## Luciano Caseli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958874/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Graphene Oxide Modulating the Bioelectronic Properties of Penicillinase Immobilized in Lipid<br>Langmuir–Blodgett Films. Langmuir, 2022, 38, 2372-2378.                                                 | 3.5  | 7         |
| 2  | The Past and the Future of Langmuir and Langmuir–Blodgett Films. Chemical Reviews, 2022, 122, 6459-6513.                                                                                                | 47.7 | 155       |
| 3  | Interfacial behavior of Proteinase K enzyme at air-saline subphase. Journal of Colloid and Interface<br>Science, 2022, 616, 701-708.                                                                    | 9.4  | 1         |
| 4  | Molecular organization of dengue fusion peptide in phospholipid monolayers revealed by tensiometry and vibrational spectroscopy. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112477.             | 5.0  | 0         |
| 5  | Unsaturated lipids modulating the interaction of the antileishmanial isolinderanolide E with models of cellular membranes. Bioorganic Chemistry, 2022, 124, 105814.                                     | 4.1  | Ο         |
| 6  | Sakuranetin Interacting With Cell Membranes Models: Surface Chemistry Combined With Molecular<br>Simulation. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112546.                                 | 5.0  | 0         |
| 7  | Interfacial properties of pectinase forming ultrathin films from a saline solution. Thin Solid Films, 2022, 753, 139293.                                                                                | 1.8  | Ο         |
| 8  | Biological activity of pectic polysaccharides investigated through biomembrane models formed at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112530.                     | 5.0  | 2         |
| 9  | Monolayer nanoarchitectonics at the air-water interface for molecular understanding of the interaction of isolinderanolide E with cholesterol. Thin Solid Films, 2022, 754, 139305.                     | 1.8  | 1         |
| 10 | Evaluation of the effects in cellular membrane models of antitrypanosomal poly-thymolformaldehyde<br>(PTF) using Langmuir monolayers. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183500. | 2.6  | 3         |
| 11 | Dengue fusion peptide in Langmuir monolayers: A binding parameter study. Biophysical Chemistry, 2021, 271, 106553.                                                                                      | 2.8  | 7         |
| 12 | Structural and viscoelastic properties of floating monolayers of a pectinolytic enzyme and their influence on the catalytic properties. Journal of Colloid and Interface Science, 2021, 589, 568-577.   | 9.4  | 5         |
| 13 | Ultrathin films to investigate the interaction of nitrofurantoin with phospholipids. Thin Solid Films, 2021, 725, 138638.                                                                               | 1.8  | 2         |
| 14 | Surface Chemistry Studies on the Formation of Mixed Stearic Acid/Phenylalanine Dehydrogenase<br>Langmuir and Langmuir–Blodgett Films. Langmuir, 2021, 37, 7771-7779.                                    | 3.5  | 1         |
| 15 | Peptidoglycans modulating the interaction of a bactericide compound with lipids at the air-water interface. Chemistry and Physics of Lipids, 2021, 237, 105082.                                         | 3.2  | 1         |
| 16 | Phase transition beyond the monolayer collapse – The case of stearic acid spread at the air/water<br>interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126781.    | 4.7  | 6         |
| 17 | Study of the interactions of gold nanoparticles functionalized with aminolevulinic acid in membrane models. Colloids and Surfaces B: Biointerfaces, 2021, 205, 111849.                                  | 5.0  | 10        |
| 18 | Interaction of isolinderanolide E obtained from Nectandra oppositifolia with biomembrane models.<br>Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183690.                                   | 2.6  | 3         |

| #  | Article                                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | A bactericide peptide changing the static and dilatational surface elasticity properties of zwitterionic<br>lipids at the air-water interface: Relationship with the thermodynamic, structural and morphological<br>properties. Biophysical Chemistry, 2021, 277, 106638. | 2.8  | 8         |
| 20 | Surface chemistry and spectroscopic studies of the native phenylalanine dehydrogenase Langmuir<br>monolayer at the air/aqueous NaCl interface. Journal of Colloid and Interface Science, 2020, 560,<br>458-466.                                                           | 9.4  | 16        |
