
Jianxin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958162/publications.pdf Version: 2024-02-01

Ιιανχίν Ζηλνς

#	Article	IF	CITATIONS
1	Heterostructures assembled from graphitic carbon nitride and Ti3C2T MXene as high-capacity cathode for aluminum batteries. Journal of Alloys and Compounds, 2022, 896, 162901.	5.5	10
2	Boron-doping-induced defect engineering enables high performance of a graphene cathode for aluminum batteries. Inorganic Chemistry Frontiers, 2022, 9, 925-934.	6.0	16
3	Atomistic mechanism of phase transformation between topologically close-packed complex intermetallics. Nature Communications, 2022, 13, 2487.	12.8	15
4	The effects of solutes on precipitated phase/matrix interface stability and their distribution tendencies between the two phases in Co-based superalloys. Computational Materials Science, 2022, 211, 111547.	3.0	3
5	Laser-radiated tellurium vacancies enable high-performance telluride molybdenum anode for aqueous zinc-ion batteries. Energy Storage Materials, 2022, 51, 29-37.	18.0	22
6	Constructing NiCo ₂ Se ₄ /NiCoS ₄ heterostructures for high-performance rechargeable aluminum battery cathodes. Inorganic Chemistry Frontiers, 2022, 9, 4041-4048.	6.0	3
7	Effects of Pressure on the Structural, Mechanical, and Electronic Properties and Debye Temperature of Pdâ€Based Alloy: Firstâ€Principles Calculation. Physica Status Solidi (B): Basic Research, 2021, 258, 2000490.	1.5	0
8	Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high–energy cathode for aluminum batteries. Energy Storage Materials, 2021, 38, 231-240.	18.0	49
9	Sulfur and nitrogen codoped Nb2C MXene for dendrite-free lithium metal battery. Electrochimica Acta, 2021, 390, 138812.	5.2	21
10	Nb ₂ CT <i>_x</i> MXene as High-Performance Energy Storage Material with Na, K, and Liquid K–Na Alloy Anodes. Langmuir, 2021, 37, 1102-1109.	3.5	22
11	High-performance aluminum-ion batteries based on AlCl ₃ /caprolactam electrolytes. Sustainable Energy and Fuels, 2020, 4, 121-127.	4.9	18
12	Carbon deposition–resistant Ni3Sn nanoparticles with highly stable catalytic activity for methanol decomposition. Applied Catalysis A: General, 2020, 608, 117872.	4.3	3
13	Hierarchical Lamellarâ€Structured MnO ₂ @graphene for High Performance Li, Na and K ion Batteries. ChemistrySelect, 2020, 5, 12481-12486.	1.5	11
14	3D Lithiophilic and Conductive N-CNT@Cu ₂ O@Cu Framework for a Dendrite-Free Lithium Metal Battery. Chemistry of Materials, 2020, 32, 9656-9663.	6.7	13
15	ZnMn bimetallic selenide for rechargeable aluminum batteries. New Journal of Chemistry, 2020, 44, 10203-10206.	2.8	5
16	Natural Template-Derived 3D Porous Current Collector for Dendrite-free Lithium Metal Battery. Nano, 2020, 15, 2050033.	1.0	9
17	First-Principles Study of a Tungsten-Free <i>γ</i> – <i>γ</i> â€2 Co–Al–Mo–Nb Class Cobalt-Based Supera and the Alloying Effect of Ti Addition. Journal of the Physical Society of Japan, 2020, 89, 124714.	alloy 1.6	4
18	Porous αâ€MnSe Microsphere Cathode Material for Highâ€Performance Aluminum Batteries. ChemElectroChem, 2019, 6, 4437-4443.	3.4	20

JIANXIN ZHANG

#	Article	IF	CITATIONS
19	First-principles theoretical and experimental studies of effects of ruthenium on precipitation behavior of μ phase and μ/matrix interface stability in Ni-based single crystal superalloys. Intermetallics, 2019, 113, 106556.	3.9	19
20	Novel Ni–Fe‣ayered Double Hydroxide Microspheres with Reduced Graphene Oxide for Rechargeable Aluminum Batteries. Energy Technology, 2019, 7, 1900649.	3.8	8
21	Synthesis of polythiophene/graphite composites and their enhanced electrochemical performance for aluminum ion batteries. New Journal of Chemistry, 2019, 43, 15014-15022.	2.8	20
22	A High Capacity Aluminumâ€ion Battery Based on Imidazole Hydrochloride Electrolyte. ChemElectroChem, 2019, 6, 3350-3354.	3.4	24
23	Characterization of Ni3Sn intermetallic nanoparticles fabricated by thermal plasma process and catalytic properties for methanol decomposition. Science and Technology of Advanced Materials, 2019, 20, 622-631.	6.1	13
24	First-principles investigations on structural stability, elastic and electronic properties of Co ₇ M ₆ (M= W, Mo, Nb) µ phases. Molecular Simulation, 2019, 45, 752-758.	2.0	20
25	Rechargeable Highâ€Capacity Aluminumâ€Nickel Batteries. ChemistrySelect, 2019, 4, 13191-13197.	1.5	8
26	Intergrowth of P phase with Laves phase C36 in the high Mo-containing nickel-base single crystal superalloy. Materials Research Express, 2019, 6, 046528.	1.6	1
27	Minimum interface misfit criterion for the precipitation morphologies of TCP phases in a Ni-based single crystal superalloy. Intermetallics, 2018, 94, 55-64.	3.9	31
28	Growth twins of R phase in the high Mo-containing nickel-base single crystal superalloy. Materials Research Express, 2018, 5, 126517.	1.6	0
29	Atomic arrangement and formation of planar defects in the μ phase of Ni-base single crystal superalloys. Journal of Alloys and Compounds, 2018, 766, 775-783.	5.5	13
30	Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceramics International, 2018, 44, 20441-20448.	4.8	34
31	Characterization and formation of $ f ^{\hat{J}_3}$ interface in Ni-based single crystal superalloys. Materials Research Express, 2017, 4, 116512.	1.6	3