
Kristiina M Huttunen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2957907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sulfonamide metformin derivatives induce mitochondrial-associated apoptosis and cell cycle arrest in breast cancer cells. Chemico-Biological Interactions, 2022, 352, 109795.	4.0	7
2	Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharmaceutical Research, 2022, 39, 1363-1392.	3.5	19
3	Current Chemical, Biological, and Physiological Views in the Development of Successful Brain-Targeted Pharmaceutics. Neurotherapeutics, 2022, 19, 942-976.	4.4	10
4	Structural Comparison of Sulfonamide-Based Derivatives That Can Improve Anti-Coagulation Properties of Metformin. International Journal of Molecular Sciences, 2022, 23, 4132.	4.1	5
5	Comparison of Experimental Strategies to Study l-Type Amino Acid Transporter 1 (LAT1) Utilization by Ligands. Molecules, 2022, 27, 37.	3.8	5
6	Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics, 2022, 14, 1234.	4.5	3
7	Exploring the Biochemical Foundations of a Successful GLUT1-Targeting Strategy to BNCT: Chemical Synthesis and <i>In Vitro</i> Evaluation of the Entire Positional Isomer Library of <i>ortho</i> -Carboranylmethyl-Bearing Glucoconjugates. Molecular Pharmaceutics, 2021, 18, 285-304.	4.6	15
8	Species differences in the intra-brain distribution of an L-type amino acid transporter 1 (LAT1) -utilizing compound between mice and rats. International Journal of Pharmaceutics, 2021, 596, 120300.	5.2	5
9	Orchestrated modulation of rheumatoid arthritis via crosstalking intracellular signaling pathways. Inflammopharmacology, 2021, 29, 965-974.	3.9	17
10	Improved I-Type amino acid transporter 1 (LAT1)-mediated delivery of anti-inflammatory drugs into astrocytes and microglia with reduced prostaglandin production. International Journal of Pharmaceutics, 2021, 601, 120565.	5.2	12
11	Oral genistein-loaded phytosomes with enhanced hepatic uptake, residence and improved therapeutic efficacy against hepatocellular carcinoma. International Journal of Pharmaceutics, 2021, 601, 120564.	5.2	28
12	Ganciclovir and Its Hemocompatible More Lipophilic Derivative Can Enhance the Apoptotic Effects of Methotrexate by Inhibiting Breast Cancer Resistance Protein (BCRP). International Journal of Molecular Sciences, 2021, 22, 7727.	4.1	8
13	Molecular characteristics supporting l-Type amino acid transporter 1 (LAT1)-mediated translocation. Bioorganic Chemistry, 2021, 112, 104921.	4.1	7
14	Hemocompatible L-Type amino acid transporter 1 (LAT1)-Utilizing prodrugs of perforin inhibitors can accumulate into the pancreas and alleviate inflammation-induced apoptosis. Chemico-Biological Interactions, 2021, 345, 109560.	4.0	4
15	Neurosteroids: Structure-Uptake Relationships and Computational Modeling of Organic Anion Transporting Polypeptides (OATP)1A2. Molecules, 2021, 26, 5662.	3.8	6
16	Pleiotropic Activity of Metformin and Its Sulfonamide Derivatives on Vascular and Platelet Haemostasis. Molecules, 2020, 25, 125.	3.8	17
17	Novel halogenated sulfonamide biguanides with anti-coagulation properties. Bioorganic Chemistry, 2020, 94, 103444.	4.1	10
18	L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood–Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chemical Neuroscience, 2020, 11, 4301-4315.	3.5	30

#	Article	IF	CITATIONS
19	Targeting of Perforin Inhibitor into the Brain Parenchyma Via a Prodrug Approach Can Decrease Oxidative Stress and Neuroinflammation and Improve Cell Survival. Molecular Neurobiology, 2020, 57, 4563-4577.	4.0	15
