Maria Perander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958576/publications.pdf

Version: 2024-02-01

		840585 1125617	
13	415	11	13
papers	citations	h-index	g-index
13	13	13	729
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	ICAM1 expression is induced by proinflammatory cytokines and associated with TLS formation in aggressive breast cancer subtypes. Scientific Reports, 2018, 8, 11720.	1.6	71
2	The long noncoding RNA NEAT1 and nuclear paraspeckles are up-regulated by the transcription factor HSF1 in the heat shock response. Journal of Biological Chemistry, 2018, 293, 18965-18976.	1.6	61
3	Current Status of Circulating Tumor Cells, Circulating Tumor DNA, and Exosomes in Breast Cancer Liquid Biopsies. International Journal of Molecular Sciences, 2020, 21, 9457.	1.8	56
4	Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition. Cancer Letters, 2017, 396, 117-129.	3.2	45
5	Distinct Small RNA Signatures in Extracellular Vesicles Derived from Breast Cancer Cell Lines. PLoS ONE, 2016, 11, e0161824.	1.1	31
6	Regulation of atypical MAP kinases ERK3 and ERK4 by the phosphatase DUSP2. Scientific Reports, 2017, 7, 43471.	1.6	28
7	The Ser186 phospho-acceptor site within ERK4 is essential for its ability to interact with and activate PRAK/MK5. Biochemical Journal, 2008, 411, 613-622.	1.7	27
8	Expression and functions of long non-coding RNA NEAT1 and isoforms in breast cancer. British Journal of Cancer, 2022, 126, 551-561.	2.9	26
9	The expression of the long NEAT1_2 isoform is associated with human epidermal growth factor receptor 2-positive breast cancers. Scientific Reports, 2020, 10, 1277.	1.6	22
10	Does MK5 reconcile classical and atypical MAP kinases?. Frontiers in Bioscience - Landmark, 2008, Volume, 4617.	3.0	21
11	New insights into the activation interaction partners and possible functions of MK5 PRAK. Frontiers in Bioscience - Landmark, 2016, 21, 374-384.	3.0	13
12	Cancer-specific SNPs originate from low-level heteroplasmic variants in human mitochondrial genomes of a matched cell line pair. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 82-91.	0.7	8
13	Serglycin Is Involved in TGF-Î ² Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Frontiers in Oncology, 2022, 12, 868868.	1.3	6