
Douglas L Oliver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	C1ql1 is expressed in adult outer hair cells of the cochlea in a tonotopic gradient. PLoS ONE, 2021, 16, e0251412.	1.1	6
2	Neuronal sensitivity to the interaural time difference of the sound envelope in the mouse inferior colliculus. Hearing Research, 2020, 385, 107844.	0.9	6
3	Mice heterozygous for the Cdh23/Ahl1 mutation show age-related deficits in auditory temporal processing. Neurobiology of Aging, 2019, 81, 47-57.	1.5	13
4	Overview of Auditory Projection Pathways and Intrinsic Microcircuits. Springer Handbook of Auditory Research, 2018, , 7-39.	0.3	15
5	Intravenously-injected gold nanoparticles (AuNPs) access intracerebral F98 rat gliomas better than AuNPs infused directly into the tumor site by convection enhanced delivery. International Journal of Nanomedicine, 2018, Volume 13, 3937-3948.	3.3	19
6	Introduction to Mammalian Auditory Pathways. Springer Handbook of Auditory Research, 2018, , 1-6.	0.3	2
7	Identified GABAergic and Glutamatergic Neurons in the Mouse Inferior Colliculus Share Similar Response Properties. Journal of Neuroscience, 2017, 37, 8952-8964.	1.7	46
8	Long-Lasting Sound-Evoked Afterdischarge in the Auditory Midbrain. Scientific Reports, 2016, 6, 20757.	1.6	15
9	Functional organization of the local circuit in the inferior colliculus. Anatomical Science International, 2016, 91, 22-34.	0.5	28
10	Differences in the strength of cortical and brainstem inputs to SSA and non-SSA neurons in the inferior colliculus. Scientific Reports, 2015, 5, 10383.	1.6	41
11	Convergence of lemniscal and local excitatory inputs on large GABAergic tectothalamic neurons. Journal of Comparative Neurology, 2015, 523, 2277-2296.	0.9	20
12	Differential distribution of GABA and glycine terminals in the inferior colliculus of rat and mouse. Journal of Comparative Neurology, 2015, 523, 2683-2697.	0.9	37
13	Local and commissural IC neurons make axosomatic inputs on large GABAergic tectothalamic neurons. Journal of Comparative Neurology, 2014, 522, 3539-3554.	0.9	29
14	The Balance of Excitatory and Inhibitory Synaptic Inputs for Coding Sound Location. Journal of Neuroscience, 2014, 34, 3779-3792.	1.7	28
15	Asymmetric temporal interactions of soundâ€evoked excitatory and inhibitory inputs in the mouse auditory midbrain. Journal of Physiology, 2014, 592, 3647-3669.	1.3	15
16	Class warfare resolved in the auditory midbrain. Journal of Physiology, 2013, 591, 3807-3808.	1.3	0
17	Gene Expression Identifies Distinct Ascending Glutamatergic Pathways to Frequency-Organized Auditory Cortex in the Rat Brain. Journal of Neuroscience, 2012, 32, 15759-15768.	1.7	29
18	Auditory neuroanatomy: a sound foundation for sound processing. Frontiers in Neuroanatomy, 2012, 6, 48.	0.9	0

#	Article	IF	CITATIONS
19	The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Frontiers in Neural Circuits, 2012, 6, 48.	1.4	58
20	Persistent effects of early augmented acoustic environment on the auditory brainstem. Neuroscience, 2011, 184, 75-87.	1.1	44
21	Expression of glutamate and inhibitory amino acid vesicular transporters in the rodent auditory brainstem. Journal of Comparative Neurology, 2011, 519, 316-340.	0.9	102
22	Regulation of Kv channel expression and neuronal excitability in rat medial nucleus of the trapezoid body maintained in organotypic culture. Journal of Physiology, 2010, 588, 1451-1468.	1.3	26
23	Origins of Glutamatergic Terminals in the Inferior Colliculus Identified by Retrograde Transport and Expression of VGLUT1 and VGLUT2 Genes. Frontiers in Neuroanatomy, 2010, 4, 135.	0.9	59
24	Origins of glutamatergic terminals in the inferior colliculus identified by retrograde transport and expression of VGLUT1 and VGLUT2 genes. Neuroscience Research, 2010, 68, e275.	1.0	0
25	Differential Patterns of Inputs Create Functional Zones in Central Nucleus of Inferior Colliculus. Journal of Neuroscience, 2010, 30, 13396-13408.	1.7	75