| 21 | Conjugated polymers as Langmuir and Langmuir-Blodgett films: Challenges and applications in nanostructured devices. Advances in Colloid and Interface Science, 2020, 285, 102277.                                                                                         | 14.7 | 24        |
| 22 | Phosphatidylserine controls calcium phosphate nucleation and growth on lipid monolayers: A<br>physicochemical understanding of matrix vesicle-driven biomineralization. Journal of Structural<br>Biology, 2020, 212, 107607.                                              | 2.8  | 20        |
| 23 | Enzyme activity preservation for galactose oxidase immobilized in stearic acid Langmuir-Blodgett<br>films. Thin Solid Films, 2020, 709, 138253.                                                                                                                           | 1.8  | 9         |
| 24 | Langmuir and Langmuir–Blodgett Films of Poly[(9,9-dioctylfluorene)- <i>co</i> -(3-hexylthiophene)] for<br>Immobilization of Phytase: Possible Application as a Phytic Acid Sensor. Langmuir, 2020, 36, 10587-10596.                                                       | 3.5  | 8         |
| 25 | The effect of the monocyclic monoterpene tertiary alcohol γ-terpineol on biointerfaces containing cholesterol. Chemistry and Physics of Lipids, 2020, 230, 104915.                                                                                                        | 3.2  | 11        |
| 26 | Insertion of carbon nanotubes in Langmuir-Blodgett films of stearic acid and asparaginase enhancing the catalytic performance. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111032.                                                                                 | 5.0  | 15        |
| 27 | Effect of interfering agents for urease immobilized in Langmuir-Blodgett films of controlled molecular architecture✰. Thin Solid Films, 2020, 704, 138043.                                                                                                                | 1.8  | 6         |
| 28 | The lipid composition affects Trastuzumab adsorption at monolayers at the air-water interface.<br>Chemistry and Physics of Lipids, 2020, 227, 104875.                                                                                                                     | 3.2  | 17        |
| 29 | Interaction of dicentrinone, an antitrypanosomal aporphine alkaloid isolated from Ocotea puberula<br>(Lauraceae), in cell membrane models at the air-water interface. Bioorganic Chemistry, 2020, 101,<br>103978.                                                         | 4.1  | 16        |
| 30 | Molecular Information on the Potential of Europium Complexes for Local Recognition of a<br>Nucleoside-Based Drug by Using Nanostructured Interfaces Assembled as Langmuir–Blodgett Films.<br>Langmuir, 2020, 36, 3843-3852.                                               | 3.5  | 2         |
| 31 | Enzyme activity of thiophene-fluorene based-copolymer blended with urease in thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 603, 125139.                                                                                             | 4.7  | 4         |
| 32 | The antibacterial activity of <i>p-tert</i> -butylcalix[6]arene and its effect on a membrane model:<br>molecular dynamics and Langmuir film studies. Physical Chemistry Chemical Physics, 2020, 22,<br>6154-6166.                                                         | 2.8  | 5         |
| 33 | Interaction of nitrofurantoin with lipid langmuir monolayers as cellular membrane models<br>distinguished with tensiometry and infrared spectroscopy. Colloids and Surfaces B: Biointerfaces,<br>2020, 188, 110794.                                                       | 5.0  | 16        |
| 34 | Cholesterol Regulates the Incorporation and Catalytic Activity of Tissue-Nonspecific Alkaline<br>Phosphatase in DPPC Monolayers. Langmuir, 2019, 35, 15232-15241.                                                                                                         | 3.5  | 11        |
| 35 | New look for an old molecule – Solid/solid phase transition in cholesterol monolayers. Chemistry and Physics of Lipids, 2019, 225, 104819.                                                                                                                                | 3.2  | 16        |
| 36 | Thymol in cellular membrane models formed by negative charged lipids causes aggregation at the air-water interface. Chemical Physics Letters, 2019, 717, 87-90.                                                                                                           | 2.6  | 9         |

