Mietek Jaroniec

List of Publications by Citations

Source: https://exaly.com/author-pdf/2959242/mietek-jaroniec-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

880 94,508 134 293 h-index g-index citations papers 7.8 8.9 916 104,404 L-index

avg, IF ext. citations ext. papers

#	Paper	IF	Citations
880	Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. <i>Chemical Society Reviews</i> , 2015 , 44, 2060-86	58.5	3275
879	Gas Adsorption Characterization of Ordered OrganicIhorganic Nanocomposite Materials. <i>Chemistry of Materials</i> , 2001 , 13, 3169-3183	9.6	2680
878	Polymeric photocatalysts based on graphitic carbon nitride. <i>Advanced Materials</i> , 2015 , 27, 2150-76	24	2367
877	Graphene-based semiconductor photocatalysts. <i>Chemical Society Reviews</i> , 2012 , 41, 782-96	58.5	2274
876	Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. <i>Journal of the American Chemical Society</i> , 2000 , 122, 10712-10713	16.4	2131
875	Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. <i>Journal of the American Chemical Society</i> , 2012 , 134, 6575-8	16.4	2059
874	Heterojunction Photocatalysts. <i>Advanced Materials</i> , 2017 , 29, 1601694	24	2003
873	Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. <i>Chemical Society Reviews</i> , 2014 , 43, 7787-812	58.5	1751
872	Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 11496-500	16.4	1726
871	All-solid-state Z-scheme photocatalytic systems. Advanced Materials, 2014, 26, 4920-35	24	1654
870	Hydrogen evolution by a metal-free electrocatalyst. <i>Nature Communications</i> , 2014 , 5, 3783	17.4	1572
869	Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. <i>Journal of the American Chemical Society</i> , 2014 , 136, 13925-31	16.4	1512
868	Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 7355-7363	3.8	1511
867	Enhanced photocatalytic COF eduction activity of anatase TiOfby coexposed {001} and {101} facets. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8839-42	16.4	1449
866	Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. <i>Energy and Environmental Science</i> , 2012 , 5, 6717	35.4	1385
865	Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 52-65	16.4	1282
864	Hierarchical photocatalysts. <i>Chemical Society Reviews</i> , 2016 , 45, 2603-36	58.5	1216

863	Characterization of the Porous Structure of SBA-15. Chemistry of Materials, 2000, 12, 1961-1968	9.6	1137
862	Hydrogen Production by Photocatalytic Water Splitting over Pt/TiO2 Nanosheets with Exposed (001) Facets. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13118-13125	3.8	979
861	Cocatalysts for Selective Photoreduction of CO into Solar Fuels. <i>Chemical Reviews</i> , 2019 , 119, 3962-417	9 68.1	965
860	Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11914-6	16.4	935
859	Nanoporous graphitic-C3N4@carbon metal-free electrocatalysts for highly efficient oxygen reduction. <i>Journal of the American Chemical Society</i> , 2011 , 133, 20116-9	16.4	869
858	Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. <i>ACS Nano</i> , 2014 , 8, 5290-6	16.7	802
857	Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: a roadmap to achieve the best performance. <i>Journal of the American Chemical Society</i> , 2014 , 136, 4394-403	16.4	794
856	Noble metal-free reduced graphene oxide-ZnxCdEkS nanocomposite with enhanced solar photocatalytic HEproduction performance. <i>Nano Letters</i> , 2012 , 12, 4584-9	11.5	777
855	Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 3110-6	16.4	776
854	Direct Z-scheme photocatalysts: Principles, synthesis, and applications. <i>Materials Today</i> , 2018 , 21, 1042-	-120633	737
853	Molecular-based design and emerging applications of nanoporous carbon spheres. <i>Nature Materials</i> , 2015 , 14, 763-74	27	712
852	High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. <i>Advanced Materials</i> , 2015 , 27, 2042-8	24	695
851	Enhanced photocatalytic HEproduction activity of graphene-modified titania nanosheets. <i>Nanoscale</i> , 2011 , 3, 3670-8	7.7	678
850	Heteroatom-Doped Graphene-Based Materials for Energy-Relevant Electrocatalytic Processes. <i>ACS Catalysis</i> , 2015 , 5, 5207-5234	13.1	675
849	Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 4646-50	16.4	654
848	Graphitic carbon nitride nanosheet-carbon nanotube three-dimensional porous composites as high-performance oxygen evolution electrocatalysts. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7281-5	16.4	651
847	Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications. <i>Chemistry of Materials</i> , 2011 , 23, 4085-4093	9.6	615
846	Cocatalysts in Semiconductor-based Photocatalytic CO Reduction: Achievements, Challenges, and Opportunities. <i>Advanced Materials</i> , 2018 , 30, 1704649	24	614

845	Block-Copolymer-Templated Ordered Mesoporous Silica: Array of Uniform Mesopores or Mesopore Micropore Network?. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 11465-11471	3.4	588
844	High Electrocatalytic Hydrogen Evolution Activity of an Anomalous Ruthenium Catalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16174-16181	16.4	586
843	Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. <i>ACS Nano</i> , 2015 , 9, 931-40	16.7	569
842	Self-Templating Synthesis of Hollow Co O Microtube Arrays for Highly Efficient Water Electrolysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1324-1328	16.4	558
841	Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 3892-6	16.4	549
840	Nitrogen and oxygen dual-doped carbon hydrogel film as a substrate-free electrode for highly efficient oxygen evolution reaction. <i>Advanced Materials</i> , 2014 , 26, 2925-30	24	521
839	Nanostructured metal-free electrochemical catalysts for highly efficient oxygen reduction. <i>Small</i> , 2012 , 8, 3550-66	11	518
838	Three-dimensional N-doped graphene hydrogel/NiCo double hydroxide electrocatalysts for highly efficient oxygen evolution. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 13567-70	16.4	498
837	Nitrogen Enriched Porous Carbon Spheres: Attractive Materials for Supercapacitor Electrodes and CO2 Adsorption. <i>Chemistry of Materials</i> , 2014 , 26, 2820-2828	9.6	480
836	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1138-42	16.4	478
835	Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis. <i>Nature Communications</i> , 2016 , 7, 12876	17.4	471
834	Standard Nitrogen Adsorption Data for Characterization of Nanoporous Silicas. <i>Langmuir</i> , 1999 , 15, 54	10 _‡ 541.	3 467
833	Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 3230-3238	13	465
832	Roadmap for advanced aqueous batteries: From design of materials to applications. <i>Science Advances</i> , 2020 , 6, eaba4098	14.3	455
831	A noble metal-free reduced graphene oxide IdS nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3407	13	433
830	An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials. <i>Langmuir</i> , 1989 , 5, 1431-1433	4	429
829	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9664-9672	16.4	390
828	Optimization of mesoporous carbon structures for lithium ulfur battery applications. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16603		382

(2015-2019)

827	Understanding the Roadmap for Electrochemical Reduction of CO to Multi-Carbon Oxygenates and Hydrocarbons on Copper-Based Catalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7646-76	5 ¹ 6.4	371
826	Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets. <i>Journal of Materials Chemistry</i> , 2011 , 21, 1049-1057		360
825	Ordered mesoporous silica with large cage-like pores: structural identification and pore connectivity design by controlling the synthesis temperature and time. <i>Journal of the American Chemical Society</i> , 2003 , 125, 821-9	16.4	349
824	Molecular Scaffolding Strategy with Synergistic Active Centers To Facilitate Electrocatalytic CO Reduction to Hydrocarbon/Alcohol. <i>Journal of the American Chemical Society</i> , 2017 , 139, 18093-18100	16.4	341
823	Activated carbon spheres for CO2 adsorption. ACS Applied Materials & amp; Interfaces, 2013, 5, 1849-55	9.5	339
822	Two-Step Boron and Nitrogen Doping in Graphene for Enhanced Synergistic Catalysis. <i>Angewandte Chemie</i> , 2013 , 125, 3192-3198	3.6	332
821	Determination of the Electron Transfer Number for the Oxygen Reduction Reaction: From Theory to Experiment. <i>ACS Catalysis</i> , 2016 , 6, 4720-4728	13.1	327
820	Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. <i>Journal of the American Chemical Society</i> , 2012 , 134, 14846-57	16.4	327
819	Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. <i>Green Chemistry</i> , 2011 , 13, 2708	10	327
818	Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres. Journal of Materials Chemistry A, 2013 , 1, 112-116	13	324
817	Nitrogen self-doped nanosized TiO2 sheets with exposed {001} facets for enhanced visible-light photocatalytic activity. <i>Chemical Communications</i> , 2011 , 47, 6906-8	5.8	319
816	Tailoring the Pore Structure of SBA-16 Silica Molecular Sieve through the Use of Copolymer Blends and Control of Synthesis Temperature and Time. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 11480-1148	3 ^{.4}	318
815	Ordered mesoporous alumina-supported metal oxides. <i>Journal of the American Chemical Society</i> , 2008 , 130, 15210-6	16.4	314
814	Characterization of Large-Pore MCM-41 Molecular Sieves Obtained via Hydrothermal Restructuring. <i>Chemistry of Materials</i> , 1997 , 9, 2499-2506	9.6	311
813	Determination of Pore Size and Pore Wall Structure of MCM-41 by Using Nitrogen Adsorption, Transmission Electron Microscopy, and X-ray Diffraction. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 292	- 30 1	310
812	Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. <i>Environmental Science & Environmental Scie</i>	10.3	309
811	Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1⊠CdxS solid solution. <i>Green Chemistry</i> , 2010 , 12, 1611	10	306
810	Semiconductor-based photocatalytic CO2 conversion. <i>Materials Horizons</i> , 2015 , 2, 261-278	14.4	302

809	Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates. Journal of Physical Chemistry B, 2000 , 104, 7960-7968	3.4	2 90
808	N-doped graphene film-confined nickel nanoparticles as a highly efficient three-dimensional oxygen evolution electrocatalyst. <i>Energy and Environmental Science</i> , 2013 , 6, 3693	35.4	282
807	Activating cobalt(II) oxide nanorods for efficient electrocatalysis by strain engineering. <i>Nature Communications</i> , 2017 , 8, 1509	17.4	276
806	Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: synthesis, characterization and visible-light photocatalytic activity. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 4853-61	3.6	264
805	Facet effect of Pd cocatalyst on photocatalytic CO 2 reduction over g-C 3 N 4. <i>Journal of Catalysis</i> , 2017 , 349, 208-217	7.3	262
804	Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. <i>Nanoscale</i> , 2015 , 7, 17590-610	7.7	259
803	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 8539-8543	16.4	254
802	Improvement of the Kruk-Jaroniec-Sayari method for pore size analysis of ordered silicas with cylindrical mesopores. <i>Langmuir</i> , 2006 , 22, 6757-60	4	251
801	Photocatalytic hydrogen production over CuO-modified titania. <i>Journal of Colloid and Interface Science</i> , 2011 , 357, 223-8	9.3	247
800	Facile Synthesis of Ordered Mesoporous Alumina and Alumina-Supported Metal Oxides with Tailored Adsorption and Framework Properties. <i>Chemistry of Materials</i> , 2011 , 23, 1147-1157	9.6	246
799	Novel bifunctional periodic mesoporous organosilicas, BPMOs: synthesis, characterization, properties and in-situ selective hydroboration-alcoholysis reactions of functional groups. <i>Journal of the American Chemical Society</i> , 2001 , 123, 8520-30	16.4	244
798	Synthesis and Characterization of Hexagonally Ordered Carbon Nanopipes. <i>Chemistry of Materials</i> , 2003 , 15, 2815-2823	9.6	240
797	Tunable photocatalytic selectivity of TiO2 films consisted of flower-like microspheres with exposed {001} facets. <i>Chemical Communications</i> , 2011 , 47, 4532-4	5.8	237
796	Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance. <i>Angewandte Chemie</i> , 2012 , 124, 11664-11668	3.6	234
795	Nitrogen Adsorption Studies of Novel Synthetic Active Carbons. <i>Journal of Colloid and Interface Science</i> , 1997 , 192, 250-6	9.3	229
794	Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. <i>Journal of the American Chemical Society</i> , 2005 , 127, 4188-9	16.4	229
793	Na Ti O @N-Doped Carbon Hollow Spheres for Sodium-Ion Batteries with Excellent Rate Performance. <i>Advanced Materials</i> , 2017 , 29, 1700989	24	226
792	Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. <i>Chemical Communications</i> , 2013 , 49, 7705-7	5.8	226

791	Preparation and enhanced visible-light photocatalytic H2-production activity of CdS-sensitized Pt/TiO2 nanosheets with exposed (001) facets. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 8915-23	3.6	222
79°	Template-free synthesis of hierarchical spindle-like FAl2O3 materials and their adsorption affinity towards organic and inorganic pollutants in water. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4587		215
7 ⁸ 9	The solution of adsorption integral equations by means of the regularization method. <i>Journal of Computational Chemistry</i> , 1992 , 13, 17-32	3.5	214
788	Periodic mesoporous organosilica with large heterocyclic bridging groups. <i>Journal of the American Chemical Society</i> , 2005 , 127, 60-1	16.4	211
787	Expanding the Pore Size of MCM-41 Silicas: Use of Amines as Expanders in Direct Synthesis and Postsynthesis Procedures. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 3651-3658	3.4	211
786	Colloidal imprinting: a novel approach to the synthesis of mesoporous carbons. <i>Journal of the American Chemical Society</i> , 2001 , 123, 9208-9	16.4	209
7 ⁸ 5	Charge-Redistribution-Enhanced Nanocrystalline Ru@IrOx Electrocatalysts for Oxygen Evolution in Acidic Media. <i>CheM</i> , 2019 , 5, 445-459	16.2	205
7 ⁸ 4	Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 8676-8682	13	196
783	Atomically and Electronically Coupled Pt and CoO Hybrid Nanocatalysts for Enhanced Electrocatalytic Performance. <i>Advanced Materials</i> , 2017 , 29, 1604607	24	194
782	Evidence for General Nature of Pore Interconnectivity in 2-Dimensional Hexagonal Mesoporous Silicas Prepared Using Block Copolymer Templates. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4640-464	1∂ ^{.4}	192
781	Synthesis of Hierarchical Flower-like AlOOH and TiO2/AlOOH Superstructures and their Enhanced Photocatalytic Properties. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 17527-17535	3.8	188
78o	Synthesis of mesoporous carbons using ordered and disordered mesoporous silica templates and polyacrylonitrile as carbon precursor. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 9216-25	3.4	186
779	Relations between Pore Structure Parameters and Their Implications for Characterization of MCM-41 Using Gas Adsorption and X-ray Diffraction. <i>Chemistry of Materials</i> , 1999 , 11, 492-500	9.6	183
778	Synthesis of Boehmite Hollow Core/Shell and Hollow Microspheres via Sodium Tartrate-Mediated Phase Transformation and Their Enhanced Adsorption Performance in Water Treatment. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 14739-14746	3.8	182
777	Silica-metal core-shell nanostructures. Advances in Colloid and Interface Science, 2012, 170, 28-47	14.3	181
776	A simple cation exchange approach to Bi-doped ZnS hollow spheres with enhanced UV and visible-light photocatalytic H2-production activity. <i>Journal of Materials Chemistry</i> , 2011 , 21, 14655		179
775	Physical adsorption on heterogeneous solids. <i>Advances in Colloid and Interface Science</i> , 1983 , 18, 149-22	2514.3	171
774	New Approaches to Pore Size Engineering of Mesoporous Silicates. <i>Advanced Materials</i> , 1998 , 10, 1376-	123479	170

773	Characterization of Regular and Plugged SBA-15 Silicas by Using Adsorption and Inverse Carbon Replication and Explanation of the Plug Formation Mechanism. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 2205-2213	3.4	167
772	Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. <i>Applied Catalysis B: Environmental</i> , 2015 , 163, 306-312	21.8	165
771	Modification of SBA-15 pore connectivity by high-temperature calcination investigated by carbon inverse replication. <i>Chemical Communications</i> , 2001 , 349-350	5.8	161
770	Evaluation of the Fractal Dimension from a Single Adsorption Isotherm. <i>Langmuir</i> , 1995 , 11, 2316-2317	4	158
769	Room-temperature catalytic oxidation of formaldehyde on catalysts. <i>Catalysis Science and Technology</i> , 2016 , 6, 3649-3669	5.5	153
768	Benzoylthiourea-Modified Mesoporous Silica for Mercury(II) Removal. <i>Langmuir</i> , 2003 , 19, 3031-3034	4	153
767	From waste Coca Cola ^[] to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors. <i>Carbon</i> , 2017 , 116, 490-499	10.4	152
766	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. <i>Materials Today</i> , 2020 , 36, 125-138	21.8	152
765	KOH activation of mesoporous carbons obtained by soft-templating. <i>Carbon</i> , 2008 , 46, 1159-1161	10.4	152
764	Accurate Method for Calculating Mesopore Size Distributions from Argon Adsorption Data at 87 K Developed Using Model MCM-41 Materials. <i>Chemistry of Materials</i> , 2000 , 12, 222-230	9.6	149
763	Adsorption on heterogeneous surfaces: The exponential equation for the overall adsorption isotherm. <i>Surface Science</i> , 1975 , 50, 553-564	1.8	149
762	Periodic Mesoporous Organosilica with Large Cagelike Pores. <i>Chemistry of Materials</i> , 2002 , 14, 1903-190	0 5 .6	147
761	Carbon-based two-dimensional layered materials for photocatalytic CO 2 reduction to solar fuels. Energy Storage Materials, 2016 , 3, 24-35	19.4	146
760	Facile Oxygen Reduction on a Three-Dimensionally Ordered Macroporous Graphitic C3N4/Carbon Composite Electrocatalyst. <i>Angewandte Chemie</i> , 2012 , 124, 3958-3962	3.6	146
759	Characterization of mesoporous carbons synthesized with SBA-16 silica template. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1560		146
75 ⁸	Highly active mesoporous ferrihydrite supported pt catalyst for formaldehyde removal at room temperature. <i>Environmental Science & Environmental Scien</i>	10.3	143
757	Fluorinated semiconductor photocatalysts: tunable synthesis and unique properties. <i>Advances in Colloid and Interface Science</i> , 2012 , 173, 35-53	14.3	142
756	Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications. <i>Applied Surface Science</i> , 2018 , 430, 2-17	6.7	141

(2010-2018)