26	Two Classes of GABAergic Neurons in the Inferior Colliculus. Journal of Neuroscience, 2009, 29, 13860-13869.	1.7	109
27	The cytoarchitecture of the inferior colliculus revisited: A common organization of the lateral cortex in rat and cat. Neuroscience, 2008, 154, 196-205.	1.1	115
28	Immunolocalization of vesicular glutamate transporters 1 and 2 in the rat inferior colliculus. Neuroscience, 2008, 154, 226-232.	1.1	23
29	A Discontinuous Tonotopic Organization in the Inferior Colliculus of the Rat. Journal of Neuroscience, 2008, 28, 4767-4776.	1.7	140
30	Neuronal Responses to Lemniscal Stimulation in Laminar Brain Slices of the Inferior Colliculus. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 1-14.	0.9	35
31	Acoustic environment determines phosphorylation state of the Kv3.1 potassium channel in auditory neurons. Nature Neuroscience, 2005, 8, 1335-1342.	7.1	127
32	Granule cells in the cochlear nucleus sensitive to sound activation detected by Fos protein expression. Neuroscience, 2005, 136, 865-882.	1.1	10
33	Laminar inputs from dorsal cochlear nucleus and ventral cochlear nucleus to the central nucleus of the inferior colliculus: Two patterns of convergence. Neuroscience, 2005, 136, 883-894.	1.1	89
34	Neuronal Organization in the Inferior Colliculus. , 2005, , 69-114.		95
35	Frequency-Specific Effects on Cochlear Responses During Activation of the Inferior Colliculus in the Guinea Pig. Journal of Neurophysiology, 2004, 91, 2185-2193.	0.9	30
36	GABAA Synapses Shape Neuronal Responses to Sound Intensity in the Inferior Colliculus. Journal of Neuroscience, 2004, 24, 5031-5043.	1.7	69

#	Article	IF	CITATIONS
37	Organization of binaural excitatory and inhibitory inputs to the inferior colliculus from the superior olive. Journal of Comparative Neurology, 2004, 472, 330-344.	0.9	96
38	Topography of Interaural Temporal Disparity Coding in Projections of Medial Superior Olive to Inferior Colliculus. Journal of Neuroscience, 2003, 23, 7438-7449.	1.7	35
39	Synaptic modification in neurons of the central nucleus of the inferior colliculus. Hearing Research, 2002, 168, 43-54.	0.9	36
40	Direct Projections from Cochlear Nuclear Complex to Auditory Thalamus in the Rat. Journal of Neuroscience, 2002, 22, 10891-10897.	1.7	123
41	Midbrain. , 2002, , 43-68.		3
42	Expression of GABAA receptor subunits in the rat central nucleus of the inferior colliculus. Molecular Brain Research, 2001, 96, 122-132.	2.5	8
43	Distinct K Currents Result in Physiologically Distinct Cell Types in the Inferior Colliculus of the Rat. Journal of Neuroscience, 2001, 21, 2861-2877.	1.7	173
44	Ascending efferent projections of the superior olivary complex. Microscopy Research and Technique, 2000, 51, 355-363.	1.2	85
45	Identification of cell types in brain slices of the inferior colliculus. Neuroscience, 2000, 101, 403-416.	1.1	113
46	Ascending efferent projections of the superior olivary complex. , 2000, 51, 355.		1
47	Axons from Anteroventral Cochlear Nucleus that Terminate in Medial Superior Olive of Cat: Observations Related to Delay Lines. Journal of Neuroscience, 1999, 19, 3146-3161.	1.7	91
48	Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. Journal of Neuroscience Research, 1999, 57, 271-279.	1.3	47
49	Direct innervation of identified tectothalamic neurons in the inferior colliculus by axons from the cochlear nucleus. Neuroscience, 1999, 93, 643-658.	1.1	54
50	Concurrent loss and proliferation of astrocytes following lateral fluid percussion brain injury in the adult rat. , 1999, 57, 271.		4
51	Intracellular Recordings in Response to Monaural and Binaural Stimulation of Neurons in the Inferior Colliculus of the Cat. Journal of Neuroscience, 1997, 17, 7565-7581.	1.7	152
52	A Monosynaptic GABAergic Input from the Inferior Colliculus to the Medial Geniculate Body in Rat. Journal of Neuroscience, 1997, 17, 3766-3777.	1.7	202
