
Stephen Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2959546/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A syntenyâ€based draft genome sequence of the forage grass <i>Lolium perenne</i> . Plant Journal, 2015, 84, 816-826.	2.8	166
2	Genomic prediction of starch content and chipping quality in tetraploid potato using genotyping-by-sequencing. Theoretical and Applied Genetics, 2017, 130, 2091-2108.	1.8	99
3	Genome Wide Allele Frequency Fingerprints (GWAFFs) of Populations via Genotyping by Sequencing. PLoS ONE, 2013, 8, e57438.	1.1	91
4	Transcriptional and metabolic profiles of <i>Lolium perenne</i> L. genotypes in response to a PEGâ€induced water stress. Plant Biotechnology Journal, 2009, 7, 719-732.	4.1	79
5	A Gene Encoding a DUF247 Domain Protein Cosegregates with the <i>S</i> Self-Incompatibility Locus in Perennial Ryegrass. Molecular Biology and Evolution, 2016, 33, 870-884.	3.5	78
6	Genomic dissection and prediction of heading date in perennial ryegrass. BMC Genomics, 2015, 16, 921.	1.2	77
7	The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics Â. Plant Physiology, 2013, 161, 571-582.	2.3	75
8	Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Annals of Botany, 2011, 107, 243-254.	1.4	60
9	A transcriptome map of perennial ryegrass (Lolium perenne L.). BMC Genomics, 2012, 13, 140.	1.2	60
10	Segregation distortion in Lolium: evidence for genetic effects. Theoretical and Applied Genetics, 2008, 117, 297-306.	1.8	54
11	Accuracy of Genomic Prediction in a Commercial Perennial Ryegrass Breeding Program. Plant Genome, 2016, 9, plantgenome2015.11.0110.	1.6	51
12	Estimating genomic heritabilities at the level of family-pool samples of perennial ryegrass using genotyping-by-sequencing. Theoretical and Applied Genetics, 2016, 129, 45-52.	1.8	51
13	Characterization of Potato Virus Y Isolates and Assessment of Nanopore Sequencing to Detect and Genotype Potato Viruses. Viruses, 2020, 12, 478.	1.5	48
14	De Novo Assembly of the Perennial Ryegrass Transcriptome Using an RNA-Seq Strategy. PLoS ONE, 2014, 9, e103567.	1.1	44
15	Short-term response in leaf metabolism of perennial ryegrass (Lolium perenne) to alterations in nitrogen supply. Metabolomics, 2013, 9, 145-156.	1.4	42
16	Optimized Use of Low-Depth Genotyping-by-Sequencing for Genomic Prediction Among Multi-Parental Family Pools and Single Plants in Perennial Ryegrass (Lolium perenne L.). Frontiers in Plant Science, 2018, 9, 369.	1.7	42
17	Fructan metabolism and changes in fructan composition during cold acclimation in perennial ryegrass. Frontiers in Plant Science, 2015, 6, 329.	1.7	41
18	Candidate gene association mapping for winter survival and spring regrowth in perennial ryegrass. Plant Science, 2015, 235, 37-45.	1.7	37

