
## Andreia F Peixoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958415/publications.pdf Version: 2024-02-01



ANDREIA F DEIXOTO

| #  | Article                                                                                                                                                                                                                                      | IF               | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 1  | Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chemistry, 2021, 334, 127521.                                                               | 4.2              | 117           |
| 2  | Catalytic performance and electrochemical behaviour of Metal–organic frameworks: MIL-101(Fe)<br>versus NH2-MIL-101(Fe). Polyhedron, 2017, 127, 464-470.                                                                                      | 1.0              | 82            |
| 3  | Physicochemical characterization of organosilylated halloysite clay nanotubes. Microporous and Mesoporous Materials, 2016, 219, 145-154.                                                                                                     | 2.2              | 79            |
| 4  | Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coordination Chemistry Reviews, 2019, 394, 104-134.                                                      | 9.5              | 74            |
| 5  | Synthesis, Photophysical Studies and Anticancer Activity of a New Halogenated Waterâ€Soluble<br>Porphyrin. Photochemistry and Photobiology, 2007, 83, 897-903.                                                                               | 1.3              | 73            |
| 6  | Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO <sub>2</sub> conversion and valorisation. Dalton Transactions, 2019, 48, 13508-13528.                                                                                    | 1.6              | 71            |
| 7  | Double Optimization of Rivastigmine-Loaded Nanostructured Lipid Carriers (NLC) for Nose-to-Brain<br>Delivery Using the Quality by Design (QbD) Approach: Formulation Variables and Instrumental<br>Parameters. Pharmaceutics, 2020, 12, 599. | 2.0              | 61            |
| 8  | Green-Sustainable Recovery of Phenolic and Antioxidant Compounds from Industrial Chestnut Shells<br>Using Ultrasound-Assisted Extraction: Optimization and Evaluation of Biological Activities In Vitro.<br>Antioxidants, 2020, 9, 267.      | 2.2              | 51            |
| 9  | Sulfonic acid functionalized silica nanoparticles as catalysts for the esterification of linoleic acid.<br>New Journal of Chemistry, 2017, 41, 3595-3605.                                                                                    | 1.4              | 35            |
| 10 | HSO3-functionalized halloysite nanotubes: New acid catalysts for esterification of free fatty acid<br>mixture as hybrid feedstock model for biodiesel production. Applied Catalysis A: General, 2018, 568,<br>221-230.                       | 2.2              | 33            |
| 11 | Highly Active Ruthenium Supported on Magnetically Recyclable Chitosanâ€Based Nanocatalyst for<br>Nitroarenes Reduction. ChemCatChem, 2017, 9, 3930-3941.                                                                                     | 1.8              | 31            |
| 12 | Catalytic Transfer Hydrogenation of Furfural over<br>Co <sub>3</sub> O <sub>4</sub> â^Al <sub>2</sub> O <sub>3</sub> Hydrotalciteâ€derived Catalyst.<br>ChemCatChem, 2020, 12, 1467-1475.                                                    | 1.8              | 31            |
| 13 | Metal-Supported Biochar Catalysts for Sustainable Biorefinery, Electrocatalysis, and Energy Storage<br>Applications: A Review. Catalysts, 2022, 12, 207.                                                                                     | 1.6              | 31            |
| 14 | Oxidation of Δ4- and Δ5-Steroids with Hydrogen Peroxide Catalyzed by Porphyrin Complexes of MnIIIand<br>FellI. European Journal of Organic Chemistry, 2004, 2004, 4778-4787.                                                                 | 1.2              | 29            |
| 15 | Evaluation of the Extraction Temperature Influence on Polyphenolic Profiles of Vine-Canes (Vitis) Tj ETQq1 1 0.78                                                                                                                            | 34314 rgB<br>1.9 | T /Qyerlock 1 |
| 16 | Production of ethyl levulinate fuel bioadditive from 5-hydroxymethylfurfural over sulfonic acid functionalized biochar catalysts. Fuel, 2021, 303, 121227.                                                                                   | 3.4              | 28            |
| 17 | Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules, 2020, 25, 1739.                                                                                                                                  | 1.7              | 26            |
| 18 | Rhodium(I) N-Heterocyclic Carbene Complexes as Catalysts for Hydroformylation of Olefins: An<br>Overview. Current Organic Synthesis, 2011, 8, 764-775.                                                                                       | 0.7              | 23            |

