Martin Burd

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2957628/publications.pdf

Version: 2024-02-01

117571 69214 6,471 114 34 77 citations h-index g-index papers 119 119 119 4438 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Fly pollination drives convergence of flower coloration. New Phytologist, 2022, 233, 52-61.	3.5	10
2	Competition and pollen wars: simulations reveal the dynamics of competition mediated through heterospecific pollen transfer by non-flower constant insects. Theoretical Ecology, 2021, 14, 207-218.	0.4	2
3	Bird community recovery following removal of an invasive tree. Ecological Solutions and Evidence, 2021, 2, e12080.	0.8	2
4	Dual mechanisms of autonomous selfing in <i>Roscoea nepalensis</i> (Zingiberaceae). Ecology, 2021, 102, e03337.	1.5	0
5	Population age structures, persistence and flowering cues in <i>Cerberiopsis candelabra </i> (Apocynaceae), a long-lived monocarpic rain-forest tree in New Caledonia. Journal of Tropical Ecology, 2021, 37, 263-275.	0.5	4
6	Flower colour and size signals differ depending on geographical location and altitude region. Plant Biology, 2021, 23, 905-914.	1.8	6
7	Widespread vulnerability of flowering plant seed production to pollinator declines. Science Advances, 2021, 7, eabd3524.	4.7	92
8	Land use and pollinator dependency drives global patterns of pollen limitation in the Anthropocene. Nature Communications, 2020, 11, 3999.	5.8	84
9	Australian native flower colours: Does nectar reward drive bee pollinator flower preferences?. PLoS ONE, 2020, 15, e0226469.	1.1	14
10	Rewardlessness in orchids: how frequent and how rewardless?. Plant Biology, 2020, 22, 555-561.	1.8	30
11	Automated calculation of spectral-reflectance marker-points to enable analysis of plant colour-signalling to pollinators. MethodsX, 2020, 7, 100827.	0.7	8
12	Fragmentary Blue: Resolving the Rarity Paradox in Flower Colors. Frontiers in Plant Science, 2020, 11, 618203.	1.7	16
13	Colour evolution within orchids depends on whether the pollinator is a bee or a fly. Plant Biology, 2019, 21, 745-752.	1.8	31
14	Plant traits moderate pollen limitation of introduced and native plants: a phylogenetic metaâ€analysis of global scale. New Phytologist, 2019, 223, 2063-2075.	3.5	20
15	Infrastructure construction without information exchange: the trail clearing mechanism in Atta leafcutter ants. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20182539.	1,2	19
16	Floral colour structure in two Australian herbaceous communities: it depends on who is looking. Annals of Botany, 2019, 124, 221-232.	1.4	30
17	Psychophysics of the hoverfly: categorical or continuous color discrimination?. Environmental Epigenetics, 2019, 65, 483-492.	0.9	35
18	The role of spore size in the global pattern of coâ€occurrence among Selaginella species. Journal of Biogeography, 2019, 46, 807-815.	1.4	0

#	Article	lF	CITATIONS
19	The digging dynamics of ant tunnels: movement, encounters, and nest space. Insectes Sociaux, 2019, 66, 119-127.	0.7	2
20	The Effect of Pollen Limitation on the Evolution of Mating System and Seed Size in Hermaphroditic Plants. American Naturalist, 2019, 193, 447-457.	1.0	7
21	The adaptive value of heterospory: Evidence from <i>Selaginella</i> . Evolution; International Journal of Organic Evolution, 2018, 72, 1080-1091.	1.1	12
22	The enigma of sex allocation in Selaginella. Annals of Botany, 2018, 121, 377-383.	1.4	6
23	Integrating the Passenger-Driver hypothesis and plant community functional traits to the restoration of lands degraded by invasive trees. Forest Ecology and Management, 2018, 408, 112-120.	1.4	10
24	Leaf heteroblasty in eucalypts: biogeographic evidence of ecological function. Australian Journal of Botany, 2018, 66, 191.	0.3	13
25	Reproductive isolation in alpine gingers: How do coexisting <i>Roscoea</i> (<i>R. purpurea</i> and) Tj ETQq1 1 Evolution, 2018, 72, 1840-1850.	0.784314 1.1	rgBT /Overlo
26	GloPL, a global data base on pollen limitation of plant reproduction. Scientific Data, 2018, 5, 180249.	2.4	39
27	Tall trails: ants resolve an asymmetry of information and capacity in collective maintenance of infrastructure. Animal Behaviour, 2017, 127, 179-185.	0.8	11
28	Why background colour matters to bees and flowers. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2017, 203, 369-380.	0.7	44
29	Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation. American Naturalist, 2017, 190, 430-441.	1.0	7
30	Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecological Informatics, 2017, 39, 23-31.	2.3	51
31	Selfâ€compatibility is overâ€represented on islands. New Phytologist, 2017, 215, 469-478.	3.5	84
32	Energetics of trail clearing in the leaf-cutter ant Atta. Behavioral Ecology and Sociobiology, 2017, 71, 1.	0.6	43
33	Parallel foraging cycles for different resources in leafâ€cutting ants: a clue to the mechanisms of rhythmic activity. Ecological Entomology, 2017, 42, 849-852.	1.1	14
34	Assessing the ecological significance of bee visual detection and colour discrimination on the evolution of flower colours. Evolutionary Ecology, 2017, 31, 153-172.	0.5	33
35	Why did heterospory evolve?. Biological Reviews, 2017, 92, 1739-1754.	4.7	23
36	Coevolutionary elaboration of pollinationâ€related traits in an alpine ginger (<i>Roscoea purpurea</i>) and a tabanid fly in the Nepalese Himalayas. New Phytologist, 2016, 211, 1402-1411.	3.5	47