755	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8540-8544	16.4	140
754	Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11650-11659	13	137
753	Elektrochemie der Wasserstoffentwicklungsreaktion: Optimierung durch Korrelation von Experiment und Theorie. <i>Angewandte Chemie</i> , 2015 , 127, 52-66	3.6	137
75 ²	Synthesis and properties of 1,3,5-benzene periodic mesoporous organosilica (PMO): novel aromatic PMO with three point attachments and unique thermal transformations. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13886-95	16.4	137
751	Synthesis and Characterization of Ordered, Very Large Pore MSU-H Silicas Assembled from Water-Soluble Silicates. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7663-7670	3.4	137
750	Argon Adsorption at 77 K as a Useful Tool for the Elucidation of Pore Connectivity in Ordered Materials with Large Cagelike Mesopores. <i>Chemistry of Materials</i> , 2003 , 15, 2942-2949	9.6	136
749	Transition metal dichalcogenides for alkali metal ion batteries: engineering strategies at the atomic level. <i>Energy and Environmental Science</i> , 2020 , 13, 1096-1131	35.4	135
748	Ionic-liquid-assisted synthesis of uniform fluorinated B/C-codoped TiO2 nanocrystals and their enhanced visible-light photocatalytic activity. <i>Chemistry - A European Journal</i> , 2013 , 19, 2433-41	4.8	134
747	Characterization of Highly Ordered MCM-41 Silicas Using X-ray Diffraction and Nitrogen Adsorption. <i>Langmuir</i> , 1999 , 15, 5279-5284	4	134
746	Nickel-based materials for supercapacitors. <i>Materials Today</i> , 2019 , 25, 35-65	21.8	133
745	Carbons with extremely large volume of uniform mesopores synthesized by carbonization of phenolic resin film formed on colloidal silica template. <i>Journal of the American Chemical Society</i> , 2006 , 128, 10026-7	16.4	131
744	Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. <i>Science Advances</i> , 2018 , 4, eaau6261	14.3	130
743	Graphitic Carbon Nitride Nanosheet©arbon Nanotube Three-Dimensional Porous Composites as High-Performance Oxygen Evolution Electrocatalysts. <i>Angewandte Chemie</i> , 2014 , 126, 7409-7413	3.6	128
742	Recent progress in determination of energetic heterogeneity of solids from adsorption data. <i>Surface Science Reports</i> , 1986 , 6, 65-117	12.9	128
741	Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica. Journal of the American Chemical Society, 2006 , 128, 14408-14	16.4	127
740	Nitrogen Adsorption Study of Surface Properties of Graphitized Carbon Blacks. <i>Langmuir</i> , 1999 , 15, 14	35 ₄ 144	1 127
739	Characterization of semiconductor photocatalysts. Chemical Society Reviews, 2019, 48, 5184-5206	58.5	126
738	Facile Hydrothermal Synthesis of Hierarchical Boehmite: Sulfate-Mediated Transformation from Nanoflakes to Hollow Microspheres. <i>Crystal Growth and Design</i> , 2010 , 10, 3977-3982	3.5	126

737	New Approach to Evaluate Pore Size Distributions and Surface Areas for Hydrophobic Mesoporous Solids. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 10670-10678	3.4	124
736	Tailoring properties of SBA-15 materials by controlling conditions of hydrothermal synthesis. Journal of Materials Chemistry, 2005 , 15, 5049		123
735	1-Allyl-3-propylthiourea modified mesoporous silica for mercury removal. <i>Chemical Communications</i> , 2002 , 258-9	5.8	122
734	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 6814-6818	16.4	121
733	Grafting Monodisperse Polymer Chains from Concave Surfaces of Ordered Mesoporous Silicas. <i>Macromolecules</i> , 2008 , 41, 8584-8591	5.5	121
73 ²	A flexible bio-inspired H2-production photocatalyst. <i>Applied Catalysis B: Environmental</i> , 2018 , 220, 148-	160 .8	120
731	Functionalized Mesoporous Materials Obtained via Interfacial Reactions in Self-Assembled SilicaBurfactant Systems. <i>Chemistry of Materials</i> , 2000 , 12, 2496-2501	9.6	119
730	Synthesis and applications of porous non-silica metal oxide submicrospheres. <i>Chemical Society Reviews</i> , 2016 , 45, 6013-6047	58.5	118
729	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. <i>Nature Communications</i> , 2019 , 10, 4876	17.4	118
728	Coconut shell-based microporous carbons for CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2013 , 180, 280-283	5.3	115
727	Rattle-type carbon-alumina core-shell spheres: synthesis and application for adsorption of organic dyes. <i>ACS Applied Materials & amp; Interfaces</i> , 2012 , 4, 2174-9	9.5	115
726	Determination and tailoring the pore entrance size in ordered silicas with cage-like mesoporous structures. <i>Journal of the American Chemical Society</i> , 2002 , 124, 768-9	16.4	115
725	Partition and displacement models in reversed-phase liquid chromatography with mixed eluents. Journal of Chromatography A, 1993 , 656, 37-50	4.5	115
724	Characterization of MCM-48 Silicas with Tailored Pore Sizes Synthesized via a Highly Efficient Procedure. <i>Chemistry of Materials</i> , 2000 , 12, 1414-1421	9.6	114
723	Integrating 2D/2D CdS/Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 266, 118619	21.8	114
722	Metamorphosis of ordered mesopores to micropores: periodic silica with unprecedented loading of pendant reactive organic groups transforms to periodic microporous silica with tailorable pore size. <i>Journal of the American Chemical Society</i> , 2002 , 124, 6383-92	16.4	113
721	Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor. <i>Carbon</i> , 2011 , 49, 154-16	 50 ^{0.4}	111
720	Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. <i>Chemical Engineering Journal</i> , 2014 , 239, 207-215	14.7	110

(2021-2013)

719	Enhancement of CO2 adsorption on phenolic resin-based mesoporous carbons by KOH activation. <i>Carbon</i> , 2013 , 65, 334-340	10.4	109
718	Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. <i>Journal of the American Chemical Society</i> , 2001 , 123, 1650-7	16.4	108
717	Hierarchically macro-mesoporous Pt/FAl2O3 composite microspheres for efficient formaldehyde oxidation at room temperature. <i>Scientific Reports</i> , 2013 , 3, 3215	4.9	107
716	Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption. <i>Carbon</i> , 2015 , 82, 297-303	10.4	105
715	Surface activated carbon nitride nanosheets with optimized electro-optical properties for highly efficient photocatalytic hydrogen production. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2445-2452	13	105
714	Enhanced formaldehyde oxidation on CeO 2 /AlOOH-supported Pt catalyst at room temperature. <i>Applied Catalysis B: Environmental</i> , 2016 , 199, 458-465	21.8	105
713	A Unified Interpretation of High-Temperature Pore Size Expansion Processes in MCM-41 Mesoporous Silicas. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 4590-4598	3.4	104
712	New opportunities in StBer synthesis: preparation of microporous and mesoporous carbon spheres. <i>Journal of Materials Chemistry</i> , 2012 , 22, 12636		102
711	Multi-shell hollow structured Sb2S3 for sodium-ion batteries with enhanced energy density. <i>Nano Energy</i> , 2019 , 60, 591-599	17.1	100
710	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 8181-8186	16.4	99
709	Gas adsorption properties of hybrid graphene-MOF materials. <i>Journal of Colloid and Interface Science</i> , 2018 , 514, 801-813	9.3	99
708	Short-Range Ordered Iridium Single Atoms Integrated into Cobalt Oxide Spinel Structure for Highly Efficient Electrocatalytic Water Oxidation. <i>Journal of the American Chemical Society</i> , 2021 , 143, 5201-52	116.4	98
707	The Application of Hollow Structured Anodes for Sodium-Ion Batteries: From Simple to Complex Systems. <i>Advanced Materials</i> , 2019 , 31, e1800492	24	96
706	Characterization of High-Quality MCM-48 and SBA-1 Mesoporous Silicas. <i>Chemistry of Materials</i> , 1999 , 11, 2568-2572	9.6	96
705	Ordered mesoporous silica SBA-15: a new effective adjuvant to induce antibody response. <i>Small</i> , 2006 , 2, 254-6	11	95
704	Comparative analysis of simple and advanced sorption methods for assessment of microporosity in activated carbons. <i>Carbon</i> , 1998 , 36, 1447-1458	10.4	93
703	Determination of Mesopore Size Distributions from Argon Adsorption Data at 77 K. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 4732-4739	3.4	93
702	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19572-19590	16.4	93

701	Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping. <i>Small</i> , 2016 , 12, 3703-11	11	93
700	Development of microporous carbons for CO2 capture by KOH activation of African palm shells. Journal of CO2 Utilization, 2013 , 2, 35-38	7.6	92
699	Hollow Carbon Nanospheres with Tunable Hierarchical Pores for Drug, Gene, and Photothermal Synergistic Treatment. <i>Small</i> , 2017 , 13, 1602592	11	92
698	Synthesis of Large-Pore Silica with Cage-Like Structure Using Sodium Silicate and Triblock Copolymer Template. <i>Langmuir</i> , 2002 , 18, 884-890	4	92
697	Synthesis of an ordered macroporous carbon with 62 nm spherical pores that exhibit unique gas adsorption properties. <i>Chemical Communications</i> , 2002 , 1670-1	5.8	91
696	Adsorption and Thermogravimetric Characterization of Mesoporous Materials with Uniform OrganicIhorganic Frameworks. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 681-689	3.4	90
695	Phosphorus-Doped Graphitic Carbon Nitrides Grown In Situ on Carbon-Fiber Paper: Flexible and Reversible Oxygen Electrodes. <i>Angewandte Chemie</i> , 2015 , 127, 4729-4733	3.6	87
694	Reference Data for Argon Adsorption on Graphitized and Nongraphitized Carbon Blacks. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 12516-12523	3.4	87
693	Adsorption Study of Porous Structure Development in Carbon Blacks. <i>Journal of Colloid and Interface Science</i> , 1996 , 182, 282-288	9.3	86
692	0D/2D NiS2/V-MXene composite for electrocatalytic H2 evolution. <i>Journal of Catalysis</i> , 2019 , 375, 8-20	7-3	85
691	Bifunctional periodic mesoporous organosilica with large heterocyclic bridging groups and mercaptopropyl ligands. <i>Journal of Materials Chemistry</i> , 2005 , 15, 1517		84
690	Revealing Principles for Design of Lean-Electrolyte Lithium Metal Anode via In Situ Spectroscopy. Journal of the American Chemical Society, 2020 , 142, 2012-2022	16.4	84
689	Adsorption and structural properties of ordered mesoporous carbons synthesized by using various carbon precursors and ordered siliceous P6mm and Ia3d mesostructures as templates. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 23263-8	3.4	83
688	Simultaneous modification of mesopores and extraction of template molecules from MCM-41 with trialkylchlorosilanes. <i>Chemical Communications</i> , 1999 , 2373-2374	5.8	83
687	AlSb thin films as negative electrodes for Li-ion and Na-ion batteries. <i>Journal of Power Sources</i> , 2013 , 243, 699-705	8.9	82
(0)			
686	Interacting Carbon Nitride and Titanium Carbide Nanosheets for High-Performance Oxygen Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 1150-1154	3.6	80
686	Evolution. <i>Angewandte Chemie</i> , 2016 , 128, 1150-1154 Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by	F 2	8o 8o

(2001-2017)

683	Gas adsorption properties of graphene-based materials. <i>Advances in Colloid and Interface Science</i> , 2017 , 243, 46-59	14.3	75	
682	Nanoporous Polystyrene and Carbon Materials with CoreBhell Nanosphere-Interconnected Network Structure. <i>Macromolecules</i> , 2011 , 44, 5846-5849	5.5	75	
681	Determination of the Specific Surface Area and the Pore Size of Microporous Carbons from Adsorption Potential Distributions. <i>Langmuir</i> , 1999 , 15, 1442-1448	4	75	
68o	High temperature treatment of ordered mesoporous carbons prepared by using various carbon precursors and ordered mesoporous silica templates. <i>New Journal of Chemistry</i> , 2008 , 32, 981	3.6	74	
679	Hydrothermal stability of SBA-15 and related ordered mesoporous silicas with plugged pores. Journal of Materials Chemistry, 2006 , 16, 2824		74	
678	Nanoporous Carbon Films from HairyIPolyacrylonitrile-Grafted Colloidal Silica Nanoparticles. <i>Advanced Materials</i> , 2008 , 20, 1516-1522	24	73	
677	Influence of hydrothermal restructuring conditions on structural properties of mesoporous molecular sieves. <i>Microporous and Mesoporous Materials</i> , 1999 , 27, 217-229	5.3	73	
676	Synthesis of mesoporous alumina from boehmite in the presence of triblock copolymer. <i>ACS Applied Materials & District Amplied & District & Dis</i>	9.5	72	
675	Mesoporous Carbons Synthesized by Imprinting Ordered and Disordered Porous Structures of Silica Particles in Mesophase Pitch. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 824-826	3.4	72	
674	Synthesis and Adsorption Properties of Colloid-Imprinted Carbons with Surface and Volume Mesoporosity. <i>Chemistry of Materials</i> , 2003 , 15, 1327-1333	9.6	71	
673	Effects of surface heterogeneity in adsorption from binary liquid mixtures. I. Adsorption from ideal solutions. <i>Journal of Colloid and Interface Science</i> , 1976 , 56, 403-411	9.3	71	
672	Mechanochemical synthesis of highly porous materials. <i>Materials Horizons</i> , 2020 , 7, 1457-1473	14.4	70	
671	New insights into pore-size expansion of mesoporous silicates using long-chain amines. <i>Microporous and Mesoporous Materials</i> , 2000 , 35-36, 545-553	5.3	70	
670	Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde. <i>ACS Applied Materials & Distributed Materials </i>	9.5	69	
669	Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis. <i>Angewandte Chemie</i> , 2017 , 129, 1344-1348	3.6	68	
668	Critical appraisal of classical methods for determination of mesopore size distributions of MCM-41 materials. <i>Applied Surface Science</i> , 2002 , 196, 216-223	6.7	68	
667	Effective method for removal of polymeric template from SBA-16 silica combining extraction and temperature-controlled calcination. <i>Journal of Materials Chemistry</i> , 2006 , 16, 819-823		67	
666	Toward the Synthesis of Extra-Large-Pore MCM-41 Analogues. <i>Chemistry of Materials</i> , 2001 , 13, 1726-17	'3).1 6	67	

665	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1078-1090	2.6	66
664	Benzoylthiourea-modified MCM-48 mesoporous silica for mercury(II) adsorption from aqueous solutions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 236, 69-72	5.1	66
663	Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. <i>Microporous and Mesoporous Materials</i> , 2001 , 48, 127-134	5.3	66
662	Comparison of adsorption methods for characterizing the microporosity of activated carbons. <i>Carbon</i> , 1989 , 27, 77-83	10.4	66
661	Mesoporous metal organic framework-boehmite and silica composites. <i>Chemical Communications</i> , 2010 , 46, 6798-800	5.8	65
660	Surface fractal dimension of microporous carbon fibres by nitrogen adsorption. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 179		65
659	Effect of activating agents on the development of microporosity in polymeric-based carbon for CO2 adsorption. <i>Carbon</i> , 2015 , 94, 673-679	10.4	64
658	Polypyrrole-Based Nitrogen-Doped Carbon Replicas of SBA-15 and SBA-16 Containing Magnetic Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 13126-13133	3.8	63
657	Revealing the Origin of Improved Reversible Capacity of Dual-Shell Bismuth Boxes Anode for Potassium-Ion Batteries. <i>Matter</i> , 2019 , 1, 1681-1693	12.7	62
656	Three-Dimensional N-Doped Graphene Hydrogel/NiCo Double Hydroxide Electrocatalysts for Highly Efficient Oxygen Evolution. <i>Angewandte Chemie</i> , 2013 , 125, 13812-13815	3.6	62
655	Characterization of heterogeneity of activated carbons by utilizing the benzene adsorption data. <i>Materials Chemistry and Physics</i> , 1986 , 15, 521-536	4.4	62
654	Hierarchically porous graphene-based hybrid electrodes with excellent electrochemical performance. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 9409	13	61
653	Monitoring of the structure of siliceous mesoporous molecular sieves tailored using different synthesis conditions. <i>Microporous Materials</i> , 1997 , 12, 93-106		61
652	Exceptionally High Stability of Copolymer-Templated Ordered Silica with Large Cage-Like Mesopores. <i>Chemistry of Materials</i> , 2004 , 16, 698-707	9.6	61
651	A synthetic strategy for carbon nanospheres impregnated with highly monodispersed metal nanoparticles. <i>NPG Asia Materials</i> , 2016 , 8, e240-e240	10.3	60
650	Deactivation and regeneration of Pt/TiO2 nanosheet-type catalysts with exposed (001) facets for room temperature oxidation of formaldehyde. <i>Journal of Molecular Catalysis A</i> , 2014 , 390, 7-13		60
649	Periodic Mesoporous Organosilicas with Ethane and Large Isocyanurate Bridging Groups. <i>Chemistry of Materials</i> , 2006 , 18, 1722-1725	9.6	60
648	Short-time synthesis of SBA-15 using various silica sources. <i>Journal of Colloid and Interface Science</i> , 2005 , 287, 717-20	9.3	60

647	The Development of YolkBhell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability. <i>Advanced Functional Materials</i> , 2018 , 28, 1801737	15.6	60
646	Ionic liquid-assisted synthesis of N/S-double doped graphene microwires for oxygen evolution and ZnBir batteries. <i>Energy Storage Materials</i> , 2015 , 1, 17-24	19.4	59
645	Nitrogen-Doped Carbon Electrocatalysts Decorated with Transition Metals for the Oxygen Reduction Reaction. <i>ChemCatChem</i> , 2015 , 7, 3808-3817	5.2	59
644	Graphitic Mesoporous Carbons with Embedded Prussian Blue-Derived Iron Oxide Nanoparticles Synthesized by Soft Templating and Low-Temperature Graphitization. <i>Chemistry of Materials</i> , 2013 , 25, 2803-2811	9.6	59
643	Monitoring Changes in Surface and Structural Properties of Porous Carbons Modified by Different Oxidizing Agents. <i>Journal of Colloid and Interface Science</i> , 1999 , 214, 438-446	9.3	58
642	Novel route to periodic mesoporous aminosilicas, PMAs: ammonolysis of periodic mesoporous organosilicas. <i>Journal of the American Chemical Society</i> , 2003 , 125, 11662-73	16.4	57
641	A general model of liquidBolid chroamtography with mixed mobile phases involving concurrent adsorption and partition effects. <i>Journal of Chromatography A</i> , 1986 , 351, 1-16	4.5	57
640	Effects of surface heterogeneity in adsorption from binary liquid mixtures. <i>Journal of Colloid and Interface Science</i> , 1980 , 73, 475-482	9.3	57
639	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. <i>Nature Energy</i> , 2021 , 6, 904-9	16 2.3	57
638	Fabrication of coreEhell, yolkEhell and hollow Fe3O4@carbon microboxes for high-performance lithium-ion batteries. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 823-830	7.8	56
637	High surface area graphitized carbon with uniform mesopores synthesised by a colloidal imprinting method. <i>Chemical Communications</i> , 2002 , 1346-1347	5.8	55
636	Effect of microstructure and surface hydroxyls on the catalytic activity of Au/AlOOH for formaldehyde removal at room temperature. <i>Journal of Colloid and Interface Science</i> , 2017 , 501, 164-17	49.3	54
635	Well-Defined Poly(ethylene oxide)Polyacrylonitrile Diblock Copolymers as Templates for Mesoporous Silicas and Precursors for Mesoporous Carbons. <i>Chemistry of Materials</i> , 2006 , 18, 1417-142	49.6	54
634	Adsorption, Thermogravimetric, and NMR Studies of FSM-16 Material Functionalized with Alkylmonochlorosilanes. <i>Journal of Physical Chemistry B</i> , 1999 , 103, 6252-6261	3.4	53
633	Studies of physicochemical and chromatographic properties of mixed amino-alkylamide bonded phases. <i>Journal of Chromatography A</i> , 1994 , 673, 11-19	4.5	53
632	Liquid-solid chromatography. Recent progress in theoretical studies concerning the dependence of the capacity ratio upon the mobile phase composition. <i>Journal of High Resolution Chromatography</i> , 1982 , 5, 3-12		53
631	Determination of energy distribution function from observed adsorption isotherms. <i>Colloid and Polymer Science</i> , 1975 , 253, 164-166	2.4	53
630	Copper benzene-1,3,5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents. <i>Journal of Colloid and Interface Science</i> , 2019 , 535, 122-132	9.3	53