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Interaction of Trastuzumab with biomembrane models at air-water interfaces mimicking cancer cell<br>surfaces. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 182992.                                              | 2.6 | 7         |
| 38 | Conjugated Polymers Blended with Lipids and Galactosidase as Langmuir–Blodgett Films To Control the Biosensing Properties of Nanostructured Surfaces. Langmuir, 2019, 35, 7294-7303.                                         | 3.5 | 24        |
| 39 | Interfacial vibrational spectroscopy and Brewster angle microscopy distinguishing the interaction of terpineol in cell membrane models at the air-water interface. Biophysical Chemistry, 2019, 246, 1-7.                    | 2.8 | 11        |
| 40 | Immobilization of urease in Langmuir-Blodgett films of di-ureasil hybrid compounds. Thin Solid Films, 2019, 670, 17-23.                                                                                                      | 1.8 | 8         |
| 41 | Antitrypanosomal activity of epi-polygodial from Drimys brasiliensis and its effects in cellular membrane models at the air-water interface. Bioorganic Chemistry, 2019, 84, 186-191.                                        | 4.1 | 5         |
| 42 | Incorporation of polygodial in Langmuir films of selected lipids. Thin Solid Films, 2019, 669, 19-28.                                                                                                                        | 1.8 | 11        |
| 43 | Understanding the cytotoxic effects of new isovanillin derivatives through phospholipid Langmuir monolayers. Bioorganic Chemistry, 2019, 83, 205-213.                                                                        | 4.1 | 7         |
| 44 | Carbon Nanotubes and Algal Polysaccharides To Enhance the Enzymatic Properties of Urease in Lipid<br>Langmuir–Blodgett Films. Langmuir, 2018, 34, 3082-3093.                                                                 | 3.5 | 20        |
| 45 | The "pre-assembled state―of magainin 2 lysine-linked dimer determines its enhanced antimicrobial<br>activity. Colloids and Surfaces B: Biointerfaces, 2018, 167, 432-440.                                                    | 5.0 | 15        |
| 46 | Lipopolysaccharides and peptidoglycans modulating the interaction of Au naparticles with cell membranes models at the air-water interface. Biophysical Chemistry, 2018, 238, 22-29.                                          | 2.8 | 11        |
| 47 | How the interaction of PVP-stabilized Ag nanoparticles with models of cellular membranes at the air-water interface is modulated by the monolayer composition. Journal of Colloid and Interface Science, 2018, 512, 792-800. | 9.4 | 26        |
| 48 | Copolymers and enzymes blended as LB films changing the bioelectronics properties of interfaces.<br>Colloids and Interface Science Communications, 2018, 27, 40-44.                                                          | 4.1 | 7         |
| 49 | Lipids mediating the interaction of metronidazole with cell membrane models at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2018, 171, 377-382.                                                          | 5.0 | 10        |
| 50 | Enzymes immobilized in Langmuir-Blodgett films: Why determining the surface properties in Langmuir<br>monolayer is important?. Anais Da Academia Brasileira De Ciencias, 2018, 90, 631-644.                                  | 0.8 | 27        |
| 51 | Adsorption and enzyme activity of asparaginase at lipid Langmuir and Langmuir-Blodgett films.<br>Materials Science and Engineering C, 2017, 73, 579-584.                                                                     | 7.3 | 27        |
| 52 | Incorporation of bacitracin in Langmuir films of phospholipids at the air-water interface. Thin Solid<br>Films, 2017, 622, 95-103.                                                                                           | 1.8 | 14        |
| 53 | Interaction of non-aqueous dispersions of silver nanoparticles with cellular membrane models.<br>Journal of Colloid and Interface Science, 2017, 496, 111-117.                                                               | 9.4 | 12        |
| 54 | Langmuir and Langmuir-Blodgett films of di-ureasil hybrid compounds containing phosphotungstic acid. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524, 35-42.                                     | 4.7 | 9         |

| #  | Article                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Polarization Modulation Reflection-Absorption Spectroscopy applied in ultrathin films of algal<br>biomacromolecules may explain the mechanism associated to the removal of pollutant metals.<br>Vibrational Spectroscopy, 2017, 92, 9-13.                       | 2.2 | 1         |