STEPHEN BYRNE

#	Article	IF	CITATIONS
19	Identification of coincident QTL for days to heading, spike length and spikelets per spike in Lolium perenne L Euphytica, 2009, 166, 61-70.	0.6	33
20	The genome sequence of Barbarea vulgaris facilitates the study of ecological biochemistry. Scientific Reports, 2017, 7, 40728.	1.6	33
21	Genome-Wide Association and Genomic Prediction for Fry Color in Potato. Agronomy, 2020, 10, 90.	1.3	33
22	Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 population. Euphytica, 2009, 170, 99-107.	0.6	30
23	Identification of ABC transporters from Lolium perenne L. that are regulated by toxic levels of selenium. Planta, 2010, 231, 901-911.	1.6	29
24	The genome and transcriptome of perennial ryegrass mitochondria. BMC Genomics, 2013, 14, 202.	1.2	29
25	Changes in Lolium perenne transcriptome during cold acclimation in two genotypes adapted to different climatic conditions. BMC Plant Biology, 2015, 15, 250.	1.6	29
26	Genomic prediction of crown rust resistance in Lolium perenne. BMC Genetics, 2018, 19, 35.	2.7	28
27	Pooled DNA sequencing to identify SNPs associated with a major QTL for bacterial wilt resistance in Italian ryegrass (Lolium multiflorum Lam.). Theoretical and Applied Genetics, 2019, 132, 947-958.	1.8	26
28	Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Molecular Genetics and Genomics, 2011, 286, 433-447.	1.0	25
29	Comparative transcriptome analysis within the Lolium/Festuca species complex reveals high sequence conservation. BMC Genomics, 2015, 16, 249.	1.2	24
30	First assembly of the geneâ€space of <i>Lolium multiflorum</i> and comparison to other Poaceae genomes. Grassland Science, 2019, 65, 125-134.	0.6	20
31	Genetic Analysis Using a Multi-Parent Wheat Population Identifies Novel Sources of Septoria Tritici Blotch Resistance. Genes, 2020, 11, 887.	1.0	19
32	Genetic linkage mapping in an F2 perennial ryegrass population using DArT markers. Plant Breeding, 2012, 131, 345-349.	1.0	17
33	Vernalization Mediated Changes in the Lolium perenne Transcriptome. PLoS ONE, 2014, 9, e107365.	1.1	17
34	Using variable importance measures to identify a small set of SNPs to predict heading date in perennial ryegrass. Scientific Reports, 2017, 7, 3566.	1.6	17
35	Markers associated with heading and aftermath heading in perennial ryegrass full-sib families. BMC Plant Biology, 2016, 16, 160.	1.6	16
36	Rapid Development of KASP Markers for Disease Resistance Genes Using Pooled Whole-Genome Resequencing. Potato Research, 2020, 63, 57-73.	1.2	16

Stephen Byrne

#	Article	IF	CITATIONS
37	Overcoming challenges in variant calling: exploring sequence diversity in candidate genes for plant development in perennial ryegrass (<i>Lolium perenne</i>). DNA Research, 2019, 26, 1-12.	1.5	14
38	Quantitative trait loci analysis to study the genetic regulation of non-polar metabolites in perennial ryegrass. Metabolomics, 2015, 11, 412-424.	1.4	11
39	Using a Candidate Gene-Based Genetic Linkage Map to Identify QTL for Winter Survival in Perennial Ryegrass. PLoS ONE, 2016, 11, e0152004.	1.1	10
40	Genome sequence of the English grain aphid, <i>Sitobion avenae</i> and its endosymbiont <i>Buchnera aphidicola</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	4
41	Predicting anthesis date of perennial ryegrass (<i>Lolium perenne</i> L.) with growing degreeâ€days at heading. Grass and Forage Science, 2018, 73, 233-238.	1.2	3
42	Genomic Prediction of Complex Traits in Forage Plants Species: Perennial Grasses Case. Methods in Molecular Biology, 2022, 2467, 521-541.	0.4	3
43	Identification of genes involved in the floral transition at the shoot apical meristem of Lolium perenne L. by use of suppression subtractive hybridisation. Plant Growth Regulation, 2009, 59, 215-225.	1.8	2
44	Propensity for seed-mediated gene flow from potato crops and potential consequences for the coexistence of GM and non-GM potato systems. European Journal of Agronomy, 2015, 67, 52-60.	1.9	2
45	Genetic characterization of buckwheat accessions through genome-wide allele frequency fingerprints / Genetska karakterizacija vzorcev ajde z odtisi frekvence alelov v genomu. , 2020, 61, 17-23.	0.3	2
46	Quantitative trait loci associated with different polar metabolites in perennial ryegrass - providing scope for breeding towards increasing certain polar metabolites. BMC Genetics, 2017, 18, 84.	2.7	1
47	Allele Re-sequencing Technologies. , 2013, , 91-118.		0