629	Adsorption Properties of Activated Carbons Prepared from Waste CDs and DVDs. <i>ACS Sustainable Chemistry and Engineering</i> , 2015 , 3, 733-742	8.3	52
628	Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction. <i>Chemistry - an Asian Journal</i> , 2015 , 10, 1546-53	4.5	52
627	Characterization of Structural and Surface Properties of Activated Carbon Fibers. <i>Journal of Colloid and Interface Science</i> , 1998 , 204, 151-6	9.3	52
626	Adsorption studies of thermal stability of SBA-16 mesoporous silicas. <i>Applied Surface Science</i> , 2007 , 253, 5660-5665	6.7	52
625	Critical discussion of simple adsorption methods used to evaluate the micropore size distribution. <i>Adsorption</i> , 1997 , 3, 209-219	2.6	50
624	Comparative studies of structural and surface properties of porous inorganic oxides used in liquid chromatography. <i>Journal of Chromatography A</i> , 1998 , 797, 93-102	4.5	50
623	Current state in adsorption from multicomponent solutions of nonelectrolytes on solids. <i>Advances in Colloid and Interface Science</i> , 1983 , 19, 137-177	14.3	50
622	Theoretical basis of liquid adsorption chromatography with mixed mobile phases and its connection with the theory of adsorption from multicomponent solutions. <i>Advances in Colloid and Interface Science</i> , 1985 , 22, 177-227	14.3	50
621	Defect formation in metalBrganic frameworks initiated by the crystal growth-rate and effect on catalytic performance. <i>Journal of Catalysis</i> , 2017 , 354, 84-91	7.3	49
620	Colloidal Silica Templating Synthesis of Carbonaceous Monoliths Assuring Formation of Uniform Spherical Mesopores and Incorporation of Inorganic Nanoparticles (Chemistry of Materials, 2008, 20, 1069-1075)	9.6	49
619	A new isotherm equation for single-solute adsorption from dilute solutions on energetically heterogeneous solids. <i>Monatshefte Fil Chemie</i> , 1983 , 114, 711-715	1.4	48
618	Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 11615-11622	13	47
617	Syngas production from electrocatalytic CO2 reduction with high energetic efficiency and current density. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 7675-7682	13	47
616	Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2. <i>RSC Advances</i> , 2014 , 4, 16503-16511	3.7	47
615	Incorporation of Inorganic Nanoparticles into Mesoporous Carbons Synthesized by Soft Templating. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 11657-11660	3.8	47
614	Nitrogen Adsorption Study of MCM-41 Molecular Sieves Synthesized Using Hydrothermal Restructuring. <i>Adsorption</i> , 2000 , 6, 47-51	2.6	47
613	Adsorption on heterogeneous surfaces. Surface Science, 1974 , 42, 552-564	1.8	47
612	Thermogravimetric monitoring of the MCM-41 synthesis. <i>Thermochimica Acta</i> , 2000 , 363, 175-180	2.9	46

(2011-1990)

611	Thermodynamics of gas adsorption on fractal surfaces of heterogeneous microporous solids. Journal of Chemical Physics, 1990 , 92, 7589-7595	3.9	46	
610	Liquid adsorption chromatography with mixed mobile phases. <i>Journal of Chromatography A</i> , 1979 , 179, 237-245	4.5	46	
609	Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. <i>Adsorption</i> , 2013 , 19, 557-561	2.6	45	
608	Periodic mesoporous organosilicas with multiple bridging groups and spherical morphology. <i>Langmuir</i> , 2007 , 23, 11844-9	4	45	
607	Equilibrium adsorption in cylindrical mesopores: a modified Broekhoff and de Boer theory versus density functional theory. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 1947-58	3.4	45	
606	Synthesis and Properties of Lanthanide Incorporated Mesoporous Molecular Sieves. <i>Journal of Colloid and Interface Science</i> , 1999 , 218, 462-467	9.3	45	
605	Relation between adsorption potential distribution and pore volume distribution for microporous carbons. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 1996 , 118, 203-210	5.1	45	
604	Adsorption of gas mixtures on heterogeneous solid surfaces: I. Extension of TEh isotherm on adsorption from gas mixtures. <i>Colloid and Polymer Science</i> , 1976 , 254, 643-649	2.4	45	
603	Dependence of the capacity ratio on mobile phase composition in liquid adsorption chromatography. <i>Chromatographia</i> , 1978 , 11, 581-585	2.1	45	
602	Recent Progress in Engineering the Atomic and Electronic Structure of Electrocatalysts via Cation Exchange Reactions. <i>Advanced Materials</i> , 2020 , 32, e2001866	24	45	
601	Novel Nanoporous Carbons from Well-Defined Poly(styrene-co-acrylonitrile)-Grafted Silica Nanoparticles. <i>Chemistry of Materials</i> , 2011 , 23, 2024-2026	9.6	44	
600	Preparation and properties of silicagold coreanell particles. <i>Colloids and Surfaces A:</i> Physicochemical and Engineering Aspects, 2011 , 373, 167-171	5.1	44	
599	Periodic mesoporous organosilicas with Im3m symmetry and large isocyanurate bridging groups. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 2972-5	3.4	44	
598	Effect of acid concentration on pore size in polymer-templated mesoporous alumina. <i>Journal of Materials Chemistry</i> , 2012 , 22, 86-92		43	
597	Cysteine-assisted tailoring of adsorption properties and particle size of polymer and carbon spheres. <i>Langmuir</i> , 2013 , 29, 4032-8	4	43	
596	A new method for the accurate pore size analysis of MCM-41 and other silica based mesoporous materials. <i>Studies in Surface Science and Catalysis</i> , 2000 , 71-80	1.8	43	
595	Adsorption of Lead Ions from Aqueous Phase on Mesoporous Silica with P-Containing Pendant Groups. <i>ACS Applied Materials & Discoups amp; Interfaces</i> , 2015 , 7, 23144-52	9.5	42	
594	Effect of nonionic structure-directing agents on adsorption and structural properties of mesoporous alumina. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9066		42	

593	Three-dimensional cubic (Im3m) periodic mesoporous organosilicas with benzene- and thiophene-bridging groups. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2076		42
592	Al-MCM-41 sorbents for bovine serum albumin: relation between Al content and performance. <i>Microporous and Mesoporous Materials</i> , 2004 , 75, 221-229	5.3	42
591	Sequential HydroborationAlcoholysis and EpoxidationRing Opening Reactions of Vinyl Groups in Mesoporous Vinylsilica. <i>Advanced Functional Materials</i> , 2001 , 11, 447	15.6	42
590	Major advances in the development of ordered mesoporous materials. <i>Chemical Communications</i> , 2020 , 56, 7836-7848	5.8	41
589	Rugby-like anatase titania hollow nanoparticles with enhanced photocatalytic activity. <i>CrystEngComm</i> , 2011 , 13, 7044	3.3	41
588	Soft-templating synthesis and properties of mesoporous alumina E itania. <i>Microporous and Mesoporous Materials</i> , 2010 , 128, 180-186	5.3	41
587	Determination of the Lamellar Phase Content in MCM-41 Using X-ray Diffraction, Nitrogen Adsorption, and Thermogravimetry. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 1581-1589	3.4	41
586	Energetic heterogeneity of reference carbonaceous materials. <i>Langmuir</i> , 1993 , 9, 2537-2546	4	41
585	Evaluation of energetic heterogeneity and microporosity of activated carbon fibers on the basis of gas adsorption isotherms. <i>Langmuir</i> , 1991 , 7, 2719-2722	4	41
584	Synthesis and properties of mesoporous carbons with high loadings of inorganic species. <i>Carbon</i> , 2009 , 47, 3034-3040	10.4	40
583	Ordered mesoporous silica: microwave synthesis. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 2004 , 112, 106-110	3.1	40
582	Ordered Mesoporous Silicas with 2,5-Dimercapto-1,3,4-Thiadiazole Ligand: High Capacity Adsorbents for Mercury Ions. <i>Adsorption</i> , 2005 , 11, 205-214	2.6	40
581	Pore structure development in activated carbon honeycombs. <i>Carbon</i> , 2000 , 38, 983-993	10.4	40
580	Effects of surface heterogeneity in adsorption from binary liquid mixtures. <i>Journal of Colloid and Interface Science</i> , 1979 , 69, 287-300	9.3	40
579	Facile formation of metallic bismuth/bismuth oxide heterojunction on porous carbon with enhanced photocatalytic activity. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 82-91	9.3	40
578	Colloidal templating synthesis and adsorption characteristics of microporous the soporous carbons from Kraft lignin. <i>Carbon</i> , 2013 , 62, 233-239	10.4	39
577	Supercritical Fluid Growth of Porous Carbon Nanocages. Chemistry of Materials, 2007, 19, 3349-3354	9.6	39
576	Renaissance of StBer method for synthesis of colloidal particles: New developments and opportunities. <i>Journal of Colloid and Interface Science</i> , 2021 , 584, 838-865	9.3	39

575	Dual-dehydrogenation-promoted catalytic oxidation of formaldehyde on alkali-treated Pt clusters at room temperature. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 10432-10438	13	38
574	Synthesis of highly active and stable spinel-type oxygen evolution electrocatalysts by a rapid inorganic self-templating method. <i>Chemistry - A European Journal</i> , 2014 , 20, 12669-76	4.8	38
573	Synthesis and characterization of ordered mesoporous silicas with high loadings of methyl groups. Journal of Materials Chemistry, 2002 , 12, 3452-3457		38
572	Effects of solute-solvent and solvent-solvent association in liquid adsorption chromatography with binary mobile phase. <i>Journal of High Resolution Chromatography</i> , 1980 , 3, 257-260		38
571	Simple relationships for predicting multi-solute adsorption from dilute aqueous solutions. <i>Chemical Engineering Science</i> , 1981 , 36, 1017-1019	4.4	38
570	Mechanochemistry: Toward green synthesis of metal©rganic frameworks. <i>Materials Today</i> , 2021 , 46, 109-124	21.8	38
569	One-Pot Synthesis of MeAl2O4 (Me = Ni, Co, or Cu) Supported on EAl2O3 with Ultralarge Mesopores: Enhancing Interfacial Defects in EAl2O3 To Facilitate the Formation of Spinel Structures at Lower Temperatures. <i>Chemistry of Materials</i> , 2018 , 30, 436-446	9.6	38
568	Synthesis of mesoporous silica-tethered phosphonic acid sorbents for uranium species from aqueous solutions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2015 , 482, 1-8	5.1	37
567	Dendritic porous yolk@ordered mesoporous shell structured heterogeneous nanocatalysts with enhanced stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21560-21569	13	37
566	Polymer-Templated Mesoporous Organosilicas with Two Types of Multifunctional Organic Groups. <i>Industrial & Description of the Computer of the Manager of the</i>	3.9	37
565	Improvement of the Derjaguin-Broekhoff-de Boer theory for capillary condensation/evaporation of nitrogen in mesoporous systems and its implications for pore size analysis of MCM-41 silicas and related materials. <i>Langmuir</i> , 2005 , 21, 1827-33	4	37
564	Surface Modifications of Cage-like and Channel-like Mesopores and Their Implications for Evaluation of Sizes of Entrances to Cage-like Mesopores. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 119	0 00 111	966
563	Correlation between microporosity and fractal dimension of active carbons. <i>Carbon</i> , 1993 , 31, 325-331	10.4	37
562	Isotherm equations for adsorption on heterogeneous microporous solids. <i>Monatshefte Fil Chemie</i> , 1986 , 117, 7-19	1.4	37
561	Mesoporous organosilica with amidoxime groups for CO2 sorption. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 13069-78	9.5	36
560	Adsorption and structural properties of soft-templated mesoporous carbons obtained by carbonization at different temperatures and KOH activation. <i>Applied Surface Science</i> , 2010 , 256, 5187-5	190	36
559	Comparison of the retention of organic acids on alkyl and alkylamide chemically bonded phases. Journal of Chromatography A, 1995 , 691, 217-224	4.5	36
558	Thermodynamics of gas adsorption on heterogeneous microporous solids. <i>Langmuir</i> , 1987 , 3, 795-799	4	36

557	A boron imidazolate framework with mechanochromic and electrocatalytic properties. <i>Materials Horizons</i> , 2018 , 5, 1151-1155	14.4	36
556	One-Pot Synthesis of Mesoporous Ni-Ti-Al Ternary Oxides: Highly Active and Selective Catalysts for Steam Reforming of Ethanol. <i>ACS Applied Materials & District Materials & Dist</i>	9.5	35
555	Phenolic resin-based carbons with ultra-large mesopores prepared in the presence of poly(ethylene oxide)poly(butylene oxide)poly(ethylene oxide) triblock copolymer and trimethyl benzene. <i>Carbon</i> , 2013 , 51, 45-51	10.4	35
554	Monodisperse Particles of Bifunctional Periodic Mesoporous Organosilica. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4897-4902	3.8	35
553	Energetic heterogeneity and molecular size effects in physical adsorption on solid surfaces. <i>Journal of Colloid and Interface Science</i> , 1986 , 109, 310-324	9.3	35
552	Theory of adsorption from multicomponent liquid mixtures on solid surfaces and its application to liquid adsorption chromatography. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1980 , 76, 2486	5	35
551	Tetraethyl orthosilicate-assisted synthesis of nitrogen-containing porous carbon spheres. <i>Carbon</i> , 2017 , 121, 408-417	10.4	34
550	Structural and surface properties of siliceous and titanium-modified HMS molecular sieves. <i>Microporous Materials</i> , 1997 , 9, 173-182		34
549	Direct synthesis of mesostructured lamellar molybdenum disulfides using a molten neutral n-alkylamine as the solvent and template. <i>Journal of the American Chemical Society</i> , 2002 , 124, 12090-1	16.4	34
548	Theoretical foundations of physical adsorption from binary non-electrolytic liquid mixtures on solid surfaces: present and future. <i>Advances in Colloid and Interface Science</i> , 1987 , 27, 211-283	14.3	34
547	Liquid adsorption chromatography with mixed mobile phases. <i>Journal of Chromatography A</i> , 1979 , 178, 27-40	4.5	34
546	Application of DubininRadushkevichBype equation for describing bisolute adsorption from dilute aqueous solutions on activated carbon. <i>Journal of Colloid and Interface Science</i> , 1981 , 84, 191-195	9.3	34
545	Ultrahigh benzene adsorption capacity of graphene-MOF composite fabricated via MOF crystallization in 3D mesoporous graphene. <i>Microporous and Mesoporous Materials</i> , 2019 , 279, 387-394	5.3	34
544	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54	16.8	34
543	Triconstituent co-assembly synthesis of N,S-doped carbonlilica nanospheres with smooth and rough surfaces. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 3721-3727	13	33
542	Mesoporous carbons synthesized by soft-templating method: Determination of pore size distribution from argon and nitrogen adsorption isotherms. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 573-579	5.3	33
541	Synthesis of FDU-1 silica with narrow pore size distribution and tailorable pore entrance size in the presence of sodium chloride. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 3838-43	3.4	33
540	Characterization of modified mesoporous silicas using argon and nitrogen adsorption. <i>Microporous and Mesoporous Materials</i> , 2001 , 44-45, 725-732	5.3	33

539	Engineering High-Energy Interfacial Structures for High-Performance Oxygen-Involving Electrocatalysis. <i>Angewandte Chemie</i> , 2017 , 129, 8659-8663	3.6	32
538	Development of nickel-incorporated MCM-41flarbon composites and their application in nitrophenol reduction. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9618-9628	13	32
537	Mesoporous calcium oxideBilica and magnesium oxideBilica composites for CO2 capture at ambient and elevated temperatures. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 10914-10924	13	32
536	Influence of temperature, carbon precursor/copolymer ratio and acid concentration on adsorption and structural properties of mesoporous carbons prepared by soft-templating. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2009 , 352, 113-117	5.1	32
535	Selectivity of alkylamide bonded-phases with respect to organic acids under reversed-phase conditions. <i>Journal of Chromatography A</i> , 1997 , 762, 147-58	4.5	32
534	Colloid-imprinted carbons as stationary phases for reversed-phase liquid chromatography. <i>Analytical Chemistry</i> , 2004 , 76, 5479-85	7.8	32
533	Application of density functional theory to equilibrium adsorption of argon and nitrogen on amorphous silica surface. <i>Applied Surface Science</i> , 2005 , 252, 548-561	6.7	32
532	Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile. <i>Carbon</i> , 2001 , 39, 2080-2082	10.4	32
531	Improved Pore-Size Analysis of Carbonaceous Adsorbents. <i>Adsorption Science and Technology</i> , 2002 , 20, 307-315	3.6	32
530	Determination of the surface area and mesopore volume for lanthanide-incorporated MCM-41 materials by using high resolution thermogravimetry. <i>Thermochimica Acta</i> , 2000 , 345, 173-177	2.9	32
529	Current state and perspectives of developments in the theory of mixed-gas adsorption on solid surfaces. <i>Thin Solid Films</i> , 1978 , 50, 163-169	2.2	32
528	Microwave-assisted synthesis of periodic mesoporous organosilicas with ethane and disulfide groups. <i>Microporous and Mesoporous Materials</i> , 2009 , 119, 144-149	5.3	31
527	Surface and Structural Properties of Novel Titanium Phosphates. <i>Journal of Colloid and Interface Science</i> , 1997 , 191, 442-8	9.3	31
526	Excess adsorption isotherms for solid-liquid systems and their analysis to determine the surface phase capacity. <i>Advances in Colloid and Interface Science</i> , 1990 , 31, 155-223	14.3	31
525	Characterization of the surface composition of alkyl bonded phases under reversed-phase liquid chromatographic conditions using homologues of alkanoate and perfluoroalkanoate esters as solute probes. <i>Analytical Chemistry</i> , 1990 , 62, 2092-2098	7.8	31
524	Adsorption of multicomponent liquid mixtures on heterogeneous surfaces. <i>Journal of Colloid and Interface Science</i> , 1979 , 69, 311-317	9.3	31
523	Amidoxime-functionalized nanocrystalline celluloseThesoporous silica composites for carbon dioxide sorption at ambient and elevated temperatures. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 7462-	-1 473	30
522	Tailoring microporosity and nitrogen content in carbons for achieving high uptake of CO2 at ambient conditions. <i>Adsorption</i> , 2014 , 20, 287-293	2.6	30