| 56 | Interaction of violacein in models for cellular membranes: Regulation of the interaction by the lipid composition at the air-water interface. Colloids and Surfaces B: Biointerfaces, 2017, 160, 247-253.                                                       | 5.0 | 27        |
| 57 | Interaction of 3′,4′,6′-trimyristoyl-uridine derivative as potential anticancer drug with phospholipids of<br>tumorigenic and non-tumorigenic cells. Applied Surface Science, 2017, 426, 77-86.                                                                 | 6.1 | 12        |
| 58 | Carbon Nanotubes Arranged As Smart Interfaces in Lipid Langmuir–Blodgett Films Enhancing the<br>Enzymatic Properties of Penicillinase for Biosensing Applications. ACS Applied Materials &<br>Interfaces, 2017, 9, 31054-31066.                                 | 8.0 | 28        |
| 59 | Organization of polythiophenes at ultrathin films mixed with stearic acid investigated with<br>polarization-modulation infrared reflection–absorption spectroscopy. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2017, 529, 628-633.    | 4.7 | 15        |
| 60 | Controlling the molecular architecture of lactase immobilized in Langmuir-Blodgett films of phospholipids to modulate the enzyme activity. Colloids and Surfaces B: Biointerfaces, 2017, 150, 8-14.                                                             | 5.0 | 20        |
| 61 | Films Deposited from Reactive Sputtering of Aluminum Acetylacetonate Under Low Energy Ion<br>Bombardment. Materials Research, 2017, 20, 926-936.                                                                                                                | 1.3 | 2         |
| 62 | Rhodanese incorporated in Langmuir and Langmuir–Blodgett films of dimyristoylphosphatidic acid:<br>Physical chemical properties and improvement of the enzyme activity. Colloids and Surfaces B:<br>Biointerfaces, 2016, 141, 59-64.                            | 5.0 | 19        |
| 63 | CdSe magic-sized quantum dots incorporated in biomembrane models at the air–water interface composed of components of tumorigenic and non-tumorigenic cells. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1533-1540.                               | 2.6 | 9         |
| 64 | Conjugated polymers nanostructured as smart interfaces for controlling the catalytic properties of enzymes. Journal of Colloid and Interface Science, 2016, 476, 206-213.                                                                                       | 9.4 | 26        |
| 65 | Acylated Carrageenan Changes the Physicochemical Properties of Mixed Enzyme–Lipid Ultrathin Films<br>and Enhances the Catalytic Properties of Sucrose Phosphorylase Nanostructured as Smart Surfaces.<br>Journal of Physical Chemistry B, 2016, 120, 5359-5366. | 2.6 | 11        |
| 66 | Mechanism of Action of Thymol on Cell Membranes Investigated through Lipid Langmuir Monolayers<br>at the Air–Water Interface and Molecular Simulation. Langmuir, 2016, 32, 3234-3241.                                                                           | 3.5 | 47        |
| 67 | Chondroitin sulfate interacts mainly with headgroups in phospholipid monolayers. Colloids and Surfaces B: Biointerfaces, 2016, 141, 595-601.                                                                                                                    | 5.0 | 7         |
| 68 | Supramolecular Control in Nanostructured Film Architectures for Detecting Breast Cancer. ACS<br>Applied Materials & Interfaces, 2015, 7, 11833-11841.                                                                                                           | 8.0 | 36        |
| 69 | The Role of Langmuir Monolayers To Understand Biological Events. ACS Symposium Series, 2015, , 65-88.                                                                                                                                                           | 0.5 | 12        |
| 70 | Langmuir and Langmuir–Blodgett films of lipids and penicillinase: Studies on adsorption and enzymatic activity. Colloids and Surfaces B: Biointerfaces, 2015, 126, 232-236.                                                                                     | 5.0 | 20        |
| 71 | Comparing the Mode of Action of Intraocular Lutein-Based Dyes With Synthetic Dyes. , 2015, 56, 1993.                                                                                                                                                            |     | 4         |
| 72 | Langmuir and Langmuir-Blodgett films of Cl-PPV mixed with stearic acid: implication of the morphology on the surface and spectroscopy properties. Colloid and Polymer Science, 2015, 293, 883-890.                                                              | 2.1 | 6         |

