
Lawrence Kulinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2958159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms. Micromachines, 2022, 13, 303.	2.9	6
2	Artificial Intelligence Algorithms Enable Automated Characterization of the Positive and Negative Dielectrophoretic Ranges of Applied Frequency. Micromachines, 2022, 13, 399.	2.9	2
3	Elastic membrane enabled inward pumping for liquid manipulation on a centrifugal microfluidic platform. Biomicrofluidics, 2022, 16, 034105.	2.4	0
4	Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosensors and Bioelectronics, 2022, 214, 114381.	10.1	10
5	Guided Healing of Damaged Microelectrodes via Electrokinetic Assembly of Conductive Carbon Nanotube Bridges. Micromachines, 2021, 12, 405.	2.9	1
6	Special Issue on Remote Micro- and Nano-Manufacturing Science, Engineering, and Education. Journal of Micro and Nano-Manufacturing, 2021, 9, .	0.7	0
7	Fabrication of Carbon Nanotube Gas Sensor Using Stepwise Dielectrophoretic Deposition Onto Interdigitated Pyrolyzed Carbon Electrodes. Journal of Micro and Nano-Manufacturing, 2021, 9, .	0.7	2
8	Personal Observations of the Effects of COVID-19 Pandemic on Micromanufacturing Research and Education in the United States. Journal of Micro and Nano-Manufacturing, 2021, 9, .	0.7	0
9	Guided Electrokinetic Assembly of Polystyrene Microbeads onto Photopatterned Carbon Electrode Arrays. ACS Applied Materials & Interfaces, 2020, 12, 35647-35656.	8.0	5
10	Step-Wise Deposition Process for Dielectrophoretic Formation of Conductive 50-Micron-Long Carbon Nanotube Bridges. Micromachines, 2020, 11, 371.	2.9	12
11	Electrokinetic Propulsion of Polymer Microparticulates Along Glassy Carbon Electrode Array. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	1
12	Special Section on Recent Advancements in Micro- and Nano-Manufacturing From the WCMNM2019. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.7	0
13	Comparison of Two-Dimensional and Three-Dimensional Carbon Electrode Geometries Affecting Bidirectional Electroosmotic Pumping. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	4
14	Special Section on Recent Advancements in Micro- and Nanoâ€manufacturing From the WCMNM2018—Part 1. Journal of Micro and Nano-Manufacturing, 2019, 7, .	0.7	0
15	Hydrodynamic channeling as a controlled flow reversal mechanism for bidirectional AC electroosmotic pumping using glassy carbon microelectrode arrays. Journal of Micromechanics and Microengineering, 2019, 29, 075007.	2.6	10
16	Fabrication of a Malaria-Ab ELISA Bioassay Platform with Utilization of Syringe-Based and 3D Printed Assay Automation. Micromachines, 2018, 9, 502.	2.9	5
17	Fabrication of a Lab-on-Chip Device Using Material Extrusion (3D Printing) and Demonstration via Malaria-Ab ELISA. Micromachines, 2018, 9, 27.	2.9	17
18	Effect of Carbon Microposts Integrated onto Asymmetric Electrodes for AC Electroosmotic Pumping.		0

LAWRENCE KULINSKY

#	Article	IF	CITATIONS
19	Fabrication of regular polystyrene foam structures with selective laser sintering. Materials Today Communications, 2017, 13, 346-353.	1.9	9
20	The use of polybutene for controlling the flow of liquids in centrifugal microfluidic systems. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	8
21	Lab-on-a-CD: A Fully Integrated Molecular Diagnostic System. Journal of the Association for Laboratory Automation, 2016, 21, 323-355.	2.8	79
22	The Detachment Process and Release Efficiency of Polypyrrole/Gold Bilayer Actuators. Journal of Microelectromechanical Systems, 2015, 24, 1616-1621.	2.5	3
23	A novel micro/nano fabrication process based on the combined use of dielectrophoresis, electroosmotic flow, and electrodeposition for surface patterning. Journal of Micromechanics and Microengineering, 2015, 25, 115007.	2.6	11
24	Guided routing on spinning microfluidic platforms. RSC Advances, 2015, 5, 8669-8679.	3.6	10
25	A Novel Magnetic Active Valve for Lab-on-CD Technology. Journal of Microelectromechanical Systems, 2015, 24, 1322-1330.	2.5	11
26	An Electrokinetically-Driven Microfabrication Process for Additive Manufacturing Applications. , 2015, , .		0
27	Joule Heating based Sublimation Thinning of Suspended Nanofibers. , 2015, , .		Ο
28	Dielectrophoresis-assisted electroconductive polymer-based fabrication of high surface area electrodes. , 2014, , .		0
29	Design and implementation of fluidic micro-pulleys for flow control on centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2014, 16, 1117-1129.	2.2	22
30	Gating valve on spinning microfluidic platforms: A flow switch/control concept. Sensors and Actuators B: Chemical, 2014, 204, 149-158.	7.8	21
31	Improved conductivity of suspended carbon fibers through integration of C-MEMS and Electro-Mechanical Spinning technologies. Carbon, 2014, 71, 338-342.	10.3	21
32	3-D Micro and Nano Technologies for Improvements in Electrochemical Power Devices. Micromachines, 2014, 5, 171-203.	2.9	39
33	A Numerical Study of the Spring-Back Phenomenon in Bending with a Rebar Bending Machine. Advances in Mechanical Engineering, 2014, 6, 959207.	1.6	4
34	Theoretical development and critical analysis of burst frequency equations for passive valves on centrifugal microfluidic platforms. Medical and Biological Engineering and Computing, 2013, 51, 525-535.	2.8	47
35	Present Technology and Future Trends in Point-of-Care Microfluidic Diagnostics. Methods in Molecular Biology, 2013, 949, 3-23.	0.9	33
36	PPyDEP: a new approach to microparticle manipulation employing polymer-based electrodes. Lab on A Chip, 2013, 13, 4642.	6.0	10

