List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Precursor B ell acute lymphoblastic leukaemia—a global view. British Journal of Haematology, 2022, 196, 530-547.	1.2	6
2	Myeloproliferative neoplasms â \in " a global view. British Journal of Haematology, 2022, , .	1.2	3
3	Exploring dyserythropoiesis in patients with myelodysplastic syndrome by imaging flow cytometry and machineâ€kearning assisted morphometrics. Cytometry Part B - Clinical Cytometry, 2021, 100, 554-567.	0.7	10
4	Antigen Expression Varies Significantly between Molecular Subgroups of Acute Myeloid Leukemia Patients: Clinical Applicability Is Hampered by Establishment of Relevant Cutoffs. Acta Haematologica, 2021, 144, 275-284.	0.7	1
5	How I treat immune thrombocytopenia – a global view. British Journal of Haematology, 2021, 193, 1076-1086.	1.2	4
6	Imaging flow cytometry reveals a subset of TdT negative Tâ€ALL blasts with very low forward scatter on conventional flow cytometry. Cytometry Part B - Clinical Cytometry, 2021, , .	0.7	1
7	AML — a signature disease in haematology. British Journal of Haematology, 2020, 188, 7-7.	1.2	4
8	Clinical Outcomes Based on Measurable Residual Disease Status in Patients with Core-Binding Factor Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 2020, 10, 250.	1.1	4
9	Unraveling clonal heterogeneity at the stem cell level in myelodysplastic syndrome: In pursuit of cell subsets driving disease progression. Leukemia Research, 2020, 92, 106350.	0.4	2
10	Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on <i>MIR300</i> Antiproliferative and PP2A-Activating Functions. Blood Cancer Discovery, 2020, 1, 48-67.	2.6	30
11	How I treat advanced Hodgkin lymphoma — a global view. British Journal of Haematology, 2020, 190, 837-850.	1.2	7
12	Clonal hematopoiesis predicts development of therapy-related myeloid neoplasms post–autologous stem cell transplantation. Blood Advances, 2020, 4, 885-892.	2.5	33
13	Clonal Hematopoiesis Drives Therapy-Related Myeloid Neoplasms Following Autologous Stem Cell Transplantation and Propagates during Disease Evolution. Blood, 2020, 136, 15-16.	0.6	1
14	Acute myeloid/T″ymphoblastic leukaemia (<scp>ATML</scp>) – a disease entity to look out for. British Journal of Haematology, 2019, 185, 178-178.	1.2	0
15	The concept of leukaemic stem cells in acute myeloid leukaemia 25Âyears on: hitting a moving target. British Journal of Haematology, 2019, 187, 144-156.	1.2	7
16	Mutant CEBPA directly drives the expression of the targetable tumor-promoting factor CD73 in AML. Science Advances, 2019, 5, eaaw4304.	4.7	28
17	High-Throughput Sequencing-Based Investigation of Viruses in Human Cancers by Multienrichment Approach. Journal of Infectious Diseases, 2019, 220, 1312-1324.	1.9	13
18	Revisiting <scp>CLEC</scp> 12A as leukaemic stem cell marker in <scp>AML</scp> : highlighting the necessity of precision diagnostics in patients eligible for targeted therapy. British Journal of Haematology, 2019, 184, 769-781.	1.2	8

#	Article	IF	CITATIONS
19	A 14q32.31 Genomic-Imprinted DLK1-DIO3 microrna promotes Leukemogenesis By Inducing Stem Cell Quiescence and Inhibiting NK Cell Anti-Cancer Immunity. Blood, 2019, 134, 4141-4141.	0.6	1
20	Mapping the <scp>CLEC</scp> 12A expression on myeloid progenitors in normal bone marrow; implications for understanding <scp>CLEC</scp> 12Aâ€related cancer stem cell biology. Journal of Cellular and Molecular Medicine, 2018, 22, 2311-2318.	1.6	29