| #  | Article                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The interaction of eugenol with cell membrane models at the air–water interface is modulated by the lipid monolayer composition. Biophysical Chemistry, 2015, 207, 7-12.                                                                                                                   | 2.8 | 10        |
| 74 | Binding of Methylene Blue onto Langmuir Monolayers Representing Cell Membranes May Explain Its<br>Efficiency as Photosensitizer in Photodynamic Therapy. Langmuir, 2015, 31, 4205-4212.                                                                                                    | 3.5 | 36        |
| 75 | Interactions of bioactive molecules & nanomaterials with Langmuir monolayers as cell membrane models. Thin Solid Films, 2015, 593, 158-188.                                                                                                                                                | 1.8 | 114       |
| 76 | Algal polysaccharides as matrices for the immobilization of urease in lipid ultrathin films studied<br>with tensiometry and vibrational spectroscopy: Physical–chemical properties and implications in the<br>enzyme activity. Colloids and Surfaces B: Biointerfaces, 2015, 135, 639-645. | 5.0 | 23        |
| 77 | Ultrathin films of poly(2,5-dicyano- p -phenylene-vinylene)-co-( p -phenylene-vinylene) DCN-PPV/PPV: A<br>Langmuir and Langmuir-Blodgett films study. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2015, 467, 201-206.                                             | 4.7 | 10        |
| 78 | Ultrathin films of lipids to investigate the action of a flavonoid with cell membrane models.<br>Materials Science and Engineering C, 2015, 48, 112-117.                                                                                                                                   | 7.3 | 18        |
| 79 | SISTEMAS SUPRAMOLECULARES. , 2015, , 39-62.                                                                                                                                                                                                                                                |     | 0         |
| 80 | Feasibility of RF Sputtering and PIIID for production of thin films from red mud. Materials Research, 2014, 17, 1316-1323.                                                                                                                                                                 | 1.3 | 2         |
| 81 | Innovative low temperature plasma approach for deposition of alumina films. Materials Research, 2014, 17, 1410-1419.                                                                                                                                                                       | 1.3 | 4         |
| 82 | Implications of the structure for the luminescence properties of NBR–PF blend devices<br>nanostructured as Langmuir–Blodgett films. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2014, 441, 398-405.                                                               | 4.7 | 10        |
| 83 | Chitosan does not inhibit enzymatic action of human pancreatic lipase in Langmuir monolayers of 1,2-didecanoyl-glycerol (DDG). Colloids and Surfaces B: Biointerfaces, 2014, 123, 870-877.                                                                                                 | 5.0 | 10        |
| 84 | Interaction of para-tert-butylcalix[6]arene molecules in Langmuir films with cadmium ions and their<br>effects on molecular conformation and surface potential. Physical Chemistry Chemical Physics, 2014,<br>16, 26168-26175.                                                             | 2.8 | 7         |
| 85 | The interaction of mefloquine hydrochloride with cell membrane models at the air–water interface<br>is modulated by the monolayer lipid composition. Journal of Colloid and Interface Science, 2014, 431,<br>24-30.                                                                        | 9.4 | 38        |
| 86 | Cellulase and Alcohol Dehydrogenase Immobilized in Langmuir and Langmuir–Blodgett Films and Their<br>Molecular-Level Effects upon Contact with Cellulose and Ethanol. Langmuir, 2014, 30, 1855-1863.                                                                                       | 3.5 | 15        |
| 87 | Nanomaterials for Diagnosis: Challenges and Applications in Smart Devices Based on Molecular<br>Recognition. ACS Applied Materials & Interfaces, 2014, 6, 14745-14766.                                                                                                                     | 8.0 | 146       |