521	Adsorption and structural properties of ordered mesoporous alumina synthesized in the presence of F127 block copolymer. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2011 , 385, 121-125	5.1	30
520	Functionalized MCM-41 and CeMCM-41 Materials Synthesized via Interfacial Reactions. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9713-9719	3.4	30
519	A comprehensive theoretical description of physical adsorption of vapors on heterogeneous microporous solids. <i>The Journal of Physical Chemistry</i> , 1989 , 93, 5225-5230		30
518	Models of solute and solvent distribution for describing retention in liquid chromatography. <i>Journal of Chromatography A</i> , 1987 , 387, 55-64	4.5	30
517	TheLangmuir-Freundlich equation in adsorption from dilute solutions on solids. <i>Monatshefte Fill Chemie</i> , 1983 , 114, 393-397	1.4	30
516	Numerical solutions of the adsorption integral equation utilizing the spline functions. <i>Thin Solid Films</i> , 1985 , 123, 245-272	2.2	30
515	Activated carbon derived from chitin aerogels: preparation and CO2 adsorption. <i>Cellulose</i> , 2018 , 25, 19	91 ţ. ¶92	2 0 29
514	Amidoxime-functionalized microcrystalline celluloseThesoporous silica composites for carbon dioxide sorption at elevated temperatures. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 4808-4819	13	29
513	Ultrathin Titanate Nanosheets/Graphene Films Derived from Confined Transformation for Excellent Na/K Ion Storage. <i>Angewandte Chemie</i> , 2018 , 130, 8676-8680	3.6	29
512	Hydrothermal Synthesis and Surface Characteristics of Novel Alpha Alumina Nanosheets with Controlled Chemical Composition. <i>Chemistry of Materials</i> , 2010 , 22, 6564-6574	9.6	29
511	Adsorption and structural properties of channel-like and cage-like organosilicas. <i>Adsorption</i> , 2006 , 12, 293-308	2.6	29
510	Surface Heterogeneity Analysis of MCM-41 Metallosilicates by Using Nitrogen Adsorption Datall <i>Langmuir</i> , 1999 , 15, 5683-5688	4	29
509	Study of Cd(II) adsorption from aqueous solution on activated carbons. <i>Carbon</i> , 1986 , 24, 15-20	10.4	29
508	Investigation of solutions of the integral adsorption equation in respect to the range of integration of the adsorption energy. <i>Surface Science</i> , 1975 , 47, 429-439	1.8	29
507	Determination of the pre-exponential factor of Henry's constant by gas adsorption chromatography. <i>Journal of Chromatography A</i> , 1976 , 121, 185-198	4.5	29
506	Engineering of Yolk/Core-Shell Structured Nanoreactors for Thermal Hydrogenations. <i>Small</i> , 2021 , 17, e1906250	11	29
505	Comparative studies of chromatographic properties of silica-based amide-bonded phases under hydroBrganic conditions. <i>Journal of Chromatography A</i> , 1998 , 797, 103-110	4.5	28
504	Evaluation of the energy distribution function from liquid/solid adsorption measurements. <i>Langmuir</i> , 1993 , 9, 2547-2554	4	28

503	Studies of the structural heterogeneity of microporous carbons using liquid/solid adsorption isotherms. <i>Langmuir</i> , 1993 , 9, 2555-2561	4	28	
502	Application of excess adsorption data measured for components of the mobile phase for characterizing chromatographic systems. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1981 , 77, 1277		28	
501	A Model of Liquid Adsorption Chromatography Involving Solute-Solvent Interaction in the Mobile Phase, Energetic Heterogeneity of the Adsorbent, and Differences in Molecular Sizes of Solute and Solvents. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1981 , 4, 2121-2145		28	
500	Adsorption of gas mixtures on heterogeneous surfaces. Analytical solution of integral equation for jovanovic adsorption isotherm. <i>Journal of Colloid and Interface Science</i> , 1975 , 53, 422-428	9.3	28	
499	Revisiting the StBer method: Design of nitrogen-doped porous carbon spheres from molecular precursors of different chemical structures. <i>Journal of Colloid and Interface Science</i> , 2016 , 476, 55-61	9.3	28	
498	Microporosity development in phenolic resin-based mesoporous carbons for enhancing CO2 adsorption at ambient conditions. <i>Applied Surface Science</i> , 2014 , 289, 592-600	6.7	27	
497	Preparation of porous nanocarbons with tunable morphology and pore size from copolymer templated precursors. <i>Materials Horizons</i> , 2014 , 1, 121-124	14.4	27	
496	Periodic Mesoporous Benzeneßilicas Prepared Using Boric Acid as Catalyst. <i>Chemistry of Materials</i> , 2011 , 23, 1971-1976	9.6	27	
495	Cage-like ordered silica with large mesopore volume synthesized by doubling amount of polymer, adding sodium chloride and lowering acid concentration. <i>Chemical Communications</i> , 2005 , 1076-8	5.8	27	
494	Adsorption Characterization of Octyl Bonded Phases for High Performance Liquid Chromatography. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1996 , 19, 2767-2784	1.3	27	
493	Chromatographic and related studies of alkylamide phases. <i>Chromatographia</i> , 1994 , 39, 155-161	2.1	27	
492	Analytical expressions for the retention volume in gas adsorption chromatography. <i>Chromatographia</i> , 1976 , 9, 161-167	2.1	27	
491	Recent advances in the development and applications of biomass-derived carbons with uniform porosity. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 18464-18491	13	27	
490	Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2. <i>Microporous and Mesoporous Materials</i> , 2018 , 261, 105-110	5.3	27	
489	Developing microporosity in Kevlar -derived carbon fibers by CO2 activation for CO2 adsorption. <i>Journal of CO2 Utilization</i> , 2016 , 16, 17-22	7.6	26	
488	Preparation and adsorption properties of aerocellulose-derived activated carbon monoliths. <i>Cellulose</i> , 2016 , 23, 1363-1374	5.5	26	
487	Post-synthesis surface-modified silicas as adsorbents for heavy metal ion contaminants Cd(II), Cu(II), Cr(III), and Sr(II) in aqueous solutions. <i>Journal of Colloid and Interface Science</i> , 2013 , 392, 57-64	9.3	26	
486	Investigations of water film on the surface of activated carbons by thermal analysis. <i>Langmuir</i> , 1992 , 8, 229-232	4	26	

485	Physical adsorption of gases on energetically heterogeneous solids I. GeneralizedLangmuir equation and its energy distribution. <i>Monatshefte Fil Chemie</i> , 1984 , 115, 997-1012	1.4	26
484	Description of kinetics and equilibrium state of adsorption from multicomponent gas mixtures on solid surfaces. <i>Thin Solid Films</i> , 1980 , 71, 273-304	2.2	26
483	Simple model of liquid-solid chromatography involving solute-solvent and solvent-solvent interactions. <i>Journal of Chromatography A</i> , 1981 , 210, 130-132	4.5	26
482	Engineering nanoreactors for metal@halcogen batteries. <i>Energy and Environmental Science</i> , 2021 , 14, 540-575	35.4	26
481	Template-free synthesis of hierarchical EAl2O3 nanostructures and their adsorption affinity toward phenol and CO2. <i>RSC Advances</i> , 2015 , 5, 7066-7073	3.7	25
480	Identification of preferentially exposed crystal facets by X-ray diffraction RSC Advances, 2020, 10, 558.	5 ₃ 5 ₇ 589	25
479	Tailoring Adsorption and Framework Properties of Mesoporous Polymeric Composites and Carbons by Addition of Organosilanes during Soft-Templating Synthesis. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 6298-6303	3.8	25
478	Bifunctional periodic mesoporous organosilicas with thiophene and isocyanurate bridging groups. <i>Langmuir</i> , 2009 , 25, 13258-63	4	25
477	Shape-selective Raman scattering from surface phonon modes in aggregates of amorphous SiO2 nanoparticles. <i>Journal of Applied Physics</i> , 1997 , 82, 3499-3507	2.5	25
476	Large Pore Volume Carbons with Uniform Mesopores and Macropores: Synthesis, Characterization, and Relations between Adsorption Parameters of Silica Templates and their Inverse Carbon Replicas. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 9742-9748	3.8	25
475	Synthesis and Characterization of Polymer-Templated Mesoporous Silicas Containing Niobium. Journal of Physical Chemistry B, 2004 , 108, 3722-3727	3.4	25
474	Novel pitch-based carbons with bimodal distribution of uniform mesopores. <i>Chemical Communications</i> , 2004 , 2576-7	5.8	25
473	Determination of Phase Composition of MCM-48/Lamellar Phase Mixtures Using Nitrogen Adsorption and Thermogravimetry. <i>Chemistry of Materials</i> , 2002 , 14, 4434-4442	9.6	25
472	Comparison of Energy Distributions Calculated for Active Carbons from Benzene Gas/Solid and Liquid/Solid Adsorption Data. <i>Langmuir</i> , 1995 , 11, 1297-1303	4	25
471	Dependence of the methylene selectivity on the composition of hydro-organic eluents for reversed-phase liquid chromatographic systems with alkyl bonded phases. <i>Chromatographia</i> , 1990 , 30, 393-399	2.1	25
470	Distribution functions characterizing structural heterogeneity of activated carbons. <i>Carbon</i> , 1988 , 26, 1-6	10.4	25
469	Characterization of energetic and structural heterogeneities of activated carbons. <i>Langmuir</i> , 1988 , 4, 911-917	4	25
468	Adsorption of binary gas mixtures on heterogeneous surfaces. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1975 , 53, 59-60	2.3	25

467	Adsorption parameters and the form of the energy distribution function - a discussion. <i>Thin Solid Films</i> , 1976 , 31, 321-328	2.2	25	
466	Adsorption of gas mixtures on heterogeneous surfaces. <i>Journal of Colloid and Interface Science</i> , 1978 , 65, 9-18	9.3	25	
465	Ultrafast preparation of saccharide-derived carbon microspheres with excellent dispersibility via ammonium persulfate-assisted hydrothermal carbonization. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18840-18845	13	24	
464	Surfactant-assisted synthesis of mesoporous silica/ceriaBilica composites with high cerium content under basic conditions. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 12595	13	24	
463	Selective ion exchange governed by the Irving-Williams series in K2Zn3[Fe(CN)6]2 nanoparticles: toward a designer prodrug for Wilson's disease. <i>Inorganic Chemistry</i> , 2015 , 54, 1212-4	5.1	24	
462	Mesoporous SilicateBurfactant Composites with Hydrophobic Surfaces and Tailored Pore Sizes. Journal of Physical Chemistry B, 2002 , 106, 10096-10101	3.4	24	
461	Association effects in adsorption from multicomponent solutions on solids and liquid adsorption chromatography. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1983 , 79, 363		24	
460	Dependence of the distribution coefficient on the mobile phase composition in liquid adsorption chromatography. II. Analytical equations for the distribution coefficient involving non-ideality of the mobile phase and heterogeneity of the adsorbent surface. <i>Chromatographia</i> , 1979 , 12, 672-678	2.1	24	
459	Adsorption of gas mixtures on heterogeneous surfaces: The integral representation for a monolayer total adsorption isotherm. <i>Surface Science</i> , 1975 , 52, 641-652	1.8	24	
458	Statistical thermodynamics of mixed-gas adsorption. Localized monolayer adsorption on heterogeneous surfaces. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1977 , 73, 933		24	
457	Gradient optimization in elution liquid chromatography. <i>Journal of Chromatography A</i> , 1978 , 153, 309-3	1.9 .5	24	
456	Mn-Doped Ordered Mesoporous CeriaBilica Composites and Their Catalytic Properties toward Biofuel Production. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 15892-15901	3.8	23	
455	Carbon-gold core-shell structures: formation of shells consisting of gold nanoparticles. <i>Chemical Communications</i> , 2012 , 48, 3972-4	5.8	23	
454	Studies of the interfacial properties of chemically bonded phases by sorption and liquid chromatography. <i>Journal of Chromatography A</i> , 1996 , 722, 19-24	4.5	23	
453	Reordering / resonation studies of alkylamide phases. <i>Journal of Chromatography A</i> , 1994 , 659, 261-265	4.5	23	
452	Use of adsorption isotherms of light normal alkanes for characterizing microporous activated carbons. <i>Langmuir</i> , 1991 , 7, 173-177	4	23	
451	Gas adsorption on heterogeneous surfaces: A detailed computation of adsorption energy distribution. <i>European Physical Journal D</i> , 1975 , 25, 891-901		23	
450	Adsorption of gas mixtures on heterogeneous surfaces adsorption of carbon dioxide and xenon on aluminum oxide. <i>Journal of Colloid and Interface Science</i> , 1975 , 52, 41-45	9.3	23	

449	Development of mesoporous magnesium oxidellumina composites for CO2 capture. <i>Journal of CO2 Utilization</i> , 2016 , 13, 114-118	7.6	22
448	Highly microporous polymer-based carbons for CO2 and H2 adsorption. <i>RSC Advances</i> , 2014 , 4, 14795	3.7	22
447	Electron microscopy and nitrogen adsorption studies of film-type carbon replicas with large pore volume synthesized by using colloidal silica and SBA-15 as templates. <i>Carbon</i> , 2007 , 45, 2171-2177	10.4	22
446	Adsorption and structural properties of mesoporous carbons obtained from mesophase pitch and phenol-formaldehyde carbon precursors using porous templates prepared from colloidal silica. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2819		22
445	Carbide-Derived Nanoporous Carbon and Novel CoreBhell Nanowires. <i>Chemistry of Materials</i> , 2006 , 18, 753-758	9.6	22
444	Theoretical Foundations of Liquid Adsorption Chromatography with Mixed Eluent. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1984 , 7, 393-431		22
443	Statistical thermodynamics of adsorption from multicomponent liquid mixtures on heterogeneous solid surfaces. <i>Monatshefte Fil Chemie</i> , 1981 , 112, 59-71	1.4	22
442	Continuous TLC as a pilot technique for optimization of gradient HPLC. 1. Theoretical considerations for stepwise gradient TLC with binary mobile phase. <i>Journal of High Resolution Chromatography</i> , 1978 , 1, 245-249		22
441	Benzene and Methane Adsorption on Ultrahigh Surface Area Carbons Prepared from Sulphonated Styrene Divinylbenzene Resin by KOH Activation. <i>Adsorption Science and Technology</i> , 2015 , 33, 587-594	3.6	21
440	Mesoporous Carbon Materials with Ultra-Thin Pore Walls and Highly Dispersed Nickel Nanoparticles. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 605-612	2.3	21
439	Spontaneous and Stimulated Raman Scattering from Surface Phonon Modes in Aggregated SiO2 Nanoparticles. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 8832-8835	3.4	21
438	Characterization of silica-based octyl phases of different bonding density. <i>Journal of Chromatography A</i> , 1998 , 828, 51-58	4.5	21
437	Adsorption Characterization of Two Clay Minerals Society Standard Kaolinites. <i>Journal of Colloid and Interface Science</i> , 1998 , 205, 528-530	9.3	21
436	Assessment of reliability of the HorvathRawazoe pore size analysis method using argon adsorption isotherms on ordered mesoporous silicas. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2003 , 214, 263-269	5.1	21
435	Enthalpy of immersion of a microporous solid. <i>The Journal of Physical Chemistry</i> , 1988 , 92, 3986-3988		21
434	Surface heterogeneity effects in nitrogen adsorption on chemically modified aerosils I: Discussion of the energy distribution functions evaluated by using the condensation approximation method. <i>Thin Solid Films</i> , 1981 , 85, 87-96	2.2	21
433	New possibilities of investigating adsorption phenomena by gas chromatography: Estimation of adsorbent heterogeneity from the pressure dependence of retention data. <i>Chromatographia</i> , 1974 , 7, 663-668	2.1	21
432	A theoretical isotherm for adsorption on heterogeneous surface. <i>Colloid and Polymer Science</i> , 1978 , 256, 471-477	2.4	21

(2016-2015)

431	Mesoporous aluminalirconialirganosilica composites for CO2 capture at ambient and elevated temperatures. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 2707-2716	13	20
430	SBA-15-Supported Mixed-Metal Oxides: Partial Hydrolytic Sol G el Synthesis, Adsorption, and Structural Properties. <i>ACS Applied Materials & Amp; Interfaces</i> , 2010 , 2, 134-142	9.5	20
429	Multifunctional periodic mesoporous organosilicas with bridging groups formed via dynamic covalent chemistry. <i>Chemical Communications</i> , 2010 , 46, 4568-70	5.8	20
428	Preparation of mesoporous benzeneBilica nanoparticles. <i>Microporous and Mesoporous Materials</i> , 2009 , 120, 252-256	5.3	20
427	Chromatographic Properties of Mixed Chemically Bonded Phases with Alkylamide and Aminopropyl Ligands. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1997 , 20, 2313-2325	1.3	20
426	Preparation and characterization of silica-carbon hybrids. <i>Carbon</i> , 1997 , 35, 133-139	10.4	20
425	Effect of organosilane/polymer ratio on adsorption properties of periodic mesoporous ethane-silica. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 300, 235-244	5.1	20
424	Recent developments in the synthesis and chemistry of periodic mesoporous organosilicas. <i>Studies in Surface Science and Catalysis</i> , 2002 , 1-26	1.8	20
423	A new complex of manganese(II) with l-lalanine: structure, spectroscopy and thermal study. <i>Polyhedron</i> , 1999 , 18, 2321-2326	2.7	20
422	Studies of the Surface Heterogeneity of Chemically Modified Porous Carbons by Gas-Solid Chromatography. <i>Journal of Chromatographic Science</i> , 1991 , 29, 147-152	1.4	20
421	Assessment of microporosity in porous adsorbents by comparing the liquid-solid adsorption isotherms. <i>Langmuir</i> , 1989 , 5, 987-990	4	20
420	Correlations of heterogeneity parameters for single-solute and multi-solute adsorption from dilute solutions. <i>Journal of the Chemical Society Faraday Transactions I,</i> 1988 , 84, 2951		20
419	A new isotherm equation for multilayer adsorption on heterogeneous surfaces yielding the Dubinin-Radushkevich isotherm in the submonolayer region. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1974 , 48, 171-172	2.3	20
418	Mesoporous Alumina with Amidoxime Groups for CO2 Sorption at Ambient and Elevated Temperatures. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 5598-5607	3.9	20
417	Synthesis of Porous Crystalline Doped Titania Photocatalysts Using Modified Precursor Strategy. <i>Chemistry of Materials</i> , 2016 , 28, 7878-7888	9.6	20
416	Non-Noble Plasmonic Metal-Based Photocatalysts Chemical Reviews, 2022,	68.1	20
415	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 13635-13640	13	19
414	Yolk-Shell-Structured Aluminum Phenylphosphonate Microspheres with Anionic Core and Cationic Shell. <i>Advanced Science</i> , 2016 , 3, 1500363	13.6	19