20	Novel Sulfonamide-Based Analogs of Metformin Exert Promising Anti-Coagulant Effects without Compromising Glucose-Lowering Activity. Pharmaceuticals, 2020, 13, 323.	3.8	9
21	Is metformin a geroprotector? A peek into the current clinical and experimental data. Mechanisms of Ageing and Development, 2020, 191, 111350.	4.6	12
22	Addressing the Biochemical Foundations of a Glucose-Based "Trojan Horse―Strategy to Boron Neutron Capture Therapy: From Chemical Synthesis to <i>In Vitro</i> Assessment. Molecular Pharmaceutics, 2020, 17, 3885-3899.	4.6	15
23	L-Type amino acid transporter 1 as a target for drug delivery. Pharmaceutical Research, 2020, 37, 88.	3.5	97
24	Hemocompatible LAT1-inhibitor can induce apoptosis in cancer cells without affecting brain amino acid homeostasis. Apoptosis: an International Journal on Programmed Cell Death, 2020, 25, 426-440.	4.9	12
25	L-type amino acid transporter 1 (LAT1)-utilizing efflux transporter inhibitors can improve the brain uptake and apoptosis-inducing effects of vinblastine in cancer cells. International Journal of Pharmaceutics, 2020, 586, 119585.	5.2	7
26	An investigation into the pleiotropic activity of metformin. A glimpse of haemostasis. European Journal of Pharmacology, 2020, 872, 172984.	3.5	15
27	L-Type Amino Acid Transporter 1-Utilizing Prodrugs of Ketoprofen Can Efficiently Reduce Brain Prostaglandin Levels. Pharmaceutics, 2020, 12, 344.	4.5	7
28	L-Type amino acid transporter 1 (LAT1)-utilizing prodrugs are carrier-selective despite having low affinity for organic anion transporting polypeptides (OATPs). International Journal of Pharmaceutics, 2019, 571, 118714.	5.2	23
29	l-Type Amino Acid Transporter 1 (LAT1/Lat1)-Utilizing Prodrugs Can Improve the Delivery of Drugs into Neurons, Astrocytes and Microglia. Scientific Reports, 2019, 9, 12860.	3.3	53
30	Mechanistic Study on the Use of thel-Type Amino Acid Transporter 1 for Brain Intracellular Delivery of Ketoprofen via Prodrug: A Novel Approach Supporting the Development of Prodrugs for Intracellular Targets. Molecular Pharmaceutics, 2019, 16, 3261-3274.	4.6	22
31	Generation 2 (G2) – Generation 4 (G4) PAMAM dendrimers disrupt key plasma coagulation parameters. Toxicology in Vitro, 2019, 59, 87-99.	2.4	6
32	Sulfenamide and Sulfonamide Derivatives of Metformin – A New Option to Improve Endothelial Function and Plasma Haemostasis. Scientific Reports, 2019, 9, 6573.	3.3	21
33	Sulfenamide derivatives can improve transporter-mediated cellular uptake of metformin and induce cytotoxicity in human breast adenocarcinoma cell lines. Bioorganic Chemistry, 2019, 87, 321-334.	4.1	20
34	Astrocyte-Targeted Transporter-Utilizing Derivatives of Ferulic Acid Can Have Multifunctional Effects Ameliorating Inflammation and Oxidative Stress in the Brain. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-13.	4.0	17
35	Biocompatibility Studies of Gadolinium Complexes with Iminodiacetic Acid Derivatives. Biological Trace Element Research, 2019, 189, 426-436.	3.5	9
36	L-type amino acid transporter 1 utilizing prodrugs of ferulic acid revealed structural features supporting the design of prodrugs for brain delivery. European Journal of Pharmaceutical Sciences, 2019, 129, 99-109.	4.0	41

#	Article	IF	CITATIONS
37	Alzheimer's Disease Phenotype or Inflammatory Insult Does Not Alter Function of L-Type Amino Acid Transporter 1 in Mouse Blood-Brain Barrier and Primary Astrocytes. Pharmaceutical Research, 2019, 36, 17.	3.5	30