| 88 | Adsorption and enzyme activity of sucrose phosphorylase on lipid Langmuir and Langmuir–Blodgett<br>films. Colloids and Surfaces B: Biointerfaces, 2014, 116, 497-501.                                                                                                                      | 5.0 | 9         |
| 89 | Block copolymers of o-PPV organized at the molecular scale as Langmuir and Langmuir–Blodgett<br>films. Synthetic Metals, 2014, 194, 65-70                                                                                                                                                  | 3.9 | 8         |
| 90 | Effect of carrageenans of different chemical structures in biointerfaces: A Langmuir film study.<br>Colloids and Surfaces B: Biointerfaces, 2013, 111, 530-535.                                                                                                                            | 5.0 | 6         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Langmuir–Blodgett films based on poly(p-phenylene vinylene) and protein-stabilised palladium<br>nanoparticles: Implications in luminescent and conducting properties. Thin Solid Films, 2013, 540,<br>202-207.                            | 1.8 | 6         |
| 92  | An intraocular dye solution based on lutein and zeaxanthin in a surrogate internal limiting membrane<br>model: A Langmuir monolayer study. Colloids and Surfaces B: Biointerfaces, 2013, 107, 124-129.                                    | 5.0 | 10        |
| 93  | Langmuir films containing ibuprofen and phospholipids. Chemical Physics Letters, 2013, 559, 99-106.                                                                                                                                       | 2.6 | 52        |
| 94  | Surface chemistry and spectroscopy studies on 1,4-naphthoquinone in cell membrane models using Langmuir monolayers. Journal of Colloid and Interface Science, 2013, 402, 300-306.                                                         | 9.4 | 27        |
| 95  | Algal polysaccharides on lipid Langmuir–Blodgett films and molecular effects upon metal ion contact. Thin Solid Films, 2013, 534, 312-315.                                                                                                | 1.8 | 6         |
| 96  | Investigation of the Conformational Changes of a Conducting Polymer in Gas Sensor Active Layers by<br>Means of Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS)<br>Langmuir, 2013, 29, 2640-2645.           | 3.5 | 15        |
| 97  | Understanding the Collapse Mechanism in Langmuir Monolayers through Polarization<br>Modulation-Infrared Reflection Absorption Spectroscopy. Langmuir, 2013, 29, 9063-9071.                                                                | 3.5 | 47        |
| 98  | The role of the C-terminal region of pulchellin A-chain in the interaction with membrane model systems. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 82-89.                                                                  | 2.6 | 13        |
| 99  | Probing the interaction between heparan sulfate proteoglycan with biologically relevant molecules<br>in mimetic models for cell membranes: A Langmuir film study. Biochimica Et Biophysica Acta -<br>Biomembranes, 2012, 1818, 1211-1217. | 2.6 | 13        |
| 100 | Enhanced Architecture of Lipid-Carbon Nanotubes as Langmuir–Blodgett Films to Investigate the<br>Enzyme Activity of Phospholipases from Snake Venom. Journal of Physical Chemistry B, 2012, 116,<br>13424-13429.                          | 2.6 | 10        |
| 101 | High Enzymatic Activity Preservation with Carbon Nanotubes Incorporated in Urease–Lipid Hybrid<br>Langmuir–Blodgett Films. Langmuir, 2012, 28, 5398-5403.                                                                                 | 3.5 | 24        |
| 102 | Langmuir and Langmuir–Blodgett films of a quinoline-fluorene based copolymer. Colloids and<br>Surfaces A: Physicochemical and Engineering Aspects, 2012, 394, 67-73.                                                                      | 4.7 | 11        |
| 103 | Interaction of chlorhexidine with biomembrane models on glass ionomer by using the<br>Langmuir–Blodgett technique. Colloids and Surfaces B: Biointerfaces, 2012, 97, 57-61.                                                               | 5.0 | 7         |
| 104 | Immbolization of uricase enzyme in Langmuir and Langmuir-Blodgett films of fatty acids: Possible use as a uric acid sensor. Journal of Colloid and Interface Science, 2012, 373, 69-74.                                                   | 9.4 | 50        |
| 105 | Monolayer Collapse Regulating Process of Adsorptionâ desorption of Palladium Nanoparticles at Fatty Acid Monolayers at the Airâ Water Interface. Langmuir, 2011, 27, 2667-2675.                                                           | 3.5 | 5         |