413	Equilibrium isotherms and isosteric heat for CO2 adsorption on nanoporous carbons from polymers. <i>Adsorption</i> , 2016 , 22, 581-588	2.6	19
412	Toward tunable adsorption properties, structure, and crystallinity of titania obtained by block copolymer and scaffold-assisted templating. <i>Langmuir</i> , 2013 , 29, 12549-59	4	19
411	Tailoring porosity in carbon spheres for fast carbon dioxide adsorption. <i>Journal of Colloid and Interface Science</i> , 2017 , 487, 162-174	9.3	19
410	Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate. <i>Applied Surface Science</i> , 2012 , 258, 3763-3770	6.7	19
409	Cage-like ordered mesoporous organosilicas with isocyanurate bridging groups: Synthesis, template removal and structural properties. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 68-77	5.3	19
408	Comparative studies of p6m siliceous mesostructures by powder X-ray diffraction and nitrogen adsorption. <i>Applied Surface Science</i> , 2007 , 253, 5682-5687	6.7	19
407	Assessment of ordered and complementary pore volumes in polymer-templated mesoporous silicas and organosilicas. <i>Chemical Communications</i> , 2006 , 2242-4	5.8	19
406	Application of a new numerical method for characterizing heterogeneous solids by using gas-solid chromatographic data. <i>Journal of Chromatography A</i> , 1993 , 628, 59-67	4.5	19
405	On the characterization of structural heterogeneity of microporous solids by discrete and continuous micropore distribution functions. <i>Materials Chemistry and Physics</i> , 1988 , 19, 267-289	4.4	19
404	Liquid adsorption chromatography with a two-component mobile phase. <i>Journal of Chromatography A</i> , 1979 , 170, 299-307	4.5	19
403	Surface heterogeneity effects in nitrogen adsorption on chemically modified Aerosils III: Comparative discussion of adsorption energy distributions involving physical, mathematical and numerical aspects of their evaluation. <i>Thin Solid Films</i> , 1982 , 97, 369-379	2.2	19
402	Gradient optimization in elution liquid chromatography. <i>Journal of Chromatography A</i> , 1978 , 153, 321-3	2.8 .5	19
401	Tannin-derived micro-mesoporous carbons prepared by one-step activation with potassium oxalate and CO. <i>Journal of Colloid and Interface Science</i> , 2020 , 558, 55-67	9.3	19
400	Application of novel hierarchical niobium-containing zeolites for synthesis of alkyl lactate and lactic acid. <i>Journal of Colloid and Interface Science</i> , 2018 , 516, 379-383	9.3	18
399	Highly porous carbons obtained by activation of polypyrrole/reduced graphene oxide as effective adsorbents for CO2, H2 and C6H6. <i>Journal of Porous Materials</i> , 2018 , 25, 621-627	2.4	18
398	Microwave-assisted and conventional hydrothermal synthesis of ordered mesoporous silicas with P-containing functionalities. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2014 , 459, 4-10	5.1	18
397	Mesoporous isocyanurate-containing organosilicallumina composites and their thermal treatment in nitrogen for carbon dioxide sorption at elevated temperatures. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 8244	13	18
396	Studies of intrawall porosity in the hexagonally ordered mesostructures of SBA-15 by small angle X-ray scattering and nitrogen adsorption. <i>Applied Surface Science</i> , 2010 , 256, 5311-5315	6.7	18

395	Effect of polymer-to-silica ratio on the formation of large three-dimensional cage-like mesostructures. <i>New Journal of Chemistry</i> , 2006 , 30, 1071	3.6	18
394	Features of nitrogen adsorption on nonporous carbon and silica surfaces in the framework of classical density functional theory. <i>Langmuir</i> , 2006 , 22, 6238-44	4	18
393	Co-condensation synthesis and adsorption properties of cage-like mesoporous silicas with imidazole groups. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2006 , 291, 139-147	5.1	18
392	Adsorption Characterization of Ordered Mesoporous Silicas with Mercury-Specific Immobilized Ligands. <i>Adsorption</i> , 2005 , 11, 685-690	2.6	18
391	Characterization of Silver-Containing Pitch-Based Activated Carbon Fibers. <i>Journal of Colloid and Interface Science</i> , 1999 , 220, 157-162	9.3	18
390	Use of Simulated Adsorption Isotherms To Study Surface and Structural Heterogeneities of Microporous Solids. <i>Langmuir</i> , 1995 , 11, 4532-4538	4	18
389	Thermogravimetric evaluation of the specific surface area and total porosity of microporous carbons. <i>Carbon</i> , 1996 , 34, 1109-1113	10.4	18
388	Characterization of activated carbons by distribution functions of adsorption potential and micropore dimension. <i>Materials Chemistry and Physics</i> , 1987 , 18, 103-117	4.4	18
387	Effects of surface heterogeneity in adsorption from binary liquid mixtures. IV. Adsorption model with nonideal bulk phase and regular surface phase. <i>Journal of Colloid and Interface Science</i> , 1980 , 77, 571-573	9.3	18
386	Statistical interpretation of the Jovanovilladsorption isotherms. <i>Colloid and Polymer Science</i> , 1976 , 254, 601-605	2.4	18
385	Adsorption of gas mixtures on heterogeneous surfaces. <i>Journal of Colloid and Interface Science</i> , 1977 , 59, 230-242	9.3	18
384	Adsorption of gas mixtures on heterogeneous solid surfaces II. Adsorption isotherms for gaseous mixtures whose pure-gas isotherms show the Freundlich, TEh and Langmuir behaviours. <i>Colloid and Polymer Science</i> , 1977 , 255, 32-34	2.4	18
383	Dependence of the capacity ratio on the composition of the binary mobile phase in liquidBolid adsorption chromatography. <i>Journal of Chromatography A</i> , 1978 , 157, 1-5	4.5	18
382	Metal-metal interactions in correlated single-atom catalysts Science Advances, 2022, 8, eabo0762	14.3	18
381	Catalytic activity of CeIVO2/Ce2IIIO3-silica mesoporous composite materials for oxidation and esterification reactions. <i>Chemical Engineering Journal</i> , 2015 , 262, 1116-1125	14.7	17
380	A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation. <i>Angewandte Chemie</i> , 2018 , 130, 6930-6934	3.6	17
379	In Situ Synthesis of Nitrogen-Enriched Activated Carbons from Procambarus clarkii Shells with Enhanced CO2 Adsorption Performance. <i>Energy & Enhanced CO2 Adsorption Performance</i> . <i>Energy & Energy & Enhanced CO2 Adsorption Performance</i> . <i>Energy & Energy & </i>	4.1	17
378	Development of mesoporosity in carbon spheres obtained by StBer method. <i>Microporous and Mesoporous Materials</i> , 2014 , 185, 197-203	5.3	17

377	Microwave-assisted synthesis of porous carbon-titania and highly crystalline titania nanostructures. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 1948-54	9.5	17
376	Dual optimization of microporosity in carbon spheres for CO2 adsorption by using pyrrole as the carbon precursor and potassium salt as the activator. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19456-1	19 ¹ 466	17
375	Synthesis and Properties of Ordered Mesoporous Organosilicas with Vinyl and Mercaptopropyl Surface Groups: The Effect of Ligand Concentration on Pore Structure. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 4875-4884	3.8	17
374	Bimodal pore size distributions for carbons: experimental results and computational studies. Journal of Colloid and Interface Science, 2007, 310, 205-16	9.3	17
373	Modification of Surface and Structural Properties of Ordered Mesoporous Silicates. <i>Adsorption</i> , 1999 , 5, 39-45	2.6	17
372	Comparison of the adsorption isotherm equations associated with Gaussian and Gamma micropore-size distributions. <i>Carbon</i> , 1988 , 26, 747-748	10.4	17
371	Partially mobile adsorption of gases on solid surfaces. <i>Advances in Colloid and Interface Science</i> , 1984 , 20, 273-339	14.3	17
370	A model of adsorption at liquid-solid interface involving association in the bulk phase. <i>Monatshefte Fil Chemie</i> , 1982 , 113, 669-680	1.4	17
369	SBA-15 templating synthesis of mesoporous bismuth oxide for selective removal of iodide. <i>Journal of Colloid and Interface Science</i> , 2017 , 501, 248-255	9.3	16
368	Activated polypyrrole-derived carbon spheres for superior CO2 uptake at ambient conditions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2018 , 549, 147-154	5.1	16
367	Amine-modified silica nanotubes and nanospheres: synthesis and CO2 sorption properties. <i>Environmental Science: Nano</i> , 2016 , 3, 806-817	7.1	16
366	Importance of surface modification of Elumina in creating its nanostructured composites with zeolitic imidazolate framework ZIF-67. <i>Journal of Colloid and Interface Science</i> , 2018 , 526, 497-504	9.3	16
365	Facile synthesis of polymer and carbon spheres decorated with highly dispersed metal nanoparticles. <i>Chemical Communications</i> , 2014 , 50, 12341-3	5.8	16
364	Soft-templating synthesis of ordered mesoporous carbons in the presence of tetraethyl orthosilicate and silver salt. <i>Microporous and Mesoporous Materials</i> , 2012 , 156, 121-126	5.3	16
363	Development of Microporosity in Mesoporous Carbons. <i>Topics in Catalysis</i> , 2010 , 53, 283-290	2.3	16
362	Studies of Surface Properties of Disperse Silica and Alumina by Luminescence Measurements and Nitrogen Adsorption. <i>Journal of Colloid and Interface Science</i> , 1998 , 201, 210-219	9.3	16
361	Comparative Characterization of Octyl Bonded Phases using Methylene Selectivity Data. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1998 , 21, 923-939	1.3	16
360	Hardlvs. BoftlTemplating Synthesis of Mesoporous Nb2O5 Catalysts for Oxidation Reactions. <i>Topics in Catalysis</i> , 2008 , 49, 193-203	2.3	16

(1990-2005)

359	Adsorption of argon and nitrogen in cylindrical pores of MCM-41 materials: application of density functional theory. <i>Applied Surface Science</i> , 2005 , 252, 1013-1028	6.7	16	
358	Adsorption and Thermogravimetric Studies of Mesoporous Silica Coated with Siloxane Polymer. Journal of Colloid and Interface Science, 2001 , 240, 224-228	9.3	16	
357	Recent advances in adsorption characterization of mesoporous molecular sieves. <i>Studies in Surface Science and Catalysis</i> , 2000 , 587-596	1.8	16	
356	Extension of the Langmuir equation for describing gas adsorption on heterogeneous microporous solids. <i>Langmuir</i> , 1989 , 5, 839-844	4	16	
355	Evaluation of structural heterogeneities and surface irregularities of microporous solids. <i>Materials Chemistry and Physics</i> , 1990 , 26, 87-97	4.4	16	
354	Multilayer adsorption from multicomponent liquid mixtures on solid surfaces. <i>Monatshefte Fill Chemie</i> , 1981 , 112, 175-185	1.4	16	
353	General method for evaluating the energy distribution function from the observed adsorption isotherm. <i>Colloid and Polymer Science</i> , 1975 , 253, 683-685	2.4	16	
352	Analogy between gas adsorption and liquid adsorption chromatography. <i>Journal of Chromatography A</i> , 1976 , 117, 11-21	4.5	16	
351	Numerical studies of gas adsorption on heterogeneous solid surfaces by using the model of associated adsorbate. <i>Journal of Colloid and Interface Science</i> , 1978 , 63, 362-368	9.3	16	
350	Strategies for development of nanoporous materials with 2D building units. <i>Chemical Society Reviews</i> , 2020 ,	58.5	16	
349	2D-NLDFT adsorption models for porous oxides with corrugated cylindrical pores. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 588-597	9.3	16	
348	Poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide)-templated synthesis of mesoporous alumina: effect of triblock copolymer and acid concentration. <i>ACS Applied Materials</i> & amp; Interfaces, 2012, 4, 3738-44	9.5	15	
347	Deposition of silver nanoparticles on silica spheres and rods. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 411, 74-79	5.1	15	
346	A new approach to synthesis of periodic mesoporous organosilicas: taking advantage of self-assembly and reactivity of organic precursors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6389		15	
345	Argon and nitrogen adsorption studies of changes in connectivity of ordered cage-like large mesopores during the hydrothermal treatment. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2004 , 241, 27-34	5.1	15	
344	An improved methodology for adsorption characterization of unmodified and modified silica gels. <i>Journal of Colloid and Interface Science</i> , 2003 , 266, 168-74	9.3	15	
343	Thermoanalytical studies of water on aluminum oxides with different porosities. <i>Analytica Chimica Acta</i> , 1992 , 269, 157-165	6.6	15	
342	Use of a gamma energy distribution to model the gas chromatographic temperature dependence of solute retention on aryl-siloxane chemically modified porous carbon. <i>Journal of Chromatography</i> A 1990 513 1-11	4.5	15	

341	Studies of the surface composition of phenyl and cyanopropyl bonded phases under reversed-phase liquid chromatographic conditions using alkanoate and perfluoroalkanoate esters. <i>Analytical Chemistry</i> , 1991 , 63, 2849-2852	7.8	15
340	Theoretical description of association effects in liquid adsorption chromatography with a mixed mobile phase. <i>Journal of Chromatography A</i> , 1984 , 295, 377-386	4.5	15
339	Relationships defining dependence between adsorption parameters of Dubinin-Astakhov and generalized Langmuir equations. <i>Journal of Colloid and Interface Science</i> , 1984 , 101, 280-281	9.3	15
338	Graphical estimation of adsorbent heterogeneity. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1972 , 41, 449-450	2.3	15
337	Adsorption and structural properties of ordered mesoporous carbons synthesized by soft-templating in the presence of boric acid and tetraethyl orthosilicate. <i>RSC Advances</i> , 2012 , 2, 1877	3.7	14
336	Three-dimensional cubic mesoporous molecular sieves of FDU-1 containing niobium: dependence of niobium source on structural properties. <i>Langmuir</i> , 2005 , 21, 755-60	4	14
335	Synthesis and characterization of methyl- and vinyl-functionalized ordered mesoporous silicas with high organic content. <i>Studies in Surface Science and Catalysis</i> , 2002 , 141, 197-204	1.8	14
334	Synthesis and characterization of europium-doped ordered mesoporous silicas. <i>Journal of Materials Chemistry</i> , 2001 , 11, 2580-2586		14
333	Surface and Structural Properties of Silica Gels Used in High Performance Liquid Chromatography. Journal of Liquid Chromatography and Related Technologies, 1996 , 19, 1523-1537	1.3	14
332	Correlation between the fractal dimension and the microporous structure of a solid. <i>Monatshefte Fil Chemie</i> , 1991 , 122, 577-584	1.4	14
331	Evaluation of the fractal dimension of microporous activated carbons. <i>Fuel</i> , 1990 , 69, 1573-1574	7.1	14
330	Studies of adsorption kinetics by means of the stochastic numerical simulation. <i>Surface Science Reports</i> , 1983 , 3, 301-353	12.9	14
329	Correlation between excess adsorption data measured for solvent mixture/adsorbent systems and RM values obtained for different solutes chromatographed in binary mobile phases. <i>Journal of High Resolution Chromatography</i> , 1981 , 4, 74-78		14
328	Surface heterogeneity effects in nitrogen adsorption on chemically modified aerosils II: Adsorptive energy distribution functions evaluated using numerical methods. <i>Thin Solid Films</i> , 1982 , 87, 323-335	2.2	14
327	Studies of chromatographic packings comprising chemically bonded phases obtained from porous glass beads. <i>Journal of Chromatography A</i> , 1977 , 131, 7-18	4.5	14
326	Prussian blue-assisted one-pot synthesis of nitrogen-doped mesoporous graphitic carbon spheres for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 22092-22102	13	13
325	Ordered mesoporous carbon-titania composites and their enhanced photocatalytic properties. Journal of Colloid and Interface Science, 2015, 449, 297-303	9.3	13
324	Phosphorus Vacancies that Boost Electrocatalytic Hydrogen Evolution by Two Orders of Magnitude. <i>Angewandte Chemie</i> , 2020 , 132, 8258-8263	3.6	13

323	Amino acid-assisted synthesis of porous graphitic carbon spheres with highly dispersed Ni nanoparticles. <i>Carbon</i> , 2019 , 153, 206-216	10.4	13
322	Effect of cosolvent organic molecules on the adsorption and structural properties of soft-templated ordered mesoporous alumina. <i>Journal of Colloid and Interface Science</i> , 2012 , 367, 129-3	4 ^{9.3}	13
321	Organic acid-assisted soft-templating synthesis of ordered mesoporous carbons. <i>Adsorption</i> , 2013 , 19, 563-569	2.6	13
320	Fifty years of the theory of the volume filling of micropores. <i>Adsorption</i> , 1997 , 3, 187-188	2.6	13
319	Characterization of silica-based octyl phases of different bonding density. <i>Journal of Chromatography A</i> , 1998 , 828, 59-73	4.5	13
318	Improvement of the Derjaguin-Broekhoff-de Boer theory for the capillary condensation/evaporation of nitrogen in spherical cavities and its application for the pore size analysis of silicas with ordered cagelike mesopores. <i>Langmuir</i> , 2005 , 21, 10530-6	4	13
317	Fabrication and Characterization of Mesostructured Silica, HUM-1, and Its Ordered Mesoporous Carbon Replica. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 4316-4322	3.9	13
316	A new method for characterizing global adsorbent heterogeneity by using adsorption data. <i>Materials Chemistry and Physics</i> , 1986 , 14, 141-166	4.4	13
315	A simple isotherm equation for describing gas adsorption on heterogeneous microporous solids. <i>Monatshefte Fil Chemie</i> , 1987 , 118, 315-321	1.4	13
314	Adsorption theory of volume filling of micropores for structurally heterogeneous solids. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1988 , 84, 1139		13
313	An Extension and new Interpretation of Oscik's Equation Describing Liquid Chromatography with Mixed Mobile Phases. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1985 , 8, 1363-1378		13
312	Liquid adsorption chromatography with mixed mobile phases. <i>Journal of Chromatography A</i> , 1980 , 188, 27-32	4.5	13
311	Application of a bilayer adsorption model for explaining the adsorption of esters fromn-heptane and benzene on silica gel. <i>Monatshefte Fil Chemie</i> , 1982 , 113, 925-932	1.4	13
310	Studies on energetic heterogeneity of adsorbents by means of liquid chromatography. <i>Chromatographia</i> , 1975 , 8, 234-239	2.1	13
309	Adsorption of gas mixtures on heterogeneous surfaces. <i>Journal of Colloid and Interface Science</i> , 1977 , 59, 371-375	9.3	13
308	A new approach to the adsorption kinetics of gas mixtures on heterogeneous surfaces. <i>Reaction Kinetics and Catalysis Letters</i> , 1978 , 8, 425-429		13
307	Consequences of assuming the Bragg-Williams approximation in mixed-gas adsorption. <i>Surface Science</i> , 1978 , 78, L501-L503	1.8	13
306	Benzene adsorption on synthesized and commercial metalorganic frameworks. <i>Journal of Porous Materials</i> , 2019 , 26, 775-783	2.4	13