38	Sulfenamide and sulfonamide derivatives of metformin can exert anticoagulant and profibrinolytic properties. Chemico-Biological Interactions, 2018, 284, 126-136.	4.0	20
39	Structural properties for selective and efficient l-type amino acid transporter 1 (LAT1) mediated cellular uptake. International Journal of Pharmaceutics, 2018, 544, 91-99.	5.2	19
40	Biocompatible sulfenamide and sulfonamide derivatives of metformin can exert beneficial effects on plasma haemostasis. Chemico-Biological Interactions, 2018, 280, 15-27.	4.0	21
41	Metformin and its sulphonamide derivative simultaneously potentiateanti-cholinesterase activity of donepezil and inhibit beta-amyloid aggregation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 1309-1322.	5.2	18
42	Identification of human, rat and mouse hydrolyzing enzymes bioconverting amino acid ester prodrug of ketoprofen. Bioorganic Chemistry, 2018, 81, 494-503.	4.1	18
43	Secondary carbamate linker can facilitate the sustained release of dopamine from brain-targeted prodrug. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 2856-2860.	2.2	21
44	Targeted efflux transporter inhibitors – A solution to improve poor cellular accumulation of anti-cancer agents. International Journal of Pharmaceutics, 2018, 550, 278-289.	5.2	19
45	Benzenesulphonamide inhibitors of the cytolytic protein perforin. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1050-1054.	2.2	12
46	New prodrugs of metformin do not influence the overall haemostasis potential and integrity of the erythrocyte membrane. European Journal of Pharmacology, 2017, 811, 208-221.	3.5	22
47	Metformin – a Future Therapy for Neurodegenerative Diseases. Pharmaceutical Research, 2017, 34, 2614-2627.	3.5	187
48	Substituted arylsulphonamides as inhibitors of perforin-mediated lysis. European Journal of Medicinal Chemistry, 2017, 137, 139-155.	5.5	7
49	L-type amino acid transporter 1 utilizing prodrugs: How to achieve effective brain delivery and low systemic exposure of drugs. Journal of Controlled Release, 2017, 261, 93-104.	9.9	62
50	Metformin and Its Sulfenamide Prodrugs Inhibit Human Cholinesterase Activity. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-11.	4.0	15
51	ls Metformin a Perfect Drug? Updates in Pharmacokinetics and Pharmacodynamics. Current Pharmaceutical Design, 2017, 23, 2532-2550.	1.9	69
52	Amino Acid Promoieties Alter Valproic Acid Pharmacokinetics and Enable Extended Brain Exposure. Neurochemical Research, 2016, 41, 2797-2809.	3.3	38
53	A Selective and Slowly Reversible Inhibitor of <scp>l</scp> -Type Amino Acid Transporter 1 (LAT1) Potentiates Antiproliferative Drug Efficacy in Cancer Cells. Journal of Medicinal Chemistry, 2016, 59, 5740-5751.	6.4	52
54	Systemic and Brain Pharmacokinetics of Perforin Inhibitor Prodrugs. Molecular Pharmaceutics, 2016, 13, 2484-2491.	4.6	32

Kristiina M Huttunen

#	Article	IF	CITATIONS
55	Diarylthiophenes as inhibitors of the pore-forming protein perforin. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 355-360.	2.2	22
56	l -Type amino acid transporter 1 (lat1)-mediated targeted delivery of perforin inhibitors. International Journal of Pharmaceutics, 2016, 498, 205-216.	5.2	34
57	Stability of erythrocyte membrane and overall hemostasis potential – A biocompatibility study of mebrofenin and other iminodiacetic acid derivatives. Pharmacological Reports, 2015, 67, 1230-1239.	3.3	12
