition Regulate the Myofibroblast Differentiation of Vaginal Fibroblasts. International Journal of Molecular Sciences, 2020, 21, 4762.	1.8	30
11	Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129544.	1.1	21
12	Direct three-dimensional imaging for morphological analysis of electrospun fibers with laboratory-based Zernike X-ray phase-contrast computed tomography. Materials Science and Engineering C, 2020, 115, 111045.	3.8	8
13	MMP-14 degrades tropoelastin and elastin. Biochimie, 2019, 165, 32-39.	1.3	13
14	Effect of Different Crosslinking Strategies on Physical Properties and Biocompatibility of Freestanding Multilayer Films Made of Alginate and Chitosan. Macromolecular Bioscience, 2019, 19, e1900181.	2.1	23
15	Polyelectrolyte multilayers of poly (l-lysine) and hyaluronic acid on nanostructured surfaces affect stem cell response. Nanoscale, 2019, 11, 2878-2891.	2.8	21
16	Lysyl oxidaseâ€like 2 (LOXL2)â€mediated crossâ€linking of tropoelastin. FASEB Journal, 2019, 33, 5468-5481.	0.2	53
17	A comprehensive map of human elastin crossâ€linking during elastogenesis. FEBS Journal, 2019, 286, 3594-3610.	2.2	26
18	Fatty Acid Triangulation in Albumins Using a Landmark Spin Label. Israel Journal of Chemistry, 2019, 59, 1059-1074.	1.0	3

#	Article	IF	Citations
19	Risperidone-Loaded PLGA–Lipid Particles with Improved Release Kinetics: Manufacturing and Detailed Characterization by Electron Microscopy and Nano-CT. Pharmaceutics, 2019, 11, 665.	2.0	16
20	Ligand-Binding Cooperativity Effects in Polymer–Protein Conjugation. Biomacromolecules, 2019, 20, 1118-1131.	2.6	11
21	Identification of CD36 as a new interaction partner of membrane NEU1: potential implication in the pro-atherogenic effects of the elastin receptor complex. Cellular and Molecular Life Sciences, 2019, 76, 791-807.	2.4	35
22	Surface modifications of polylactide nanofiber nonwovens and bulk material by short and ultrashort pulsed laser radiation. , 2019 , , .		0
23	Role for <i>Cela1</i> in Postnatal Lung Remodeling and Alpha-1 Antitrypsin–Deficient Emphysema. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 167-178.	1.4	19
24	Degradation of tropoelastin and skin elastin by neprilysin. Biochimie, 2018, 146, 73-78.	1.3	21
25	Exploring the pH-Induced Functional Phase Space of Human Serum Albumin by EPR Spectroscopy. Magnetochemistry, 2018, 4, 47.	1.0	21
26	Production of Elastin-Derived Peptides Contributes to the Development of Nonalcoholic Steatohepatitis. Diabetes, 2018, 67, 1604-1615.	0.3	31
27	Elastin is heterogeneously cross-linked. Journal of Biological Chemistry, 2018, 293, 15107-15119.	1.6	52
28	Isolation and structural characterization of glucosylceramides from Ethiopian plants by LC/APCI-MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 2017, 141, 241-249.	1.4	12
29	Elastins from patients with Williams–Beuren syndrome and healthy individuals differ on the molecular level. American Journal of Medical Genetics, Part A, 2016, 170, 1832-1842.	0.7	13
30	Cadmium toxicity investigated at the physiological and biophysical levels under environmentally relevant conditions using the aquatic model plant <i>Ceratophyllum demersum</i> . New Phytologist, 2016, 210, 1244-1258.	3.5	62
31	Prolyl hydroxylation in elastin is not random. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2169-2177.	1.1	19
32	Molecular-level insights into aging processes of skin elastin. Biochimie, 2016, 128-129, 163-173.	1.3	87
33	Protein carbamylation is a hallmark of aging. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1191-1196.	3.3	156
34	Assembly and Properties of Elastic Fibers. , 2016, , 1-30.		1
35	Fingerprinting Desmosine-Containing Elastin Peptides. Journal of the American Society for Mass Spectrometry, 2015, 26, 762-773.	1.2	11
36	Molecular-level characterization of elastin-like constructs and human aortic elastin. Matrix Biology, 2014, 38, 12-21.	1.5	29