305	Hollow mesoporous organosilica nanospheres templated with flower-like micelles of pentablock copolymers. <i>Journal of Colloid and Interface Science</i> , 2018 , 528, 124-134	9.3	13
304	Reversible electrochemical oxidation of sulfur in ionic liquid for high-voltage Al-S batteries. <i>Nature Communications</i> , 2021 , 12, 5714	17.4	13
303	Capture of Iodide by Bismuth Vanadate and Bismuth Oxide: An Insight into the Process and its Aftermath. <i>ChemSusChem</i> , 2018 , 11, 1486-1493	8.3	12
302	Saran-Derived Carbons for CO2and Benzene Sorption at Ambient Conditions. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 15383-15388	3.9	12
301	Soft-templating synthesis and adsorption properties of mesoporous carbons with embedded silver nanoparticles. <i>Adsorption</i> , 2011 , 17, 461-466	2.6	12
300	Cage-like mesoporous organosilicas with isocyanurate bridging groups synthesized by soft templating with poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) block copolymer. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 354-62	9.3	12
299	Periodic Mesoporous Benzene- and Thiophene-Silicas Prepared Using Aluminum Chloride as an Acid Catalyst: Effect of Aluminum Salt/Organosilane Ratio and Stirring Time. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5111-5119	3.8	12
298	Polymer-templated mesoporous carbons with nickel nanoparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2010 , 362, 20-27	5.1	12
297	Influence of analysis conditions on low pressure adsorption measurements and its consequences in characterization of energetic and structural heterogeneity of microporous carbons. <i>Adsorption</i> , 1997 , 3, 277-282	2.6	12
296	Role of Aluminum Salts in the Synthesis of Polymer-Templated Periodic Mesoporous Organosilicas. <i>Chemistry of Materials</i> , 2008 , 20, 2468-2475	9.6	12
295	Benzene Adsorption Isotherms on MCM-41 and their Use for Pore Size Analysis. <i>Adsorption</i> , 2004 , 10, 195-203	2.6	12
294	Adsorption characterization of surfactant-templated ordered mesoporous silicas synthesized with and without hydrothermal treatment. <i>Applied Surface Science</i> , 2005 , 252, 562-569	6.7	12
293	Thermogravimetric characterization of mesoporous molecular sieves. <i>Studies in Surface Science and Catalysis</i> , 2000 , 129, 567-576	1.8	12
292	Application of Alkylamide Phases to Separate Compounds of Different Polarity Under Reversed Phase Conditions. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1996 , 19, 2829-2841	1.3	12
291	Thermoanalytical studies of water films on porous silicas at subambient and elevated temperatures. <i>Thermochimica Acta</i> , 1996 , 287, 225-233	2.9	12
290	Infrared Studies of the Microdomains and Mesomorphic Properties of 4'-Cyano-4-biphenyl [4-(4-pentenyloxy)]benzoate Coated on Silica. <i>Analytical Chemistry</i> , 1994 , 66, 4100-4104	7.8	12
289	Use of a displacement model for solvent sorption to study non-specific selectivity in reversed-phase liquid chromatography. <i>Chromatographia</i> , 1991 , 32, 13-18	2.1	12
288	An improved method for evaluating the micropore-size distribution from adsorption isotherm. <i>Chemical Engineering Science</i> , 1991 , 46, 3299-3301	4.4	12

(1991-1990)

Comparative studies of the overall adsorption isotherm associated with Dubinin-Astakhov equation. <i>Carbon</i> , 1990 , 28, 243-246	10.4	12
CPS L 946. <i>Colloid and Polymer Science</i> , 1985 , 263, 771-777	2.4	12
Determination of solute-solvent association effects in liquid-solid chromatography with mixed mobile phases. <i>Journal of High Resolution Chromatography</i> , 1981 , 4, 89-90		12
Some remarks on Freundlich-type multicomponent isotherm. <i>Journal of Colloid and Interface Science</i> , 1982 , 86, 588-589	9.3	12
On the characterization of microporous adsorbents. <i>Carbon</i> , 1977 , 15, 107-111	10.4	12
Adsorption of gas mixtures on homogeneous solid surfaces I. Model of double associates for adsorption of binary mixtures. <i>Colloid and Polymer Science</i> , 1978 , 256, 1089-1094	2.4	12
Effect of metal-ligand ratio on the CO adsorption properties of Cu-BTC metal-organic frameworks <i>RSC Advances</i> , 2018 , 8, 35551-35556	3.7	12
Benzene-Silica with Hexagonal and Cubic Ordered Mesostructures Synthesized in the Presence of Block Copolymers and Weak Acid Catalysts. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 16023-16029	3.8	11
Synthesis, Characterization, Properties, and Applications of Nanosized Photocatalytic Materials. Journal of Nanomaterials, 2012 , 2012, 1-3	3.2	11
Synthesis of rod-like silicagold core-shell structures. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2012 , 393, 37-41	5.1	11
Standard nitrogen adsorption data for ⊞lumina and their use for characterization of mesoporous alumina-based materials. <i>Adsorption</i> , 2013 , 19, 475-481	2.6	11
Silicon beyond the valley. <i>Nature Chemistry</i> , 2009 , 1, 166	17.6	11
Nanocasting Synthesis of Iron-Doped Mesoporous Allii Mixed Oxides Using Ordered Mesoporous Carbon Templates. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 13565-13573	3.8	11
Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij 58 or Brij 78 polymers. <i>Adsorption</i> , 2010 , 16, 377-383	2.6	11
Adsorption Energy Evaluation from Luminescence Spectra of Uranyl Ions (UO22+) Adsorbed on Disperse Silica Surfaces. <i>Journal of Colloid and Interface Science</i> , 1997 , 194, 455-69	9.3	11
Comparative Studies of Carbon Blacks by Thermogravimetry and Nitrogen Adsorption. <i>Journal of Colloid and Interface Science</i> , 1999 , 210, 200-206	9.3	11
Retention of pyridinecarboxylic acids on monomeric and polymeric alkylamide phases. <i>Journal of Chromatography A</i> , 1996 , 728, 213-224	4.5	11
Correlation between adsorption of benzene from dilute aqueous solutions and benzene vapor adsorption on microporous active carbons. <i>Carbon</i> , 1991 , 29, 1294-1296	10.4	11
	equation. Carbon, 1990, 28, 243-246 CPS L 946. Colloid and Polymer Science, 1985, 263, 771-777 Determination of solute-solvent association effects in liquid-solid chromatography with mixed mobile phases. Journal of High Resolution Chromatography, 1981, 4, 89-90 Some remarks on Freundlich-type multicomponent isotherm. Journal of Colloid and Interface Science, 1982, 86, 588-589 On the characterization of microporous adsorbents. Carbon, 1977, 15, 107-111 Adsorption of gas mixtures on homogeneous solid surfaces I. Model of double associates for adsorption of binary mixtures. Colloid and Polymer Science, 1978, 256, 1089-1094 Effect of metal-ligand ratio on the CO adsorption properties of Cu-BTC metal-organic frameworks RSC Advances, 2018, 8, 35551-35556 Benzene-Silica with Hexagonal and Cubic Ordered Mesostructures Synthesized in the Presence of Block Copolymers and Weak Acid Catalysts. Journal of Physical Chemistry C, 2012, 116, 16023-16029 Synthesis, Characterization, Properties, and Applications of Nanosized Photocatalytic Materials. Journal of Nanomaterials, 2012, 2012, 1-3 Synthesis of rod-like silicagold core-shell structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 37-41 Standard nitrogen adsorption data for Halumina and their use for characterization of mesoporous alumina-based materials. Adsorption, 2013, 19, 475-481 Silicon beyond the valley. Nature Chemistry, 2009, 1, 166 Nanocasting Synthesis of Iron-Doped Mesoporous AllTi Mixed Oxides Using Ordered Mesoporous Carbon Templates. Journal of Physical Chemistry C, 2009, 113, 13565-13573 Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij 58 or Brij 78 polymers. Adsorption, 2010, 16, 377-383 Adsorption Energy Evaluation from Luminescence Spectra of Uranyl Ions (UO22+) Adsorbed on Disperse Silica Surfaces. Journal of Colloid and Interface Science, 1997, 194, 455-69 Comparative Studies of Carbon Blacks by Thermogravimetry and Nitrogen	equation. Carbon, 1990, 28, 243-246 CPS L 946. Colloid and Palymer Science, 1985, 263, 771-777 24 Determination of solute-solvent association effects in liquid-solid chromatography with mixed mobile phases. Journal of High Resolution Chromatography, 1981, 4, 89-90 Some remarks on Freundlich-type multicomponent isotherm. Journal of Colloid and Interface Science, 1982, 86, 588-589 On the characterization of microporous adsorbents. Carbon, 1977, 15, 107-111 10-4 Adsorption of gas mixtures on homogeneous solid surfaces I. Model of double associates for adsorption of binary mixtures. Colloid and Polymer Science, 1976, 256, 1089-1094 Effect of metal-ligand ratio on the CO adsorption properties of Cu-BTC metal-organic frameworks 875 CAdvances, 2018, 8, 35551-35556 Benzene-Silica with Hexagonal and Cubic Ordered Mesostructures Synthesized in the Presence of Block Copolymers and Weak Acid Catalysts. Journal of Physical Chemistry, C, 2012, 116, 16023-16029 Synthesis, Characterization, Properties, and Applications of Nanosized Photocatalytic Materials. Journal of Nanomaterials, 2012, 2012, 1-3 Synthesis of rod-like silica@old core-shell structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 393, 37-41 Standard nitrogen adsorption data for Ellumina and their use for characterization of mesoporous alumina-based materials. Adsorption, 2013, 19, 475-481 Sillicon beyond the valley. Nature Chemistry, 2009, 1, 166 Nanocasting Synthesis of Iron-Doped Mesoporous Allii Mixed Oxides Using Ordered Mesoporous Carbon Templates. Journal of Physical Chemistry C, 2009, 113, 13565-13573 Adsorption properties of phenolic resin-based mesoporous carbons obtained by using mixed templates of Pluronic F127 and Brij S8 or Brij 78 polymers. Adsorption, 2010, 16, 377-383 Adsorption Energy Evaluation from Luminescence Spectra of Uranyl Ions (UO22+) Adsorbed on Disperse Silica Surfaces. Journal of Colloid and Interface Science, 1997, 194, 455-69 Comparative Studies of Carbon Blacks by Thermogravimetry

269	A new numerical method for calculating the energy distribution from adsorption isotherm data. <i>Chemical Physics Letters</i> , 1986 , 125, 241-245	2.5	11
268	Physical interpretation of the energy parameter in the Dubinin-Raduskevich equation. <i>Carbon</i> , 1988 , 26, 107-108	10.4	11
267	A simple model for the adsorption of mixtures on solids involving energetic heterogeneity of the surface and differences in molecular sizes of the components. <i>Thin Solid Films</i> , 1981 , 81, L97-L99	2.2	11
266	The adsorbate-adsorbate association model in localized adsorption of gases on random heterogeneous surfaces. <i>Thin Solid Films</i> , 1981 , 75, 307-317	2.2	11
265	Adsorption of gas mixtures on solids. Journal of Colloid and Interface Science, 1982, 85, 457-462	9.3	11
264	Application of ten's equation to describe the single-solute adsorption from dilute solutions on solids. <i>Journal of Colloid and Interface Science</i> , 1983 , 94, 573-576	9.3	11
263	A modification of the chromatographic Hobson method for studying heterogeneity of adsorbents. Journal of Chromatography A, 1975 , 110, 381-384	4.5	11
262	Application of Gas-Adsorption Chromatography Data to Investigation of the Adsorptive Properties of Adsorbents. <i>Separation Science</i> , 1976 , 11, 29-37		11
261	On the exponential absorption isotherm. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1978 , 67, 309-310	2.3	11
260	Mechanochemical synthesis of three-component graphene oxide/ordered mesoporous carbon/metal-organic framework composites. <i>Journal of Colloid and Interface Science</i> , 2020 , 577, 163-17	2.3	11
259	Evaporation-induced self-assembly synthesis of nanostructured alumina-based mixed metal oxides with tailored porosity. <i>Journal of Colloid and Interface Science</i> , 2019 , 537, 725-735	9.3	11
258	Photocatalytic Materials. International Journal of Photoenergy, 2012, 2012, 1-5	2.1	10
257	Applicability of classical methods of pore size analysis for MCM-41 and SBA-15 silicas. <i>Applied Surface Science</i> , 2007 , 253, 5587-5590	6.7	10
256	Two-dimensional solid state NMR characterization of physisorbed siloxane polymer (OV-225) on silica. <i>Surface Science</i> , 2006 , 600, 143-154	1.8	10
255	Comparative thermogravimetric and adsorption study of highly ordered mesoporous materials. Journal of Colloid and Interface Science, 2006 , 296, 377-80	9.3	10
254	Optimization of silica/surfactant ratio in MCM-41 synthesis. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 55-62	1.8	10
253	A model-independent analysis of nitrogen adsorption isotherms on oxidized active carbons. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2001 , 189, 103-111	5.1	10
252	Parameters of microporous structure of carbonaceous adsorbents gasified with air or carbon dioxide. <i>Journal of the Chemical Society Faraday Transactions I</i> , 1989 , 85, 3125		10

(2005-1983)

251	An equation for multi-solute adsorption from dilute aqueous solutions involving energetic heterogeneity of the solid and differences in molecular sizes of the solutes. <i>Chemical Engineering Science</i> , 1983 , 38, 307-311	4.4	10
250	Physical adsorption of gases on energetically heterogeneous solids II. Theoretical extension of a generalizedLangmuir equation and its application for analysing adsorption data. <i>Monatshefte Fill Chemie</i> , 1984 , 115, 1013-1038	1.4	10
249	The adsorbate-adsorbate association model in mixed gas adsorption on homogeneous solid surfaces. <i>Thin Solid Films</i> , 1980 , 69, 369-378	2.2	10
248	Determination of Association Effects in TLC Data for Different Solutes Chromatographed in Methanol-Acetone on Silica Gel. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1982 , 5, 1033-1042		10
247	Multilayer adsorption of alcohols from benzene/n-heptane mixtures on silica gel. <i>Monatshefte Fill Chemie</i> , 1982 , 113, 29-35	1.4	10
246	Physisorption of gaseous and liquid mixtures on real solid surfaces. <i>Journal of Low Temperature Physics</i> , 1976 , 24, 253-259	1.3	10
245	Multilayer adsorption of binary gas mixtures on heterogeneous solid surfaces. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1976 , 56, 53-54	2.3	10
244	General formulation of kinetics of mixed-gas adsorption on heterogeneous solid surfaces. <i>Journal of the Chemical Society, Faraday Transactions 2</i> , 1978 , 74, 1292		10
243	Thin-layer adsorption chromatography with mixed mobile phases. 1. Characterization of chromatographic systems showing energetic heterogeneity of adsorbent surfaces with regard to admolecules of solvents and solutes. <i>Journal of High Resolution Chromatography</i> , 1979 , 2, 236-242		10
242	Microwave-assisted single-surfactant templating synthesis of mesoporous zeolites. <i>RSC Advances</i> , 2016 , 6, 54956-54963	3.7	9
241	Aqueous synthesis of bimodal mesoporous carbons and carbon-silica mesostructures under basic conditions. <i>Microporous and Mesoporous Materials</i> , 2016 , 226, 299-308	5.3	9
240	Tailoring surface and structural properties of composite materials by coupling Pt-decorated graphene oxide and ZIF-8-derived carbon. <i>Applied Surface Science</i> , 2018 , 459, 760-766	6.7	9
239	Energy and environmental photocatalytic materials. <i>Applied Surface Science</i> , 2017 , 391, 71	6.7	9
238	Influence of the Pore Geometry on the Micropore Size Distribution Function of Active Carbons. <i>Adsorption Science and Technology</i> , 1997 , 15, 571-581	3.6	9
237	Thermogravimetric Studies of Silica Physically and Chemically Modified with the Liquid Crystal 4'-Cyano-4-Biphenyl. <i>Journal of Colloid and Interface Science</i> , 1997 , 185, 39-43	9.3	9
236	Comparison of adsorption properties of MCM-41 materials obtained using cationic surfactants with octyl chain. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2002 , 203, 97-103	5.1	9
235	Thermogravimetric estimation of adsorption properties of europium-incorporated MCM-41 materials. <i>Thermochimica Acta</i> , 2002 , 383, 79-85	2.9	9
234	Modeling Nitrogen Adsorption in Spherical Pores of Siliceous Materials by Density Functional Theory. <i>Journal of Chemical Theory and Computation</i> , 2005 , 1, 653-61	6.4	9

233	Improved thermogravimetric determination of the specific surface area for cerium-incorporated MCM-41 materials. <i>Journal of Alloys and Compounds</i> , 2002 , 344, 190-194	5.7	9
232	Characterization of microporous carbons by using TGA curves measured under controlled conditions. <i>Thermochimica Acta</i> , 1996 , 272, 65-73	2.9	9
231	Synthesis and Characterization of Silica-Immobilized Serum Albumin Stationary Phases for HPLC. Journal of Liquid Chromatography and Related Technologies, 1996 , 19, 2943-2965	1.3	9
230	The energy distribution function associated with dubinin's description of gas adsorption on heterogeneous microporous solids. <i>Carbon</i> , 1987 , 25, 579-582	10.4	9
229	Adsorption of 1-tetradecene/dodecane mixtures on different types of zeolites. <i>Monatshefte Fill Chemie</i> , 1983 , 114, 857-873	1.4	9
228	Gas adsorption on energetically heterogeneous solid surfaces: On the choice of local adsorption isotherm. <i>Journal of Colloid and Interface Science</i> , 1985 , 108, 50-59	9.3	9
227	Study on the possibility of determining the adsorbent heterogeneity by using the exponential adsorption isotherm. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 1976 , 59, 259-260.	02.3	9
226	Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123413	12.8	9
225	Advances in Microwave Synthesis of Nanoporous Materials. <i>Advanced Materials</i> , 2021 , 33, e2103477	24	9
224	High benzene adsorption capacity of micro-mesoporous carbon spheres prepared from XAD-4 resin beads with pores protected effectively by silica. <i>Journal of Materials Science</i> , 2019 , 54, 13892-13900	4.3	8
223	Biocompatible D-Penicillamine Conjugated Au Nanoparticles: Targeting Intracellular Free Copper Ions for Detoxification. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 5553-5559	7.3	8
222	Ruthenium-containing SBA-12 catalysts for anisole hydrodeoxygenation. <i>Catalysis Today</i> , 2020 , 354, 67-	· 756 3	8
221	Polymer-templated organosilicas with hexagonally ordered mesopores: the effect of organosilane addition at different synthesis stages. <i>Adsorption</i> , 2007 , 13, 323-329	2.6	8
220	Effects of Hydrothermal Treatment and Template Removal on the Adsorption and Structural Properties of SBA-16 Mesoporous Silica. <i>Adsorption Science and Technology</i> , 2007 , 25, 439-449	3.6	8
219	Gas adsorption: A valuable tool for the pore size analysis and pore structure elucidation of ordered mesoporous materials. <i>Studies in Surface Science and Catalysis</i> , 2003 , 146, 263-269	1.8	8
218	Influence of synthesis time on adsorption properties of FDU1 materials. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 105-112	1.8	8
217	Thermogravimetric and adsorption studies of oxidized active carbons by using different probe molecules. <i>Thermochimica Acta</i> , 2000 , 345, 165-172	2.9	8
216	Adsorption and Thermogravimetric Methods for Monitoring Surface and Structural Changes in Ordered Mesoporous Silicas Induced by their Chemical Modification. <i>Adsorption</i> , 1999 , 5, 313-317	2.6	8

(2005-1994)

