Wen-chang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2959764/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Making In Situ Whole-Cell Patch-Clamp Recordings from Xenopus laevis Tadpole Neurons. Cold Spring Harbor Protocols, 2021, 2021, pdb.prot106856.	0.3	1
2	The early development and physiology of <i>Xenopus laevis</i> tadpole lateral line system. Journal of Neurophysiology, 2021, 126, 1814-1830.	1.8	3
3	Neural control of swimming in hatchling Xenopus frog tadpoles. , 2020, , 153-174.		2
4	Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young Xenopus Tadpoles. Frontiers in Cellular Neuroscience, 2019, 13, 47.	3.7	19
5	The neuronal mechanisms underlying locomotion termination. Current Opinion in Physiology, 2019, 8, 109-115.	1.8	4
6	The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190297.	2.6	12
7	Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway. Brain Research Bulletin, 2018, 139, 278-284.	3.0	1
8	Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator. Journal of Mathematical Neuroscience, 2018, 8, 10.	2.4	10
9	A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times. Journal of Physiology, 2018, 596, 6219-6233.	2.9	16
10	The modulation of two motor behaviors by persistent sodium currents in <i>Xenopus laevis</i> tadpoles. Journal of Neurophysiology, 2017, 118, 121-130.	1.8	9
11	To swim or not to swim: A population-level model of Xenopus tadpole decision making and locomotor behaviour. BioSystems, 2017, 161, 3-14.	2.0	6
12	Mechanosensory Stimulation Evokes Acute Concussion-Like Behavior by Activating GIRKs Coupled to Muscarinic Receptors in a Simple Vertebrate. ENeuro, 2017, 4, ENEURO.0073-17.2017.	1.9	6
13	Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump. Scientific Reports, 2015, 5, 16188.	3.3	27
14	Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms. Journal of Neuroscience, 2015, 35, 9799-9810.	3.6	12
15	The Generation of Antiphase Oscillations and Synchrony by a Rebound-Based Vertebrate Central Pattern Generator. Journal of Neuroscience, 2014, 34, 6065-6077.	3.6	22
16	Behavioral observation of Xenopus tadpole swimming for neuroscience labs. Journal of Undergraduate Neuroscience Education: JUNE: A Publication of FUN, Faculty for Undergraduate Neuroscience, 2014, 12, A107-13.	0.0	4
17	Fast Silencing Reveals a Lost Role for Reciprocal Inhibition in Locomotion. Neuron, 2013, 77, 129-140.	8.1	48
18	The Control of Locomotor Frequency by Excitation and Inhibition. Journal of Neuroscience, 2012, 32, 6220-6230.	3.6	41

WEN-CHANG LI

#	Article	IF	CITATIONS
19	A functional scaffold of CNS neurons for the vertebrates: The developing <i>Xenopus laevis</i> spinal cord. Developmental Neurobiology, 2012, 72, 575-584.	3.0	39
20	Generation of Locomotion Rhythms Without Inhibition in Vertebrates: The Search for Pacemaker Neurons. Integrative and Comparative Biology, 2011, 51, 879-889.	2.0	26
21	How neurons generate behaviour in a hatchling amphibian tadpole: an outline. Frontiers in Behavioral Neuroscience, 2010, 4, 16.	2.0	122
22	Specific Brainstem Neurons Switch Each Other into Pacemaker Mode to Drive Movement by Activating NMDA Receptors. Journal of Neuroscience, 2010, 30, 16609-16620.	3.6	67
23	Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young <i>Xenopus</i> tadpoles. Journal of Physiology, 2009, 587, 1677-1693.	2.9	73
24	Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling <i>Xenopus</i> tadpoles. Journal of Physiology, 2009, 587, 4455-4466.	2.9	23
25	Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. Journal of Physiology, 2009, 587, 4829-4844.	2.9	80
26	Reconfiguration of a Vertebrate Motor Network: Specific Neuron Recruitment and Context-Dependent Synaptic Plasticity. Journal of Neuroscience, 2007, 27, 12267-12276.	3.6	82
27	Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. Neural Development, 2007, 2, 17.	2.4	54
28	Role of type-specific neuron properties in a spinal cord motor network. Journal of Computational Neuroscience, 2007, 23, 59-77.	1.0	47
29	Persistent Responses to Brief Stimuli: Feedback Excitation among Brainstem Neurons. Journal of Neuroscience, 2006, 26, 4026-4035.	3.6	112
30	The Spinal Interneurons and Properties of Glutamatergic Synapses in a Primitive Vertebrate Cutaneous Flexion Reflex. Journal of Neuroscience, 2003, 23, 9068-9077.	3.6	50