53	Simultaneous anterograde labeling of axonal layers from lateral superior olive and dorsal cochlear nucleus in the inferior colliculus of cat. , 1997, 382, 215-229.		117
54	GABAergic feedforward projections from the inferior colliculus to the medial geniculate body Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8005-8010.	3.3	165

#	Article	IF	CITATIONS
55	Axonal projections from the lateral and medial superior olive to the inferior colliculus of the cat: A study using electron microscopic autoradiography. Journal of Comparative Neurology, 1995, 360, 17-32.	0.9	88
56	Morphology of GABAergic neurons in the inferior colliculus of the cat. Journal of Comparative Neurology, 1994, 340, 27-42.	0.9	189
57	Connectivity of neurons in identified auditory circuits studied with transport of dextran and microspheres plus intracellular injection of Lucifer Yellow. Journal of Neuroscience Methods, 1994, 53, 23-27.	1.3	17
58	Visualization of neurons filled with biotinylated-Lucifer yellow following identification of efferent connectivity with retrograde transport. Journal of Neuroscience Methods, 1993, 46, 59-68.	1.3	19
59	Fine structure of GABA-labeled axonal endings in the inferior colliculus of the cat: Immunocytochemistry on deplasticized ultrathin sections. Neuroscience, 1992, 46, 455-463.	1.1	28
60	Inferior and Superior Colliculi. Springer Handbook of Auditory Research, 1992, , 168-221.	0.3	124
61	Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. Journal of Comparative Neurology, 1991, 303, 75-100.	0.9	160
62	EM autoradiographic study of the projections from the dorsal nucleus of the lateral lemniscus: A possible source of inhibitory inputs to the inferior colliculus. Journal of Comparative Neurology, 1989, 286, 28-47.	0.9	109
63	Connections of the dorsal nucleus of the lateral lemniscus: An inhibitory parallel pathway in the ascending auditory system?. Journal of Comparative Neurology, 1988, 276, 188-208.	0.9	212
64	Projections to the inferior colliculus from the anteroventral cochlear nucleus in the cat: Possible substrates for binaural interaction. Journal of Comparative Neurology, 1987, 264, 24-46.	0.9	184
65	Quantitative analyses of axonal endings in the central nucleus of the inferior colliculus and distribution of3H-labeling after injections in the dorsal cochlear nucleus. Journal of Comparative Neurology, 1985, 237, 343-359.	0.9	57
66	The neuronal architecture of the inferior colliculus in the cat: Defining the functional anatomy of the auditory midbrain. Journal of Comparative Neurology, 1984, 222, 209-236.	0.9	355
67	The central nucleus of the inferior colliculus in the cat. Journal of Comparative Neurology, 1984, 222, 237-264.	0.9	317
68	Dorsal cochlear nucleus projections to the inferior colliculus in the cat: A light and electron microscopic study. Journal of Comparative Neurology, 1984, 224, 155-172.	0.9	182
69	Neuron types in the central nucleus of the inferior colliculus that project to the medial geniculate body. Neuroscience, 1984, 11, 409-424.	1.1	96
70	Transganglionic transport of D-aspartate from cochlear nucleus to cochlea a quantitative autoradiographic study. Hearing Research, 1984, 15, 197-213.	0.9	14
71	A golgi study of the medial geniculate body in the tree shrew (Tupaia glis). Journal of Comparative Neurology, 1982, 209, 1-16.	0.9	21
72	The medial geniculate body of the tree shrew,Tupaia glis I. Cytoarchitecture and midbrain connections. Journal of Comparative Neurology, 1978, 182, 423-458.	0.9	117

#	Article	IF	CITATIONS
73	The medial geniculate body of the tree shrew,Tupaia glis II. Connections with the neocortex. Journal of Comparative Neurology, 1978, 182, 459-493.	0.9	92
74	Subdivisions of the medial geniculate body in the tree shrew (Tupaia glis). Brain Research, 1975, 86, 217-227.	1.1	31
75	Anatomy of the Central Auditory Nervous System. , 0, , 1381-1388.		0
76	Long-Duration Sound-Induced Facilitation Changes Population Activity in the Inferior Colliculus. Frontiers in Systems Neuroscience, 0, 16, .	1.2	2