215	Studies of surface and structural heterogeneities of microporous carbons by high-resolution thermogravimetry. <i>Studies in Surface Science and Catalysis</i> , 1994 , 87, 613-622	1.8	8
214	Thermodynamic functions associated with the exponential isotherm equation for gas adsorption on heterogeneous microporous solids. <i>Journal of Colloid and Interface Science</i> , 1988 , 126, 69-73	9.3	8
213	Multilayer effects in adsorption of alcohols from benzene andn-heptane on silica gel. <i>Monatshefte Fil Chemie</i> , 1983 , 114, 559-562	1.4	8
212	Physical adsorption on heterogeneous solids P resent and future. <i>Thin Solid Films</i> , 1983 , 100, 325-328	2.2	8
211	Isotope exchange kinetics at heterogeneous solid surfaces (solid-liquid interfaces). <i>Monatshefte F</i> [®] <i>Chemie</i> , 1984 , 115, 147-154	1.4	8
210	A unified description of the kinetics of localized and mobile monolayer adsorption from the gaseous phase onto solid surfaces. <i>Thin Solid Films</i> , 1979 , 62, 237-246	2.2	8
209	Thin-layer adsorption chromatography with mixed mobile phases. 4. Extension of Olik's equation to heterogeneous adsorbents. <i>Journal of High Resolution Chromatography</i> , 1981 , 4, 17-23		8
208	Adsorption TLC with binary mobile phases. <i>Chromatographia</i> , 1981 , 14, 95-99	2.1	8
207	Statistical thermodynamics of multilayer adsorption from binary mixtures onto homogeneous solid surfaces. <i>Thin Solid Films</i> , 1982 , 94, 79-88	2.2	8
206	Thermodynamics of localized and non-localized adsorption on patchwise heterogeneous surfaces. <i>Thin Solid Films</i> , 1976 , 37, L43-L47	2.2	8
205	On the Gonzalez-Holland model for adsorption of gas mixtures. <i>AICHE Journal</i> , 1977 , 23, 605-607	3.6	8
204	Two-dimensional mobile films of gases on solids: Adaptation of three-dimensional equations of state to physical adsorption of single gases on homogeneous surfaces. <i>The Chemical Engineering Journal</i> , 1978 , 15, 147-157		8
203	Partially mobile and partially localized monolayer films II: Adsorption of binary gas mixtures on solids. <i>Thin Solid Films</i> , 1978 , 52, 305-311	2.2	8
202	A Highly Efficient and Extremely Selective Intracellular Copper Detoxifying Agent Based on Nanoparticles of ZnMoS. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 257-261	7-3	7
201	Structural Stability of Sill Bonds in Periodic Mesoporous Thiophene-Silicas Prepared under Acidic Conditions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 21441-21449	3.8	7
200	Ordered mesoporous carbon/⊞lumina nanosheet composites. <i>Nanoscale</i> , 2010 , 2, 2868-72	7-7	7
199	Adsorption properties of ordered mesoporous silicas synthesized in the presence of block copolymer Pluronic F127 under microwave irradiation. <i>Adsorption</i> , 2010 , 16, 385-396	2.6	7
198	Thermogravimetric studies of benzoylthiourea-modified MCM-41 after adsorption of mercury ions from aqueous solutions. <i>Analyst, The</i> , 2005 , 130, 104-8	5	7

197	Studies of Dehydration Process for Isostructural Series of Lanthanide(III) 2,6-dihydroxybenzoates. <i>Magyar Aprīlad Kīzlemībyek</i> , 2001 , 66, 841-849	O	7	
196	Fourier-Transform Infrared Spectroscopy Studies of the Interaction of Functionalized Siloxane Polymers with Porous Silica. <i>Journal of Colloid and Interface Science</i> , 2000 , 226, 131-135	9.3	7	
195	Synthesis and adsorption properties of cerium modified MCM-41. <i>Studies in Surface Science and Catalysis</i> , 2000 , 129, 187-194	1.8	7	
194	Liquid Chromatographic Studies of Silica-Immobilized Bovine Serum Albumin Under Normal-Phase Conditions: Separation of Phenolic Solutes Using Ternary Mixtures of Hydrogen Chloride-Diethyl Ether-Hexane as Eluents. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1992 , 15, 2503-25	518	7	
193	Partition-Sorption Model for Describing Non-Specific Selectivity in Reversed-Phase Liquid Chromatography. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1992 , 15, 1431-1442		7	
192	Use of argon adsorption isotherms for characterizing microporous activated carbons. <i>Fuel</i> , 1990 , 69, 516-518	7.1	7	
191	An Extension and New Interpretation of Olik's Equation for Describing Liquid Chromatography with Mixed Mobile Phases. II. Partition and Adsorption Effects. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1986 , 9, 2555-2562		7	
190	Gas Adsorption on Structurally Heterogeneous Microporous Solids. <i>Separation Science and Technology</i> , 1987 , 22, 2367-2380	2.5	7	
189	Studies of the surface heterogeneity of high disperse silica chemically modified by sodium and potassium oxides using low-temperature nitrogen adsorption data. <i>Journal of Colloid and Interface Science</i> , 1984 , 99, 493-506	9.3	7	
188	Studies of heterogeneous isotope exchange of Cd (II) between the solution and the surface layer formed on aluminium oxide and activated carbon. <i>Materials Chemistry and Physics</i> , 1984 , 11, 195-200	4.4	7	
187	Multilayer single-solute adsorption from dilute solutions on energetically heterogeneous solids. <i>Chemical Engineering Science</i> , 1984 , 39, 65-70	4.4	7	
186	Characterization Of solid-liquid adsorption systems by using Gaussian energy distribution. <i>Materials Chemistry and Physics</i> , 1985 , 12, 339-365	4.4	7	
185	Effects of lateral interactions and surface heterogeneity in kinetics of adsorption from multicomponent gas mixtures. <i>Thin Solid Films</i> , 1979 , 59, 249-254	2.2	7	
184	Supplementary note to the paper <code>Bdsorption</code> of gas mixtures on heterogeneous surfaces <code>Science</code> , 1977, 66, 652-654	1.8	7	
183	Extension of the model of associated adsorbate to adsorption on patchwise heterogeneous surfaces. <i>Thin Solid Films</i> , 1977 , 46, 239-247	2.2	7	
182	A simple procedure for obtaining adsorption isotherms of gas mixtures on heterogeneous surfaces. <i>Colloid and Polymer Science</i> , 1977 , 255, 176-177	2.4	7	
181	Facile mechanochemical synthesis of highly mesoporous EAl2O3 using boehmite. <i>Microporous and Mesoporous Materials</i> , 2021 , 312, 110792	5.3	7	
180	Assessing the contribution of micropores and mesopores from nitrogen adsorption on nanoporous carbons: Application to pore size analysis. <i>Carbon</i> , 2021 , 183, 150-157	10.4	7	

179	One-pot synthesis of activated porous graphitic carbon spheres with cobalt nanoparticles. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2019 , 582, 123884	5.1	6
178	Development of activated graphene-MOF composites for H2 and CH4 adsorption. <i>Adsorption</i> , 2019 , 25, 521-528	2.6	6
177	REktitelbild: Sulfur and Nitrogen Dual-Doped Mesoporous Graphene Electrocatalyst for Oxygen Reduction with Synergistically Enhanced Performance (Angew. Chem. 46/2012). <i>Angewandte Chemie</i> , 2012 , 124, 11808-11808	3.6	6
176	Introduction of bridging and pendant organic groups into mesoporous alumina materials. <i>ACS Applied Materials & Amp; Interfaces</i> , 2011 , 3, 4480-6	9.5	6
175	Argon adsorption in channel-like mesoporous carbons at 77K: Grand Canonical Monte Carlo simulations and pore size analysis. <i>Microporous and Mesoporous Materials</i> , 2008 , 116, 665-669	5.3	6
174	Self-consistent determination of the lamellar phase content in MCM-41 using X-ray diffraction, nitrogen adsorption and thermogravimetry. <i>Studies in Surface Science and Catalysis</i> , 2000 , 129, 577-586	1.8	6
173	On the applicability of the Horwath-Kawazoe method for pore size analysis of MCM-41 and related mesoporous materials. <i>Studies in Surface Science and Catalysis</i> , 2000 , 128, 225-234	1.8	6
172	Estimation of the Surface Properties of Unmodifed and Strongly Oxidized Active Carbons on the Basis of Water Vapour Adsorption Isotherms. <i>Adsorption Science and Technology</i> , 1998 , 16, 295-302	3.6	6
171	Verification of selected relationships for fractally porous solids by using adsorption isotherms calculated from density functional theory. <i>Surface Science</i> , 1995 , 342, L1127-L1130	1.8	6
170	Application of programmable liquid thermodesorption under quasi-isothermal conditions to study physicochemical properties of liquid films and solid surfaces. <i>Journal of Thermal Analysis</i> , 1992 , 38, 204	I-2051	6
169	A new concept for the theoretical description of solute adsorption from dilute solutions on solids. <i>Langmuir</i> , 1987 , 3, 673-675	4	6
168	Correlation of heterogeneity parameters for adsorption of single gases and gas mixtures on solids. <i>Chemical Engineering Science</i> , 1987 , 42, 2135-2141	4.4	6
167	Liquid/Solid Interfaces: Studies of Kinetics of Isotope Exchange. <i>Adsorption Science and Technology</i> , 1985 , 2, 97-119	3.6	6
166	Application of chromatographic and adsorption data for characterizing liquid/solid adsorption systems. <i>Fresenius Zeitschrift Fil Analytische Chemie</i> , 1985 , 321, 371-373		6
165	Liquid Chromatography with Mixed Mobile Phases: Interpretation of the Model Chromatographic Data by Means of the Simple Linear Relationship. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1985 , 8, 1965-1987		6
164	Surface Heterogeneity Effects in Liquid-Solid Chromatography with Mixed Eluents. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1985 , 8, 1953-1963		6
163	Determination of the capacity ratio and concentration-time function for stepwise elution with binary mobile phase with help of liquid chromatography data obtained from isocratic elution. <i>Chromatographia</i> , 1979 , 12, 29-32	2.1	6
162	Prediction of TLC data for binary mobile phases by means of the RM-values obtained for single solvents. <i>Journal of High Resolution Chromatography</i> , 1980 , 3, 29-30		6

161	A stochastic approach to the kinetics of adsorption from binary gas mixtures on homogeneous solid surfaces. <i>Thin Solid Films</i> , 1981 , 75, L11-L14	2.2	6
160	Studies of isotope exchange kinetics at the electrolyte solution/solid interface. <i>Materials Chemistry and Physics</i> , 1983 , 9, 351-358	4.4	6
159	Some remarks on the maximum adsorption energy. Surface Science, 1976, 54, 189-193	1.8	6
158	On Ritchie's equation for adsorption kinetics of gases on solids. <i>Reaction Kinetics and Catalysis Letters</i> , 1978 , 9, 309-313		6
157	Adsorption of gas mixtures on heterogeneous solid surfaces. <i>Colloid and Polymer Science</i> , 1978 , 256, 690-695	2.4	6
156	Monolayer films of gases on solids composed of patches covered by mobile and localized adsorbed molecules. <i>Thin Solid Films</i> , 1978 , 50, L21-L23	2.2	6
155	Surface modification of zero-valent iron nanoparticles with tyclodextrin for 4-nitrophenol conversion. <i>Journal of Colloid and Interface Science</i> , 2021 , 586, 655-662	9.3	6
154	Recent advances in mechanochemical synthesis of mesoporous metal oxides. <i>Materials Advances</i> , 2021 , 2, 2510-2523	3.3	6
153	Development of Alumina?Mesoporous Organosilica Hybrid Materials for Carbon Dioxide Adsorption at 25 °C. <i>Materials</i> , 2018 , 11,	3.5	6
152	Polyvinyl pyrrolidone-assisted synthesis of size-tunable polymer spheres at elevated temperature and their conversion to nitrogen-containing carbon spheres. <i>Journal of Colloid and Interface Science</i> , 2019 , 549, 162-170	9.3	5
151	Scaffold-assisted synthesis of crystalline mesoporous titania materials. <i>RSC Advances</i> , 2015 , 5, 61960-67	19772	5
150	Potassium citrate-assisted eco-friendly synthesis of tannin-derived nitrogen-doped microfhesoporous carbon microspheres. <i>Journal of Materials Science</i> , 2020 , 55, 13716-13736	4.3	5
149	Fundamentals of adsorption for photocatalysis. Interface Science and Technology, 2020, 39-62	2.3	5
148	Laser heating of photoelectrons during multiphoton ionization of molecular ions adsorbed on disperse silica surfaces. <i>Physical Review A</i> , 1997 , 56, 3056-3059	2.6	5
147	Optimization of synthesis time for SBA-15 materials. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 75-82	1.8	5
146	The use of ordered mesoporous materials for improving the mesopore size analysis: Current state and future. <i>Studies in Surface Science and Catalysis</i> , 2002 , 437-444	1.8	5
145	Determination of the Specific Surface Areas of Non-Porous and Macroporous Carbons. <i>Adsorption Science and Technology</i> , 2001 , 19, 765-776	3.6	5
144	Adsorption Characterization of Active Carbons Modified by Deposition of Silica. <i>Langmuir</i> , 1998 , 14, 248	3 <u>5</u> -248	95

143	Adsorption, Thermogravimetric, and Chromatographic Studies of Bare Silicas and Silica-Based Octyl Bonded Phases. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1998 , 21, 1957-1977	1.3	5	
142	Application of the generalized Jaroniec-Choma isotherm equation for describing benzene adsorption on activated carbons. <i>Materials Chemistry and Physics</i> , 1990 , 25, 323-330	4.4	5	
141	Pressure swing adsorption for a system with a Langmuir Treundlich isotherm. <i>Chemical Engineering Science</i> , 1990 , 45, 1097-1103	4.4	5	
140	Discussion of the theoretical isotherms describing adsorption from multicomponent liquid mixtures on heterogeneous solids of quasi-Gaussian energy distribution. <i>Chemical Engineering Science</i> , 1987 , 42, 2143-2150	4.4	5	
139	On the mesopore correction of adsorption data used for characterizing microporous structure of activated carbons. <i>Materials Chemistry and Physics</i> , 1987 , 18, 409-421	4.4	5	
138	Solute adsorption from dilute solutions on structurally heterogeneous solids. <i>Journal of Colloid and Interface Science</i> , 1988 , 125, 561-566	9.3	5	
137	Theoretical description of adsorbate-adsorbate association in the case of mobile monolayer adsorption of gases on homogeneous solid surfaces. <i>Thin Solid Films</i> , 1983 , 100, 43-52	2.2	5	
136	Thermodynamic Approach to TLC with Mixed mobile Phase. Determination of Parameters Characterizing TLC Systems. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1983 , 6, 81-93		5	
135	Studies of association effects in adsorption from multicomponent solutions on solids. <i>Chemical Engineering Science</i> , 1985 , 40, 917-922	4.4	5	
134	Some remarks on the BerezinKiselev model of localized adsorption on homogeneous solid surfaces. <i>Journal of Colloid and Interface Science</i> , 1979 , 72, 344-346	9.3	5	
133	Adsorption of liquid mixtures by heterogeneous microporous solids. <i>Carbon</i> , 1980 , 18, 439-441	10.4	5	
132	Partially mobile and partially localized monolayer films IV: Prediction of the temperature dependence of adsorption isotherms. <i>Thin Solid Films</i> , 1980 , 70, 363-371	2.2	5	
131	Effects of surface heterogeneity in liquid adsorption of ketones, esters and butanediols on silica gel. <i>Colloid and Polymer Science</i> , 1981 , 259, 398-401	2.4	5	
130	Partially mobile and partially localized monolayer films of gases on solid surfaces V: Application of the model to adsorption of simple gases on graphite and boron nitride. <i>Thin Solid Films</i> , 1981 , 76, 247-2	5 ² 8 ²	5	
129	Stochastic modelling of adsorption kinetics on solid surfaces I: Kinetics of localized monolayer gas adsorption on energetically heterogeneous surfaces without lateral interactions in the surface phase. <i>Thin Solid Films</i> , 1982 , 94, 365-371	2.2	5	
128	Adsorption on heterogeneous surfaces: Consequence of assuming the Jovanovilequation for local adsorption. <i>Colloid and Polymer Science</i> , 1977 , 255, 374-378	2.4	5	
127	Partially mobile and partially localized monolayer films I: Adsorption of single gases on solids. <i>Thin Solid Films</i> , 1978 , 52, 295-304	2.2	5	
126	General model of physical adsorption: Monomolecular adsorption of single gases on homogeneous solid surfaces. <i>Surface Science</i> , 1978 , 77, 365-377	1.8	5	

125	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. <i>Angewandte Chemie</i> , 2021 , 133, 19724-19742	3.6	5
124	A generalized strategy for synthesizing crystalline bismuth-containing nanomaterials. <i>Nanoscale</i> , 2020 , 12, 8277-8284	7.7	4
123	Preparation of highly ordered mesoporous ethaneBilicas under weakly acidic conditions and their hydrothermal stability. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 21378-21388	13	4
122	Grand Canonical Monte Carlo Simulation Study of Hydrogen Storage in Ordered Mesoporous Carbons at 303 K. <i>Adsorption Science and Technology</i> , 2006 , 24, 411-426	3.6	4
121	Differential scanning calorimetric and Fourier transform infrared spectrometric investigations of the influence of silica on the liquid crystalline properties of 4?-cyano-4-biphenyl[4-(4-pentenyloxy)] benzoate. <i>Analytica Chimica Acta</i> , 1995 , 315, 77-81	6.6	4
120	A simple method for evaluating the isotherm parameters for adsorption from dilute solutions on solids. <i>Materials Chemistry and Physics</i> , 1990 , 24, 287-297	4.4	4
119	Comparative studies of adsorption of ethane and benzene on microporous activated carbons. <i>Chemical Engineering Science</i> , 1990 , 45, 1539-1545	4.4	4
118	Adsorption of water vapor on modified activated carbons. <i>Monatshefte Fa Chemie</i> , 1990 , 121, 971-978	1.4	4
117	Description of Non-Specific and Specific Solute-Solvent Interactions in Liquid Chromatography with Mixed Eluents. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1987 , 10, 541-559		4
116	Application of isotherm equation associated with gamma micropore-size distribution for characterizing activated carbons. <i>Chemical Engineering Science</i> , 1988 , 43, 3151-3156	4.4	4
115	Gas adsorption on solids withGaussian micropore-size distributions. <i>Monatshefte Fil Chemie</i> , 1988 , 119-119, 889-901	1.4	4
114	Single-solute adsorption from dilute solutions on heterogeneous microporous solids. <i>Carbon</i> , 1984 , 22, 157-161	10.4	4
113	Adsorption of 1-olefin/n-paraffin liquid mixtures on NaX and NaY zeolites. <i>Journal of Inclusion Phenomena</i> , 1985 , 3, 85-93		4
112	A generalized equation describing isotope exchange kinetics at solid-liquid interface. <i>Monatshefte Fil Chemie</i> , 1985 , 116, 305-310	1.4	4
111	Effects of Solute-Solvent Interactions in Liquid Adsorption Chro- Matography with Mixed Mobile Phase. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1985 , 8, 651-661		4
110	Elovich-type equations for description of the adsorption rates of gas mixtures. <i>Journal of Catalysis</i> , 1979 , 57, 187-190	7.3	4
109	Thin-layer adsorption chromatography with mixed mobile phases. 3. Correlation between parameters characterizing the chromatographic systems with binary and ternary mobile phases. <i>Journal of High Resolution Chromatography</i> , 1980 , 3, 180-182		4
108	Partially mobile and partially localized monolayer films of gases on solid surfaces III: Comparison of two simple models. <i>Thin Solid Films</i> , 1980 , 67, 187-192	2.2	4