21	Case report: Exome sequencing identifies T-ALL with myeloid features as a IKZF1-struck early precursor T-cell malignancy. Leukemia Research Reports, 2018, 9, 1-4.	0.2	5
22	The Nobel Prize for Medicine awarded for cancer therapy by inhibition of negative immune regulation. British Journal of Haematology, 2018, 183, 698-700.	1.2	13
23	Systematic evaluation of signal-to-noise ratio in variant detection from single cell genome multiple displacement amplification and exome sequencing. BMC Genomics, 2018, 19, 681.	1.2	12
24	Complete donor chimerism following 0/10 HLA-mismatched unrelated donor allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2018, 53, 1578-1582.	1.3	1
25	Exploring Imaging Flow Cytometry As a Tool for Evaluating Dyserythropoiesis in Myelodysplastic Syndrome. Blood, 2018, 132, 5508-5508.	0.6	0
26	Therapy-Related Myeloid Neoplasms Following Autologous Stem Cell Transplantation: The Prevalence of Chip Mutations at Time of Transplantation — a Single Center Experience. Blood, 2018, 132, 1529-1529.	0.6	0
27	A clearer light on the role of <scp>NK</scp> cells in haematological malignancies. British Journal of Haematology, 2017, 179, 359-360.	1.2	0
28	Honest reporting and elucidation of very serious adverse events: a lesson to us all. British Journal of Haematology, 2016, 174, 341-342.	1.2	1
29	Can exome scans be expected to be part of realâ€time decisionâ€making in patients with haematological cancers?. British Journal of Haematology, 2016, 174, 486-492.	1.2	0
30	Somatic <i>MED12</i> mutations in prostate cancer and uterine leiomyomas promote tumorigenesis through distinct mechanisms. Prostate, 2016, 76, 22-31.	1.2	33
31	Unravelling the relevance of CLEC12A as a cancer stem cell marker in myelodysplastic syndrome. British Journal of Haematology, 2016, 175, 393-401.	1.2	24
32	Combination of RNA- and exome sequencing: Increasing specificity for identification of somatic point mutations and indels in acute leukaemia. Leukemia Research, 2016, 51, 27-31.	0.4	4
33	Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line. Blood Cells, Molecules, and Diseases, 2016, 59, 77-84.	0.6	2
34	Whole Genome Amplification and Exome Sequencing at the Single Cell Level - a Way to Address Clonal Heterogeneity and Very Sparse Clinical Material. Blood, 2016, 128, 1671-1671.	0.6	13
35	Real world data on acute myeloid leukaemia therapy from the developing world – an eyeâ€opener. British Journal of Haematology, 2015, 170, 1-2.	1.2	6
36	The kinetics of relapse in <i><scp>DEK</scp>â€<scp>NUP</scp>214</i> â€positive acute myeloid leukemia patients. European Journal of Haematology, 2015, 95, 436-441.	1.1	19

#	Article	IF	CITATIONS
37	Novel scripts for improved annotation and selection of variants from whole exome sequencing in cancer research. MethodsX, 2015, 2, 145-153.	0.7	5
38	Advancing the Minimal Residual Disease Concept in Acute Myeloid Leukemia. Seminars in Hematology, 2015, 52, 184-192.	1.8	32
39	Nature and nurture: a case of transcending haematological preâ€malignancies in a pair of monozygotic twins adding possible clues on the pathogenesis of Bâ€cell proliferations. British Journal of Haematology, 2015, 169, 391-400.	1.2	4
40	Strengthening the Evidence of Relevant Somatic Mutations of Individual Patients By Pairing Sequencing Deduced Allelic Burden, Leukemic Blast Percent and Cluster Analysis. Blood, 2015, 126, 2589-2589.	0.6	0
41	RNA-Sequencing of Cytogenetically Normal Acute Myeloid Leukemia to Extend Routine Molecular Diagnostics. Blood, 2015, 126, 4969-4969.	0.6	0