58	Amino acid ester prodrugs conjugated to the α-carboxylic acid group do not display affinity for the L-type amino acid transporter 1 (LAT1). European Journal of Pharmaceutical Sciences, 2015, 66, 36-40.	4.0	10
59	Quantitative Insight into the Design of Compounds Recognized by the <scp>L</scp> â€Type Amino Acid Transporterâ€1 (LAT1). ChemMedChem, 2014, 9, 2699-2707.	3.2	52
60	Extract of Aronia melanocarpa-modified hemostasis: in vitro studies. European Journal of Nutrition, 2014, 53, 1493-1502.	3.9	32
61	Sustained Release of Metformin via Red Blood Cell Accumulated Sulfenamide Prodrug. Journal of Pharmaceutical Sciences, 2014, 103, 2207-2210.	3.3	15
62	Glutathione-S-transferase selective release of metformin from its sulfonamide prodrug. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5034-5036.	2.2	23
63	Studies towards biocompatibility of PAMAM dendrimers – Overall hemostasis potential and integrity of the human aortic endothelial barrier. International Journal of Pharmaceutics, 2014, 473, 158-169.	5.2	30
64	Design, Synthesis and Brain Uptake of LAT1-Targeted Amino Acid Prodrugs of Dopamine. Pharmaceutical Research, 2013, 30, 2523-2537.	3.5	102
65	Convenient microwave-assisted synthesis of lipophilic sulfenamide prodrugs of metformin. European Journal of Pharmaceutical Sciences, 2013, 49, 624-628.	4.0	24
66	Exploration of a Series of 5-Arylidene-2-thioxoimidazolidin-4-ones as Inhibitors of the Cytolytic Protein Perforin. Journal of Medicinal Chemistry, 2013, 56, 9542-9555.	6.4	30
67	Amino acids as promoieties in prodrug design and development. Advanced Drug Delivery Reviews, 2013, 65, 1370-1385.	13.7	100
68	Design, Synthesis, and Evaluation of Novel Cyclic Phosphates of 5-Aminosalicylic Acid as Cytochrome P450-Activated Prodrugs. Molecular Pharmaceutics, 2013, 10, 532-537.	4.6	9
69	In Vitro and In Vivo Evaluation of a Sulfenamide Prodrug of Basic Metformin. Journal of Pharmaceutical Sciences, 2012, 101, 2854-2860.	3.3	12
70	Inhibition of the pore-forming protein perforin by a series of aryl-substituted isobenzofuran-1(3H)-ones. Bioorganic and Medicinal Chemistry, 2012, 20, 1319-1336.	3.0	18
71	Prodrugs—from Serendipity to Rational Design. Pharmacological Reviews, 2011, 63, 750-771.	16.0	410
72	Inhibition of the cellular function of perforin by 1-amino-2,4-dicyanopyrido[1,2-a]benzimidazoles. Bioorganic and Medicinal Chemistry, 2011, 19, 4091-4100.	3.0	25

#	Article	IF	CITATIONS
73	Prodrugs - An Efficient Way to Breach Delivery and Targeting Barriers. Current Topics in Medicinal Chemistry, 2011, 11, 2265-2287.	2.1	64
74	Determination of metformin and its prodrugs in human and rat blood by hydrophilic interaction liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 469-474.	2.8	40
75	The First Bioreversible Prodrug of Metformin with Improved Lipophilicity and Enhanced Intestinal Absorption. Journal of Medicinal Chemistry, 2009, 52, 4142-4148.	6.4	58
76	Towards Metformin Prodrugs. Synthesis, 2008, 2008, 3619-3624.	2.3	14
77	Cytochrome P450-Activated Prodrugs: Targeted Drug Delivery. Current Medicinal Chemistry, 2008, 15, 2346-2365.	2.4	56
78	Novel Cyclic Phosphate Prodrug Approach for Cytochrome P450-activated Drugs Containing an Alcohol Functionality. Pharmaceutical Research, 2007, 24, 679-687.	3.5	20
79	Synthesis and CB1 receptor activities of dimethylheptyl derivatives of 2-arachidonoyl glycerol (2-AG) and 2-arachidonyl glyceryl ether (2-AGE). Bioorganic and Medicinal Chemistry, 2006, 14, 2850-2858.	3.0	11
80	Efficient Strategy to Prepare Water-Soluble Prodrugs of Ketones. Synlett, 2006, 2006, 0701-0704.	1.8	4