107	Correlation between data of adsorption from binary and multicomponent liquid mixtures on solid surfaces. <i>AICHE Journal</i> , 1981 , 27, 524-525	3.6	4
106	Dependence of the Capacity Ratio Upon Type of the Excess Adsorption Isotherm. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1981 , 4, 227-236		4
105	Adsorption of mixtures of methane and krypton on CaA zeolite I: Analysis of the adsorption data using a Freundlich-type equation derived for constant mole fractions of components in the adsorption space. <i>Thin Solid Films</i> , 1982 , 88, 373-379	2.2	4
104	Studies of chromatographic packings comprising porous polymers. <i>Journal of Chromatography A</i> , 1978 , 157, 119-124	4.5	4
103	Characterization of Chromatographic Systems with Ternary Mobile Phase. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1979 , 2, 799-808		4
102	Thin-layer adsorption chromatography with mixed mobile phases. 2. Effects of solute-solvent interactions and energetic heterogeneity of surfaces with regard to admolecules in TLC. <i>Journal of High Resolution Chromatography</i> , 1979 , 2, 524-526		4
101	Chemically-Modified Mesoporous Silicas and Organosilicas for Adsorption and Detection of Heavy Metal Ions 2007 , 179-212		4
100	DESIGN, SYNTHESIS AND CHARACTERIZATION OF ORDERED MESOPOROUS MATERIALS FOR ENVIRONMENTAL APPLICATIONS 2006 , 23-36		3
99	Thermally induced structural changes in SBA-15 and MSU-H silicas and their implications for synthesis of ordered mesoporous carbons. <i>Studies in Surface Science and Catalysis</i> , 2003 , 49-52	1.8	3
98	Peculiarities of alkyl-modification of ordered mesoporous materials: A single-step treatment of uncalcined MCM-41 involving template removal and surface functionalization. <i>Studies in Surface Science and Catalysis</i> , 2000 , 265-274	1.8	3
97	Polyfunctionalised surfactant-templated adsorbents with high specific surface areas. <i>Mendeleev Communications</i> , 2001 , 11, 208-210	1.9	3
96	Comparative characterization of selected additives by high resolution thermogravimetry and nitrogen adsorption. <i>Journal of Porous Materials</i> , 1996 , 3, 181-187	2.4	3
95	Theory of ion-pair reversed-phase liquid chromatography on energetically heterogeneous solid surfaces. <i>Langmuir</i> , 1993 , 9, 749-755	4	3
94	Benzene adsorption on microporous activated carbons. <i>Carbon</i> , 1989 , 27, 485-487	10.4	3
93	Correlation between the bet parameters and the parameters that characterize the microporous structures of activated carbons. <i>Materials Chemistry and Physics</i> , 1990 , 25, 287-296	4.4	3
92	A comparative method for studying adsorption from binary nonelectrolytic liquid mixtures on microporous solids. <i>Journal of Colloid and Interface Science</i> , 1990 , 135, 405-409	9.3	3
91	New description of heterogeneity effects in adsorption from multicomponent solutions and liquid adsorption chromatography. <i>Journal of High Resolution Chromatography</i> , 1986 , 9, 452-455		3
90	Reversed-Phase Liquid Chromatography with Mixed Eluents: Partition Model of Retention for Ionogenic Solutes. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1987 , 10, 2033-2045		3

89	Correlations among parameters of Dubinin-Radushkevich and Langmuir-Freundlich isotherms for adsorption from binary liquid mixtures on solids. <i>Journal of Colloid and Interface Science</i> , 1987 , 117, 33	9-346	3
88	Characterization of activated carbons by ktilizink the nitroken adsorption data. <i>Materials Chemistry and Physics</i> , 1988 , 20, 179-189	4.4	3
87	Theory of multilayer adsorption from multicomponent liquid mixtures on homogeneous solid surfaces. <i>Thin Solid Films</i> , 1983 , 103, 399-415	2.2	3
86	Adsorption from solutions of nonelectrolytes on heterogeneous solid surfaces: A four-parameter equation for the excess adsorption isotherm. <i>Monatshefte Fil Chemie</i> , 1984 , 115, 541-550	1.4	3
85	A Simple Linear Dependence of the Logarithm of the Capacity Ratio upon Mobile Phase Composition in the Reversed-Phase Liquid Chromatography. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1985 , 8, 441-448		3
84	Application of a partially mobile model of monolayer adsorption to multilayer phenomena. <i>Monatshefte Fil Chemie</i> , 1979 , 110, 601-606	1.4	3
83	Adsorption of binary gas mixtures on solid surfaces with patchwise and random distribution of adsorption sites. <i>Colloid and Polymer Science</i> , 1980 , 258, 977-979	2.4	3
82	Mass transfer kinetics of mixed gas adsorption in porous media. <i>Thin Solid Films</i> , 1981 , 75, 347-353	2.2	3
81	Theory of Single-Solute and Bi-Solute Adsorption from Dilute Aqueous Solutions on Activated Carbon. <i>Studies in Environmental Science</i> , 1982 , 19, 361-368		3
80	Some Remarks on Application of Gas-Adsorption Chromatography Data for Investigations of the Adsorptive Properties of Adsorbents. <i>Separation Science</i> , 1976 , 11, 411-415		3
79	Determination of the isosteric heat of adsorption by gas adsorption chromatography. <i>Journal of Chromatography A</i> , 1977 , 131, 1-5	4.5	3
78	On the microporous structure of glass beads. <i>Chromatographia</i> , 1977 , 10, 191-193	2.1	3
77	An aluminum lining to the dark cloud of silver resistance: harnessing the power of potent antimicrobial activity of Ealumina nanoparticles. <i>Biomaterials Science</i> , 2021 , 9, 7996-8006	7.4	3
76	Titelbild: Self-Templating Synthesis of Hollow Co3O4 Microtube Arrays for Highly Efficient Water Electrolysis (Angew. Chem. 5/2017). <i>Angewandte Chemie</i> , 2017 , 129, 1181-1181	3.6	2
75	Hierarchical porous photocatalysts. Interface Science and Technology, 2020, 63-102	2.3	2
74	Titelbild: A Regularly Channeled Lamellar Membrane for Unparalleled Water and Organics Permeation (Angew. Chem. 23/2018). <i>Angewandte Chemie</i> , 2018 , 130, 6819-6819	3.6	2
73	TiO2Photocatalytic Materials 2013. International Journal of Photoenergy, 2013, 2013, 1-2	2.1	2
72	Estimating Pore-Size Distributions of Moderately Hydrophobic Mesoporous Solids. <i>Adsorption Science and Technology</i> , 2013 , 31, 153-164	3.6	2

71	Adsorption Properties of Micro-/Meso-Porous Carbons Obtained by Colloidal Templating and Post-Synthesis KOH Activation. <i>Adsorption Science and Technology</i> , 2011 , 29, 457-465	3.6	2
70	Assessment of pore structure parameters for polymer-templated mesoporous molecular sieves by means of nitrogen and argon adsorption. <i>Applied Surface Science</i> , 2007 , 253, 5676-5681	6.7	2
69	Tailoring cage-like organosilicas with multifunctional bridging and surface groups. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 443-446	1.8	2
68	Argon and nitrogen adsorption on ordered silicas with channel-like and cage-like mesopores: implications for characterization of porous solids. <i>Studies in Surface Science and Catalysis</i> , 2003 , 146, 343	3 ¹ 3 ⁸ 46	2
67	Synthesis of polyferromethylsiloxane sorbents using a solgel method. Solid State Sciences, 2001, 3, 169-	1382	2
66	LIQUID CHROMATOGRAPHY STUDIES OF ACETONITRILE SORPTION ON SILICA-BASED OCTYL PHASES. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1999 , 22, 1945-1964	1.3	2
65	Relation Between Energetic and Structural Heterogeneities for Microporous Active Carbons. <i>Studies in Surface Science and Catalysis</i> , 1994 , 633-640	1.8	2
64	Application of Gas-Solid Adsorption Chromatography for Characterizing Adsorbent Heterogeneity. <i>Separation Science and Technology</i> , 1991 , 26, 269-277	2.5	2
63	Adsorption isotherm equations associated with the gamma micropore-size distribution and their application for characterizing microporous solids. <i>Materials Chemistry and Physics</i> , 1989 , 24, 1-12	4.4	2
62	Application of an exponential isotherm equation for describing gas adsorption on microporous activated carbons. <i>Carbon</i> , 1989 , 27, 567-571	10.4	2
61	A new description of micropore filling and its application for characterizing microporous solids. <i>Colloids and Surfaces</i> , 1989 , 37, 183-196		2
60	Adsorption of propane andn-butane on polystyrene adsorbents. <i>Monatshefte Fil Chemie</i> , 1989 , 120, 401-411	1.4	2
59	Use of a Polynomial Equation for Analyzing Low-Concentration Adsorption Measurements of Ethane on Activated Carbons. <i>Separation Science and Technology</i> , 1989 , 24, 1355-1361	2.5	2
58	Comparison of the equilibrium adsorption isotherms measured by the dynamic and static methods for hydrocarbons on microporous activated carbons. <i>Carbon</i> , 1990 , 28, 737-739	10.4	2
57	A simple method for describing multi-solute adsorption equilibria on activated carbons. <i>Chemical Engineering Science</i> , 1990 , 45, 143-149	4.4	2
56	Theory of liquid-solid adsorption chromatography with mixed eluents on energetically heterogeneous adsorbents. <i>Langmuir</i> , 1991 , 7, 1784-1790	4	2
55	A linear relationship between partition ratio and composition of a binary mobile phase in reversed-phase liquid chromatography using chemically bonded stationary phases. <i>Journal of High Resolution Chromatography</i> , 1986 , 9, 236-239		2
54	A simple method for determining the multilayer effects in adsorption of alcohols on silica gel. <i>Monatshefte Fi</i> Chemie, 1986 , 117, 579-588	1.4	2

53	Heterogeneity effects in argon and krypton adsorption on boron phosphate. <i>Journal of Colloid and Interface Science</i> , 1987 , 115, 576-578	9.3	2
52	Determination of the micropore volume of activated carbon from the adsorption isotherms of light hydrocarbons. <i>Materials Chemistry and Physics</i> , 1987 , 16, 583-586	4.4	2
51	Adsorption of acetone on activated carbon. <i>Carbon</i> , 1988 , 26, 98-100	10.4	2
50	Studies of adsorption and partition effects in liquid chromatography with mixed mobile phases. <i>Journal of Chromatography A</i> , 1988 , 452, 131-135	4.5	2
49	Determination of Solvation Effects in Liquid Adsorption Chromatography with Mixed Mobile Phases. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1984 , 7, 1289-1300		2
48	A new equation for bilayer adsorption from binary liquid mixtures on homogeneous solid surfaces. <i>Chemical Engineering Science</i> , 1985 , 40, 473-480	4.4	2
47	Supplementary note to the paper general model of physical adsorption Surface Science, 1979, 81, L333-	-µ3336	2
46	A simple procedure for evaluating the heterogeneity parameter and the ratio of molecular sizes of solute and solvent by using HPLC data. <i>Journal of High Resolution Chromatography</i> , 1982 , 5, 368-372		2
45	Studies of energetic heterogeneity of adsorbents by liquid chromatography. <i>Chromatographia</i> , 1976 , 9, 143-147	2.1	2
44	Highly Porous Carbons Synthesized from Tannic Acid via a Combined Mechanochemical Salt-Templating and Mild Activation Strategy. <i>Molecules</i> , 2021 , 26,	4.8	2
43	Photocatalytic CO2 Reduction: Identification and Elimination of False-Positive Results. <i>ACS Energy Letters</i> ,1611-1617	20.1	2
42	Further advancements in predicting adsorption equilibria using excess formalism: calculation of adsorption excesses at the liquid/solid interface. <i>Journal of Colloid and Interface Science</i> , 2010 , 352, 504	-9 <i>3</i>	1
41	Three-dimensional large pore cubic niobosilicates: direct synthesis and characterization. <i>Studies in Surface Science and Catalysis</i> , 2007 , 165, 69-72	1.8	1
40	Adsorption Potential Distributions for Silicas and Organosilicas. <i>Adsorption Science and Technology</i> , 2007 , 25, 573-581	3.6	1
39	Pitch-based carbons synthesized by using silica colloids and ordered mesoporous silica particles as templates. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 581-588	1.8	1
38	Comparison of Adsorption Properties of Polymer-Templated Mesoporous Silicas with Incorporated Niobium. <i>Adsorption</i> , 2005 , 11, 737-743	2.6	1
37	Characterization of pore structure of copolymer-templated periodic mesoporous organosilicas. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 673-682	1.8	1
36	Synthesis and adsorption properties of novel carbons of tailored porosity. <i>Studies in Surface Science and Catalysis</i> , 2002 , 345-352	1.8	1

35	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 707, 551		1
34	Competitive Interactions of Phenol Derivatives and Aliphatic Alcohols for Alkenyl and Diol Silica Surfaces. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1996 , 19, 2811-2827	1.3	1
33	Influence of an energetically heterogeneous surface on the second gas-solid virial coefficient. <i>Journal of Colloid and Interface Science</i> , 1991 , 146, 580-581	9.3	1
32	Energetic heterogeneity of oxidized activated carbon fibers. <i>Materials Chemistry and Physics</i> , 1992 , 30, 239-243	4.4	1
31	Adsorption of ethane on microporous activated carbon. <i>Materials Chemistry and Physics</i> , 1989 , 21, 427-4	43464	1
30	An isotherm equation for solute adsorption from dilute solutions on heterogeneous solids. <i>Carbon</i> , 1990 , 28, 734-736	10.4	1
29	Solute Dissociation Effects in Reversed Phase Liquid Chromatography with Mixed Eluents. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1986 , 9, 1951-1969		1
28	Simple Models in Liquid Chromatography with Mixed Mobile Phases: Present and Future. <i>Journal of Liquid Chromatography and Related Technologies</i> , 1987 , 10, 1949-1959		1
27	Sorption properties of polystyrene adsorbents from isotherms of propane and n-butane. <i>Materials Chemistry and Physics</i> , 1988 , 19, 247-254	4.4	1
26	Dependence of selectivity and resolution upon composition of the binary mobile phase in LSC. <i>Journal of High Resolution Chromatography</i> , 1983 , 6, 27-30		1
25	Adsorption of mixtures of methane and krypton on CaA zeolite II: Analysis of the experimental data using Freundlich- and Dubinin-Radushkevich-type equations derived by assuming similar heterogeneity parameters for single-gas adsorption. <i>Thin Solid Films</i> , 1983 , 106, 219-224	2.2	1
24	Multilayer effects in liquid adsorption chromatography with mixed mobile phases. <i>Journal of High Resolution Chromatography</i> , 1984 , 7, 203-207		1
23	Theoretical Foundations of Solute Adsorption from Dilute Solutions on Solids. <i>Studies in Environmental Science</i> , 1984 , 23, 297-311		1
22	Prediction of the composition of a multicomponent surface phase by means of adsorption data of singles gases. <i>Thin Solid Films</i> , 1980 , 69, L25-L27	2.2	1
21	Competitive adsorption of binary gas mixtures on energetically heterogeneous solids. <i>Thin Solid Films</i> , 1982 , 92, 385-392	2.2	1
20	Some remarks on the characterization of gas-solid chromatographic systems. <i>Journal of Chromatography A</i> , 1977 , 133, 349-351	4.5	1
19	Polymer-templated mesoporous hybrid oxides of Al and Cu: highly porous sorbents for ammonia. <i>RSC Advances</i> , 2016 , 6, 38662-38670	3.7	1
18	Catalytic role of metals supported on SBA-16 in hydrodeoxygenation of chemical compounds derived from biomass processing <i>RSC Advances</i> , 2021 , 11, 9505-9517	3.7	1

17	Submicroreactors: The Development of YolkBhell-Structured Pd&ZnO@Carbon Submicroreactors with High Selectivity and Stability (Adv. Funct. Mater. 32/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870227	15.6 1
16	TiO2Photocatalytic Materials 2014. International Journal of Photoenergy, 2015, 2015, 1-2	2.1
15	Chemically Modified Mesoporous Silicas and Organosilicas for Adsorption and Detection of Heavy Metal Ions 2012 , 227-260	
14	Tailoring interfacial properties of periodic mesoporous organosilicas by incorporation of spacious heterocyclic and thiol groups and its implication for structural changes 2005 , 5929, 176	
13	Synthesis and adsorption properties of periodic mesoporous organosilicas with large heterocyclic bridging groups. <i>Studies in Surface Science and Catalysis</i> , 2005 , 197-204	1.8
12	Adsorption Monitoring of Hydrothermal and Thermal Stability of Polymer-Templated Mesoporous Materials. <i>Adsorption</i> , 2005 , 11, 745-750	2.6
11	Synthesis and adsorption properties of FDU-1 silica with carbon deposited in mesopores. <i>Studies in Surface Science and Catalysis</i> , 2005 , 156, 489-496	1.8
10	Synthesis and characterization of polymer-templated ordered silica with cage-like mesostructure. Studies in Surface Science and Catalysis, 2002, 141, 61-68	1.8
9	Bio-Inspired Nanocomposites: From Synthesis Toward Potential Applications. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 711, 1	
8	Competitive adsorption from multicomponent non-electrolytic liquid mixtures on heterogeneous solid surfaces. <i>Monatshefte Fil Chemie</i> , 1993 , 124, 229-242	1.4
7	Determination of parameters that characterize microporous structures of activated carbons. Journal of Colloid and Interface Science, 1989 , 132, 589-591	9-3
6	A simplified integral equation for adsorption of gas mixtures on heterogeneous surfaces. <i>Monatshefte Fil Chemie</i> , 1989 , 120, 225-230	1.4
5	Total specific surface area of heterogeneous microporous activated carbons. <i>Materials Chemistry and Physics</i> , 1990 , 24, 315-320	4-4
4	Model of double associates for sorption of binary gas mixtures on polymers. <i>Angewandte Makromolekulare Chemie</i> , 1988 , 160, 107-115	
3	Consequence of assuming gamma-type distribution for characterizing structural heterogeneity of microporous solids. <i>Monatshefte Fil Chemie</i> , 1988 , 119, 545-552	1.4
2	Monomolecular mixed-gas sorption on polymers. <i>Chemical Physics Letters</i> , 1985 , 120, 416-419	2.5
	Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible	

Block Copolymer Templating as a Path to Porous Nanostructured Carbons with Highly Accessible Nitrogens for Enhanced (Electro)chemical Performance **2016**, 1-19