LAWRENCE KULINSKY

#	Article	IF	CITATIONS
37	Electro-Mechanical Spinning: A new manufacturing technique for micro/nano-fabrication of carbon fibers. , 2013, , .		2
38	Fabrication of 3D polypyrrole microstructures and their utilization as electrodes in supercapacitors. Journal of Micromechanics and Microengineering, 2013, 23, 125029.	2.6	3
39	Diffusion-Free Mediator Based Miniature Biofuel Cell Anode Fabricated on a Carbon-MEMS Electrode. Langmuir, 2012, 28, 14055-14064.	3.5	16
40	A Computer-Controlled Near-Field Electrospinning Setup and Its Graphic User Interface for Precision Patterning of Functional Nanofibers on 2D and 3D Substrates. Journal of the Association for Laboratory Automation, 2012, 17, 302-308.	2.8	13
41	Electrical conductivity of polymer blends of poly(3,4â€ethylenedioxythiophene): Poly(styrenesulfonate): <i>N</i> â€methylâ€2â€pyrrolidinone and polyvinyl alcohol. Journal of Applied Polymer Science, 2012, 125, 3134-3141.	2.6	51
42	Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 2012, 12, 345-354.	2.2	27
43	Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning. Nano Letters, 2011, 11, 1831-1837.	9.1	209
44	Mechanical characterizations of cast Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate)/Polyvinyl Alcohol thin films. Synthetic Metals, 2011, 161, 2259-2267.	3.9	78
45	Micromixing and flow manipulation with polymer microactuators. Microfluidics and Nanofluidics, 2011, 11, 405-416.	2.2	5
46	Novel fabrication technology for three-dimensional high surface area pyrolized structures. , 2010, , .		2
47	Utilization of electroactive polymer actuators in micromixing and in extended-life biosensor applications. Proceedings of SPIE, 2010, , .	0.8	7
48	Au/PPy Actuators for Active Micromixing and Mass Transport Enhancement. Micro and Nanosystems, 2009, 1, 2-11.	0.6	6
49	Capillary filling in centrifugally actuated microfluidic devices with dynamically evolving contact line motion. Journal of Applied Physics, 2009, 105, .	2.5	24
50	Integrating Biosensors and Drug Delivery: A Step Closer Toward Scalable Responsive Drugâ€Đelivery Systems. Advanced Materials, 2009, 21, 656-660.	21.0	33
51	Carbon post-microarrays for glucose sensors. Biosensors and Bioelectronics, 2008, 23, 1637-1644.	10.1	76
52	Development of integrated protection for a miniaturized drug delivery system. Smart Materials and Structures, 2007, 16, S295-S299.	3.5	14
53	Packaged Au-PPy valves for drug delivery systems. , 2006, 6168, 386.		0
54	Sensor-integrated polymer actuators for closed-loop drug delivery system. , 2006, 6172, 200.		0

LAWRENCE KULINSKY

#	Article	IF	CITATIONS
55	Polymer actuator valves toward controlled drug delivery application. Biosensors and Bioelectronics, 2006, 21, 2094-2099.	10.1	75
56	System-based approach for an advanced drug delivery platform. , 2006, , .		0
57	Surface and interface properties of alumina via model studies of microdesigned interfaces. Journal of the European Ceramic Society, 1999, 19, 2191-2209.	5.7	25
58	Nanopore Technology for Biomedical Applications. Biomedical Microdevices, 1999, 2, 11-40.	2.8	172
59	Microdesigned Interfaces: New Opportunities for Studies of Surfaces and Grain Boundaries. , 1998, , 229-238.		Ο
60	Morphological evolution of pre-perturbed pore channels in sapphire. Acta Materialia, 1996, 44, 4115-4130.	7.9	21
61	Effects of Titanium Doping on Surface Properties of Alumina. Materials Research Society Symposia Proceedings, 1994, 357, 313.	0.1	1
62	Controlled Patterning and Dimensional Control of Suspended Carbon Nanofibers. Advanced Materials Research, 0, 628, 43-49.	0.3	3