42	Role of the MSC-Derived Exosomal and Endogenous JAK2-SET/PP2A-Beta Catenin-Modulator Mir-300 in Leukemic Stem/Progenitor Proliferation and Survival in CML. Blood, 2015, 126, 53-53.	0.6	0
43	A novel del(8)(q23.2q24.11) contributing to disease progression in a case of JAK2/TET2 double mutated chronic myelomonocytic leukemia. Leukemia Research Reports, 2014, 3, 94-97.	0.2	1
44	Unraveling stem cell and progenitor subsets in autologous grafts according to methods of mobilization: implications for prediction of hematopoietic recovery. Cytotherapy, 2014, 16, 392-401.	0.3	10
45	h <scp>MICL</scp> and <scp>CD</scp> 123 in combination with a <scp>CD</scp> 45/ <scp>CD</scp> 34/ <scp>CD</scp> 117 backbone – a universal marker combination for the detection of minimal residual disease in acute myeloid leukaemia. British Journal of Haematology, 2014, 164, 212-222.	1.2	48
46	Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells InÂVivo. Cancer Cell, 2014, 25, 794-808.	7.7	272
47	Publishing data from failed cytogenetic assays– what can we learn?. British Journal of Haematology, 2014, 164, 163-164.	1.2	0
48	Janet <scp>R</scp> owley 1925–2013: a rock star of haematology and genetics. British Journal of Haematology, 2014, 165, 269-270.	1.2	1
49	Diagnosing and following adult patients with acute myeloid leukaemia in the genomic age. British Journal of Haematology, 2014, 167, 162-176.	1.2	11
50	Delineation of known and new transcript variants of the SETMAR (Metnase) gene and the expression profile in hematologic neoplasms. Experimental Hematology, 2014, 42, 448-456.e4.	0.2	14
51	Common consensus LNA probe for quantitative PCR assays in cancer: Vehicles for minimal residual disease detection in t(11;14) and t(14;18) positive malignant lymphomas. Journal of Immunological Methods, 2014, 406, 131-136.	0.6	7
52	Relapse Kinetics in Acute Myeloid Leukemis Cases Encompassing More Than One Common Mutation: Towards a Unified Model. Blood, 2014, 124, 1055-1055.	0.6	0
53	SOX11, CCND1, BCL1/lgh, and Igh-VDJ – a Plethora of Markers for Minimal Residual Disease in Mantle Cell Lymphoma: Which One to Choose?. Blood, 2014, 124, 2957-2957	0.6	0
54	MiR-300 Acts As a Tumor Supressor in Ph+ Progenitors By Modulating the JAK2-SET/PP2A/β-Catenin Interplay. Blood, 2014, 124, 4529-4529.	0.6	0

#	Article	IF	CITATIONS
55	High Fractions of CD34+CD38- Cells with Aberrant hMICL Expression Predicts Shorter Overall- and Progression Free Survival in Myelodysplastic Syndrome. Blood, 2014, 124, 3235-3235.	0.6	Ο
56	A New Approach to Identify Pathogenic Mutations and Inherited Variants By Exome Sequencing – Using a Pair of Identical Twins with Monoclonal Lymphosis As Case Model. Blood, 2014, 124, 1979-1979.	0.6	0
57	Characterisation of the Stem and Progenitor Cell Hierarchy in Patients with CMML. Blood, 2014, 124, 1896-1896.	0.6	Ο
58	Kinetics of del(7q) driven leukemogenesis in a patient with JAK2 V617F and TET2 mutated chronic myeloproliferative neoplasm. Leukemia Research Reports, 2013, 2, 51-53.	0.2	1
59	Unraveling The Leukemic Nature Of hMICL and CD123 Expressing Cells In Acute Myeloid Leukemia. Blood, 2013, 122, 2626-2626.	0.6	2
60	Two Hematological Pre-Malignancies In a Pair Of Homozygous Twins Revealing Differences In Their Pre- and Postnatal Development. Blood, 2013, 122, 5262-5262.	0.6	0
61	Human MICL Is An Early Marker In Myeloid Differentiation and Identifies a Subgroup Of CML Patients With Expanded Granulocyte-Macrophage Progenitor Populations At Diagnosis. Blood, 2013, 122, 2704-2704.	0.6	0