Andreia F Peixoto

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Ruthenium Supported on Ionically Cross-linked Chitosan-Carrageenan Hybrid MnFe2O4 Catalysts for<br>4-Nitrophenol Reduction. Catalysts, 2019, 9, 254.                                                                                                    | 1.6 | 22        |
| 20 | Rhodium catalyzed hydroformylation of kaurane derivatives: A route to new diterpenes with potential bioactivity. Applied Catalysis A: General, 2008, 340, 212-219.                                                                                      | 2.2 | 21        |
| 21 | Hydroformylation of hindered double bonds of natural products with rhodium catalysts: The effect of 3-acetoxy substituent. Journal of Molecular Catalysis A, 2007, 275, 121-129.                                                                        | 4.8 | 20        |
| 22 | Copper mesoporous materials as highly efficient recyclable catalysts for the reduction of 4-nitrophenol in aqueous media. Polyhedron, 2018, 150, 69-76.                                                                                                 | 1.0 | 20        |
| 23 | Improved catalytic performance of porous metal–organic frameworks for the ring opening of styrene oxide. CrystEngComm, 2017, 19, 4219-4226.                                                                                                             | 1.3 | 19        |
| 24 | Organosulfonic acid functionalized montmorillonites as solid catalysts for (trans) esterification of free fatty acids and (waste) oils. Renewable Energy, 2020, 146, 2416-2429.                                                                         | 4.3 | 19        |
| 25 | The Antidiabetic Effect of Grape Pomace Polysaccharide-Polyphenol Complexes. Nutrients, 2021, 13, 4495.                                                                                                                                                 | 1.7 | 19        |
| 26 | Synthesis of Ortho-alkoxy-aryl Carboxamides via Palladium-Catalyzed Aminocarbonylation. Synthetic<br>Communications, 2009, 39, 1534-1548.                                                                                                               | 1.1 | 17        |
| 27 | Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145, 105936.                                                                               | 2.9 | 16        |
| 28 | Characterization of isomeric cationic porphyrins with β-pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator. Journal of the American Society for Mass Spectrometry, 2007, 18, 218-225. | 1.2 | 15        |
| 29 | Palladium-catalysed reactions of 8-hydroxy- and 8-benzyloxy-5,7-diiodoquinoline under aminocarbonylation conditions. Tetrahedron, 2011, 67, 2402-2406.                                                                                                  | 1.0 | 15        |
| 30 | Acid functionalized coal fly ashes: New solid catalysts for levulinic acid esterification. Catalysis<br>Today, 2020, 357, 74-83.                                                                                                                        | 2.2 | 14        |
| 31 | Hydroformylation: a versatile tool for the synthesis of new β-formyl-metalloporphyrins. Tetrahedron<br>Letters, 2003, 44, 5593-5595.                                                                                                                    | 0.7 | 11        |
| 32 | Sequential reactions from catalytic hydroformylation toward the synthesis of amino compounds.<br>Tetrahedron, 2017, 73, 2389-2395.                                                                                                                      | 1.0 | 11        |
| 33 | Efficient Continuous Production of the Biofuel Additive 5â€( t―Butoxymethyl) Furfural from<br>5â€Hydroxymethylfurfural. Energy Technology, 2019, 7, 1900780.                                                                                            | 1.8 | 11        |
| 34 | Stereoselectivity Inversion by Water Addition in the â^'SO 3 H atalyzed Tandem Prinsâ€Ritter Reaction for<br>Synthesis of 4â€amidotetrahydropyran Derivatives. ChemCatChem, 2020, 12, 2605-2609.                                                        | 1.8 | 11        |
| 35 | Improving regioselectivity in the rhodium catalyzed hydroformylation of protoporphyrin-IX and chlorophyll a derivatives. Journal of Molecular Catalysis A, 2005, 235, 185-193.                                                                          | 4.8 | 10        |
| 36 | Selective hydrogenation of α,β-unsaturated oxosteroids with homogeneous rhodium catalysts. Journal of Molecular Catalysis A, 2006, 247, 275-282.                                                                                                        | 4.8 | 9         |

Andreia F Peixoto

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Catalytic synthesis of bioactive 2H-chromene alcohols from (â^')-isopulegol and acetone on sulfonated clays. Reaction Kinetics, Mechanisms and Catalysis, 2020, 129, 627-644.                        | 0.8 | 9         |
| 38 | Silica-Supported Copper for the Preparation of <i>trans-</i> 4,5-Diamino-Cyclopent-2-Enones under Continuous Flow Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 16038-16043.       | 3.2 | 9         |
| 39 | Synthesis and Characterization of a Lipidic Alpha Amino Acid: Solubility and Interaction with Serum Albumin and Lipid Bilayers. Journal of Physical Chemistry B, 2013, 117, 3439-3448.               | 1.2 | 7         |
| 40 | A novel generation of hybrid photochromic vinylidene-naphthofuran silica nanoparticles through fine-tuning of surface chemistry. Dalton Transactions, 2017, 46, 9076-9087.                           | 1.6 | 7         |
| 41 | Prins cyclization of (-)-isopulegol with benzaldehyde for production of chromenols over organosulfonic clays. Molecular Catalysis, 2019, 478, 110569.                                                | 1.0 | 7         |
| 42 | Mechanochemical Preparation of Pd(II) and Pt(II) Composites with Carbonaceous Materials and Their<br>Application in the Suzuki-Miyaura Reaction at Several Energy Inputs. Molecules, 2020, 25, 2951. | 1.7 | 5         |
| 43 | Glycerol Valorization over ZrO2-Supported Copper Nanoparticles Catalysts Prepared by Chemical Reduction Method. Catalysts, 2021, 11, 1040.                                                           | 1.6 | 5         |
| 44 | Maximization of regioselectivity in hydroformylation of vinyl-aromatics using simple factorial design.<br>Journal of Molecular Catalysis A, 2007, 267, 234-240.                                      | 4.8 | 4         |
| 45 | Subcritical Water Extraction of Phenolic Compounds from Vineyard Pruning Residues: Evaluation of Chemical Composition and Bioactive Properties. , 2021, 6, .                                         |     | 3         |
| 46 | Application of Fe-rich coal fly ashes to enhanced reduction of 4-nitrophenol. , 2022, 2, 100019.                                                                                                     |     | 3         |
| 47 | Synthesis of Chiral Bis-MOP-type Diphosphines. Chelating Effect in Nickel-catalyzed Phosphination.<br>Chemistry Letters, 2013, 42, 37-39.                                                            | 0.7 | 1         |
| 48 | Application of the Quality-by-Design (QbD) Approach to Improve the Nose-to-Brain Delivery of<br>Diazepam-Loaded Nanostructured Lipid Carriers (NLCs). Proceedings (mdpi), 2020, 78, .                | 0.2 | 1         |