| 106 | The lipid composition of a cell membrane modulates the interaction of an antiparasitic peptide at the air–water interface. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 1907-1912.                                           | 2.6 | 16        |
| 107 | Controlling the luminescence properties of poly(p-phenylene vinylene) entrapped in Langmuir and Langmuir–Blodgett films of stearic acid. Synthetic Metals, 2011, 161, 1753-1759.                                                          | 3.9 | 13        |
| 108 | Interaction of algal polysaccharide with lipid Langmuir monolayers. Materials Science and Engineering C, 2011, 31, 1857-1860.                                                                                                             | 7.3 | 14        |

| #   | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Comparative study of liponucleosides in Langmuir monolayers as cell membrane models. Biophysical<br>Chemistry, 2011, 153, 154-158.                                                                            | 2.8  | 12        |
| 110 | Chitosan in Nanostructured Thin Films. Biomacromolecules, 2010, 11, 1897-1908.                                                                                                                                | 5.4  | 185       |
| 111 | Immobilization of biomolecules on nanostructured films for biosensing. Biosensors and Bioelectronics, 2010, 25, 1254-1263.                                                                                    | 10.1 | 195       |
| 112 | Molecular-level interactions of an azopolymer and poly(dodecylmethacrylate) in mixed Langmuir and<br>Langmuir–Blodgett films for optical storage. Journal of Colloid and Interface Science, 2010, 346, 87-95. | 9.4  | 14        |
| 113 | Interaction of oligonucleotide-based amphiphilic block copolymers with cell membrane models.<br>Journal of Colloid and Interface Science, 2010, 347, 56-61.                                                   | 9.4  | 19        |
| 114 | Properties of lipophilic nucleoside monolayers at the air–water interface. Colloids and Surfaces B:<br>Biointerfaces, 2010, 77, 161-165.                                                                      | 5.0  | 21        |
| 115 | Enzyme Activity of Catalase Immobilized in Langmuirâ^'Blodgett Films of Phospholipids. Langmuir, 2010,<br>26, 11135-11139.                                                                                    | 3.5  | 45        |
| 116 | Mixing Alternating Copolymers Containing Fluorenyl Groups with Phospholipids to Obtain Langmuir<br>and Langmuirâ^'Blodgett Films. Langmuir, 2010, 26, 5869-5875.                                              | 3.5  | 28        |
| 117 | Controlled fabrication of gold nanoparticles biomediated by glucose oxidase immobilized on chitosan layer-by-layer films. Materials Science and Engineering C, 2009, 29, 1687-1690.                           | 7.3  | 21        |
| 118 | Enzyme activity of horseradish peroxidase immobilized in chitosan matrices in alternated layers.<br>Materials Science and Engineering C, 2009, 29, 1889-1892.                                                 | 7.3  | 17        |
| 119 | Interaction of polysaccharide–protein complex from Agaricus blazei with Langmuir and<br>Langmuir–Blodgett films of phospholipids. Journal of Colloid and Interface Science, 2009, 330, 84-89.                 | 9.4  | 24        |
| 120 | The interaction of an antiparasitic peptide active against African Sleeping Sickness with cell membrane models. Colloids and Surfaces B: Biointerfaces, 2009, 74, 504-510.                                    | 5.0  | 35        |
| 121 | Cholesterol Mediates Chitosan Activity on Phospholipid Monolayers and Langmuirâ^Blodgett Films.<br>Langmuir, 2009, 25, 10051-10061.                                                                           | 3.5  | 60        |
| 122 | Immobilization of Alcohol Dehydrogenase in Phospholipid Langmuirâ^'Blodgett Films To Detect<br>Ethanol. Langmuir, 2009, 25, 3057-3061.                                                                        | 3.5  | 36        |
| 123 | Using phospholipid Langmuir and Langmuir–Blodgett films as matrix for urease immobilization.<br>Journal of Colloid and Interface Science, 2008, 319, 100-108.                                                 | 9.4  | 60        |
| 124 | Rat osseous plate alkaline phosphatase as Langmuir monolayer—An infrared study at the air–water<br>interface. Journal of Colloid and Interface Science, 2008, 320, 476-482.                                   | 9.4  | 31        |