62	Cell Sorting Enables iFISH Detection Of Low BCR-ABL Producing Stem Cells In CML Patients Beyond Deep Molecular Remission. Blood, 2013, 122, 1501-1501.	0.6	0
63	Sensitivity of minimal residual disease in acute myeloid leukaemia in first remission – methodologies in relation to their clinical situation. British Journal of Haematology, 2012, 158, 569-580.	1.2	26
64	Expression of the hMICL in acute myeloid leukemia—a highly reliable disease marker at diagnosis and during followâ€up. Cytometry Part B - Clinical Cytometry, 2012, 82B, 3-8.	0.7	51
65	Poor Mobilizers in an Autologous Hematopoietic Stem Cell Transplantation Setting: Matched Pair Analysis Profiling G-CSF and Plerixafor-Mobilized Stem Cells. Blood, 2012, 120, 4413-4413.	0.6	0
66	Chronic Myeloid Leukemia Presenting with Isolated Thrombocythemia: A Case Revealing Its Stem Cell Biology. Blood, 2012, 120, 4427-4427.	0.6	1
67	Evaluation of hMICL As a Marker Associated with Disease Progression in BCR-ABL Negative Myeloproliferative Neoplasms. Blood, 2012, 120, 1724-1724.	0.6	0
68	Towards individualized follow-up in adult acute myeloid leukemia in remission. Blood, 2011, 117, 2577-2584.	0.6	89
69	A New Protocol for Efficient and Non-Toxic Transfection of siRNA Into Leukemic Cell Lines and Primary Cells – a Direct Comparison Between Nucleofection and Accell Delivery Using Stem Cell Related Antigens As Validation Tools. Blood, 2011, 118, 4802-4802.	0.6	0
70	Strikingly different molecular relapse kinetics in NPM1c, PML-RARA, RUNX1-RUNX1T1, and CBFB-MYH11 acute myeloid leukemias. Blood, 2010, 115, 198-205.	0.6	125
71	FTY720 but Not Its Immunosuppressive Phosphorylated Form FTY720-P Exerts Anti-Leukemic Activity towards Ph(+) and Ph(â^') Myeloproliferative Disorders through Reactivation of the PP2A Tumor Suppressor Blood, 2009, 114, 3259-3259.	0.6	3
72	Development of Standardized Approaches to Reporting of Minimal Residual Disease Data Using a Reporting Software Package Designed within the European LeukemiaNet (ELN) Blood, 2009, 114, 1619-1619.	0.6	0

#	Article	IF	CITATIONS
73	Genetic and Epigenetic Events in Childhood AML - Similarities and Differences with Adult AML Blood, 2009, 114, 2396-2396.	0.6	0
74	Suppression of RISC-Independent Decoy and RISC-Mediated mRNA Base-Pairing Activities of MicroRNA-328 Is Required for Differentiation-Arrest and Enhanced Survival of Blast Crisis CML Progenitors Blood, 2009, 114, 855-855.	0.6	0
75	Maintenance Treatment with 5-Azacitidine for Patients with High Risk Myelodysplastic Syndr–ome (MDS) or Acute Myeloid Leukemia Following MDS (MDS-AML) in Complete Remission (CR) after Induction Chemotherapy. Blood, 2008, 112, 223-223.	0.6	10
76	Altered Splicing of RUNX1-RUNX1T1 in AML Impacts on Prognosis Blood, 2008, 112, 3352-3352.	0.6	0
77	Expression Patterns of Hoxa4 and Meis1 Genes Are Regulated by Promoter Hypermethylation and When Combined Predict Survival in AML Blood, 2008, 112, 1204-1204.	0.6	0
78	Mathematical Modeling of Molecular Relapse Kinetics in NPM1c+, PML-Rara+, RUNX1-RUN1T1+, and CBFB-MYH11+ Acute Myeloid Leukemias. Blood, 2008, 112, 2525-2525.	0.6	0
79	Disruption of the NHR4 Domain Structure in AML1-ETO Abrogates Its Interaction with SON and Promotes AML1-ETO-Associated Leukemogenesis Blood, 2008, 112, 936-936.	0.6	0
80	Identification of the JAK/STAT Signaling Pathway as a Valid Therapeutic Target of T(8;21) Acute Myeloid Leukemia Using Combined Gene Expression and Promoter Occupancy Profiling Blood, 2008, 112, 3336-3336.	0.6	0