#	Article	IF	Citations
37	Shotgun proteome analysis of honeybee venom using targeted enrichment strategies. Toxicon, 2014, 90, 255-264.	0.8	27
38	The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1591-9.	3.3	109
39	Investigating the Role of (2 <i>S</i> ,4 <i>R</i>)-4-Hydroxyproline in Elastin Model Peptides. Biomacromolecules, 2013, 14, 4278-4288.	2.6	22
40	In vitro cross-linking of elastin peptides and molecular characterization of the resultant biomaterials. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2994-3004.	1.1	17
41	Skin Ceramide Alterations in First-Episode Schizophrenia Indicate Abnormal Sphingolipid Metabolism. Schizophrenia Bulletin, 2013, 39, 933-941.	2.3	38
42	Elastin-Derived Peptides Are New Regulators of Insulin Resistance Development in Mice. Diabetes, 2013, 62, 3807-3816.	0.3	87
43	Longevity of elastin in human intervertebral disc as probed by the racemization of aspartic acid. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1671-1677.	1.1	21
44	The action of neutrophil serine proteases on elastin and its precursor. Biochimie, 2012, 94, 192-202.	1.3	51
45	Does human leukocyte elastase degrade intact skin elastin?. FEBS Journal, 2012, 279, 4191-4200.	2.2	53
46	Investigations on the activation of recombinant microbial pro-transglutaminase: in contrast to proteinase K, dispase removes the histidine-tag. Amino Acids, 2012, 42, 997-1006.	1.2	25
47	Structure and Activity of Aspergillus nidulans Copper Amine Oxidase. Biochemistry, 2011, 50, 5718-5730.	1.2	21
48	Insights into the degradation of human elastin by matrilysin-1. Biochimie, 2011, 93, 187-194.	1.3	33
49	Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 273-278.	1.4	49
50	Investigation of the Molecular Structure of the Human Stratum Corneum Ceramides [NP] and [EOS] by Mass Spectrometry. Skin Pharmacology and Physiology, 2011, 24, 127-135.	1.1	27
51	MMP-12 catalytic domain recognizes and cleaves at multiple sites in human skin collagen type I and type III. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 731-739.	1.1	31
52	Degradation of tropoelastin by matrix metalloproteinases $\hat{a} \in f$ $\hat{a} \in f$ cleavage site specificities and release of matrikines. FEBS Journal, 2010, 277, 1939-1956.	2.2	81
53	In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biology, 2009, 28, 84-91.	1.5	45
54	Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biology, 2008, 27, 420-428.	1.5	57

#	ARTICLE	IF	CITATION
55	Cloning, expression, purification, and characterization of a designer protein with repetitive sequences. Protein Expression and Purification, 2008, 59, 203-214.	0.6	6
56	Screening for Nutritive Peptides That Modify Cholesterol 7α-Hydroxylase Expression. Journal of Agricultural and Food Chemistry, 2008, 56, 4987-4994.	2.4	12
57	Peptic digestion of β-casein. Journal of Chromatography A, 2007, 1166, 108-115.	1.8	73
58	Real-time monitoring of peptic and tryptic digestions of bovine \hat{l}^2 -casein using quartz crystal microbalance. Analytica Chimica Acta, 2007, 584, 72-77.	2.6	14
59	Separation and mass spectrometric characterization of covalently bound skin ceramides using LC/APCI-MS and Nano-ESI-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 852, 562-570.	1.2	56
60	Towards a molecular characterization of pharmaceutical excipients: Mass spectrometric studies of ethoxylated surfactants. International Journal of Pharmaceutics, 2006, 319, 1-12.	2.6	34
61	Mass spectrometric characterization of human skin elastin peptides produced by proteolytic digestion with pepsin and thermitase. Journal of Chromatography A, 2005, 1083, 120-126.	1.8	29
62	Characterization of peptides resulting from digestion of human skin elastin with elastase. Proteins: Structure, Function and Bioinformatics, 2005, 61, 649-657.	1.5	38
63	Complementary mass spectrometric techniques to achieve complete sequence coverage of recombinant human tropoelastin. Rapid Communications in Mass Spectrometry, 2005, 19, 2989-2993.	0.7	8
64	Acoustic investigations of pseudo-stable structures in aqueous solutions of polyethylene glycols. Journal of Molecular Structure, 2004, 699, 47-51.	1.8	42
65	Mass spectrometric characterization of peptides derived by peptic cleavage of bovine β-casein. Journal of Chromatography A, 2004, 1055, 87-92.	1.8	42