| 125 | Interaction of horseradish peroxidase with Langmuir monolayers of phospholipids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 206-210.                                        | 4.7  | 32        |
| 126 | Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing:<br>Ethanol detection using electrical capacitance measurements. Thin Solid Films, 2008, 516, 9002-9005.    | 1.8  | 35        |

| #   | ARTICLE                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Enhanced activity of horseradish peroxidase in Langmuir–Blodgett films of phospholipids. Biochimica<br>Et Biophysica Acta - Biomembranes, 2008, 1778, 2291-2297.                                                                    | 2.6 | 78        |
| 128 | Chitosan as a Removing Agent of β-Lactoglobulin from Membrane Models. Langmuir, 2008, 24, 4150-4156.                                                                                                                                | 3.5 | 42        |
| 129 | Interaction of Chitosan with Cell Membrane Models at the Airâ^'Water Interface. Biomacromolecules, 2007, 8, 1633-1640.                                                                                                              | 5.4 | 118       |
| 130 | Control of catalytic activity of glucose oxidase in layer-by-layer films of chitosan and glucose oxidase. Materials Science and Engineering C, 2007, 27, 1108-1110.                                                                 | 7.3 | 25        |
| 131 | Study of the Interaction of Human Defensins with Cell Membrane Models:  Relationships between<br>Structure and Biological Activity. Journal of Physical Chemistry B, 2007, 111, 11318-11329.                                        | 2.6 | 35        |
| 132 | Probing Chitosan and Phospholipid Interactions Using Langmuir and Langmuirâ^'Blodgett Films as Cell<br>Membrane Models. Langmuir, 2007, 23, 7666-7671.                                                                              | 3.5 | 104       |
| 133 | Influence of the glycosylphosphatidylinositol anchor in the morphology and roughness of<br>Langmuir–Blodgett films of phospholipids containing alkaline phosphatases. Thin Solid Films, 2007,<br>515, 4801-4807.                    | 1.8 | 28        |
| 134 | Fabrication of Phytic Acid Sensor Based on Mixed Phytaseâ^'Lipid Langmuirâ^'Blodgett Films. Langmuir, 2006, 22, 8501-8508.                                                                                                          | 3.5 | 59        |
| 135 | The effect of the layer structure on the activity of immobilized enzymes in ultrathin films. Journal of<br>Colloid and Interface Science, 2006, 303, 326-331.                                                                       | 9.4 | 44        |
| 136 | Incorporation conditions guiding the aggregation of a glycosylphosphatidyl inositol (GPI)-anchored protein in Langmuir monolayers. Colloids and Surfaces B: Biointerfaces, 2005, 46, 248-254.                                       | 5.0 | 25        |
| 137 | Adsorption kinetics and dilatational rheological studies for the soluble and anchored forms of<br>alkaline phosphatase at the air/water interface. Journal of the Brazilian Chemical Society, 2005, 16,<br>969-977.                 | 0.6 | 33        |
| 138 | Effect of Molecular Surface Packing on the Enzymatic Activity Modulation of an Anchored Protein on Phospholipid Langmuir Monolayers. Langmuir, 2005, 21, 4090-4095.                                                                 | 3.5 | 60        |
| 139 | Surface density as a significant parameter for the enzymatic activity of two forms of alkaline<br>phosphatase immobilized on phospholipid Langmuir–Blodgett films. Journal of Colloid and Interface<br>Science, 2004, 275, 123-130. | 9.4 | 39        |
| 140 | Influence of Mn(III)porphyrins with different polarities on dimyristoylphosphatidic acid monolayers.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 229, 169-180.                                       | 4.7 | 6         |
| 141 | Adsorption of detergent-solubilized and phospholipase C-solubilized alkaline phosphatase at air/liquid interfaces. Colloids and Surfaces B: Biointerfaces, 2003, 30, 273-282.                                                       | 5.0 | 28        |
| 142 | Enzymatic activity of alkaline phosphatase adsorbed on dimyristoylphosphatidic acid<br>Langmuir–Blodgett films. Colloids and Surfaces B: Biointerfaces, 2002, 25, 119-128.                                                          | 5.0 | 48        |
| 143 | Flexibility of the triblock copolymers modulating their penetration and expulsion mechanism in Langmuir monolayers of dihexadecyl phosphoric acid. Colloids and Surfaces B: Biointerfaces, 2001, 22, 309-321.                       | 5.0 | 19        |