81	Mutations in Mitochondrial DNA Is An Adverse Factor for Survival in Patients with Acute Myeloid Leukemia Blood, 2008, 112, 1523-1523.	0.6	0
82	Maintenance Treatment with Azacytidine for Patients with High Risk Myelodysplastic Syndromes or Acute Myeloid Leukaemia in Complete Remission after Intensive Chemotherapy Blood, 2007, 110, 818-818.	0.6	3
83	Loss of Heterozygosity (LOH) of the NUP98 Gene Is an Adverse Prognostic Factor in Acute Myeloid Leukemia (AML) Blood, 2006, 108, 2356-2356.	0.6	1
84	A Multiplex PCR for Detection of Genetic Aberrations in Non-Hodkin's Lymphoma Blood, 2004, 104, 4554-4554.	0.6	0
85	Clues for Novel Pathways in Leukemogenesis: Clobal Gene Expression Profiling in Acute Myeloid Leukemia Patients Negative for a Comprehensive Series of Molecular Alterations Blood, 2004, 104, 3375-3375.	0.6	0
86	Promoter Hypermethylation and Quantitative mRNA Expression of the Retinoic Acid Receptor β2 Gene in Patients with Acute Myeloid Leukemia Blood, 2004, 104, 1065-1065.	0.6	0
87	Delineation of Promoter Methylation in Patients with Myelodysplastic Syndromes: Widespread and Concurrent Hypermethylation of Multiple Genes and Increased mRNA Expression of the DNA Methyltransferases DNMT1, 3A and 3B Blood, 2004, 104, 472-472.	0.6	0
88	Evidence for T-Cell Involvement in MDS: Similar Patterns of Hypermethylation of Key Genes in Purified CD34+ and CD3+ Cell Fractions in an RAEB Patient Blood, 2004, 104, 4712-4712.	0.6	0
89	Mutational analysis of the tumour suppressor gene MMAC1/PTEN in malignant myeloid disorders. European Journal of Haematology, 2000, 65, 109-113.	1.1	64
90	Leukaemia cell drug resistance and prognostic factors in AML. European Journal of Haematology, 1999, 63, 219-224.	1.1	14

#	Article	IF	CITATIONS
91	Optimization of a flow cytometric method for the simultaneous measurement of cell surface antigen, DNA content, and in vitro BrdUrd incorporation into normal and malignant hematopoietic cells. , 1998, 32, 28-36.		41
92	Multiplex Reverse Transcription-Polymerase Chain Reaction for Simultaneous Screening of 29 Translocations and Chromosomal Aberrations in Acute Leukemia. Blood, 1998, 92, 574-588.	0.6	239
93	Delineation of erythropoiesis in normal and malignant bone marrow using monoclonal antibody ASâ€E1 directed against transferrin receptors (CD71). European Journal of Haematology, 1998, 60, 53-60.	1.1	7
94	Flow cytometric identification of myeloid disorders by asynchronous expression of the CD14 and CD66 antigens. European Journal of Haematology, 1998, 61, 339-346.	1.1	14
95	RELATION OF BLAST CELL SURVIVAL AND PROLIFERATION TO CHEMOTHERAPY RESISTANCE IN AML. British Journal of Haematology, 1996, 93, 888-897.	1.2	33
96	Myeloid Progenitors in Remission Bone Marrow in Patients with Malignant Blood Diseases: Clues for Slow Hematopoietic Regeneration After ABMT?. Stem Cells and Development, 1996, 5, 279-288.	1.0	3
97	Little evidence for clonal evolution of malignant haematopoietic cells following relapse after autologous bone marrow transplantation. European Journal of Haematology, 1996, 57, 25-32.	1.1	0
98	The Use of <i>In Vitro</i> Systems for Evaluating Haematotoxicity. ATLA Alternatives To Laboratory Animals, 1996, 24, 211-231.	0.7	50
99	Clonal T″ymphocytes from untreated hairyâ€cell leukaemia patients enhance the growth of BFUâ€E. European Journal of Haematology, 1994, 53, 271-279.	1.1	2