#	Article	lF	Citations
37	Pollen Limitation Is Common—Should It Be?. American Naturalist, 2016, 187, 388-396.	1.0	13
38	Floral colours in a world without birds and bees: the plants of <scp>M</scp> acquarie <scp>I</scp> sland. Plant Biology, 2016, 18, 842-850.	1.8	71
39	The scope of Baker's law. New Phytologist, 2015, 208, 656-667.	3.5	178
40	Elevated Desired Speed and Change in Desired Direction. Transportation Research Record, 2015, 2490, 65-75.	1.0	24
41	Modeling Pedestrian Crowd Exit Choice through Combining Sources of Stated Preference Data. Transportation Research Record, 2015, 2490, 84-93.	1.0	30
42	Multitasking in a plant–ant interaction: how does Acacia myrtifolia manage both ants and pollinators?. Oecologia, 2015, 178, 461-471.	0.9	13
43	Exploring Pedestrian Walking through Angled Corridors. Transportation Research Procedia, 2014, 2, 19-25.	0.8	28
44	The colorful language of Australian flowers. Communicative and Integrative Biology, 2014, 7, e28940.	0.6	0
45	Examining the Impact of Different Turning Angles on the Collective Egress of Crowds. Journal of Transportation Safety and Security, 2014, 6, 167-181.	1.1	12
46	Distinctive convergence in Australian floral colours seen through the eyes of Australian birds. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132862.	1.2	52
47	Similar Crowd Behavior in Organisms of Vastly Different Body Size. Journal of Insect Behavior, 2014, 27, 239-250.	0.4	6
48	Using non-human biological entities to understand pedestrian crowd behaviour under emergency conditions. Safety Science, 2014, 66, 1-8.	2.6	48
49	Random Utility Models of Pedestrian Crowd Exit Selection based on SP-off-RP Experiments. Transportation Research Procedia, 2014, 2, 524-532.	0.8	26
50	Flower colour and phylogeny along an altitudinal gradient in the <scp>H</scp> imalayas of <scp>N</scp> epal. Journal of Ecology, 2014, 102, 126-135.	1.9	78
51	Investigating collective escape behaviours in complex situations. Safety Science, 2013, 60, 87-94.	2.6	68
52	Shades of red: birdâ€pollinated flowers target the specific colour discrimination abilities of avian vision. New Phytologist, 2013, 198, 301-310.	3.5	152
53	Evaluating the spectral discrimination capabilities of different pollinators and their effect on the evolution of flower colors. Communicative and Integrative Biology, 2013, 6, e24000.	0.6	21
54	Allometric scaling of foraging rate with trail dimensions in leaf-cutting ants. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2442-2447.	1,2	24

#	Article	IF	CITATIONS
55	Turning Angle Effect on Emergency Egress: Experimental Evidence and Pedestrian Crowd Simulation. Transportation Research Record, 2012, 2312, 120-127.	1.0	26
56	A model of decision making in an ecologically realistic environment: Relative comparison and the Independence of Irrelevant Alternatives. Journal of Bioeconomics, 2012, 14, 197-215.	1.5	1
57	Frequencyâ€dependent and densityâ€dependent larval competition between lifeâ€history strains of a fly, <i>Lucilia cuprina</i> . Ecological Entomology, 2012, 37, 109-116.	1.1	O
58	Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions. Transportation Research Part B: Methodological, 2011, 45, 1433-1449.	2.8	103
59	Consequence of Turning Movements in Pedestrian Crowds during Emergency Egress. Transportation Research Record, 2011, 2234, 97-104.	1.0	28
60	ARE RELATIONSHIPS BETWEEN POLLEN-OVULE RATIO AND POLLEN AND SEED SIZE EXPLAINED BY SEX ALLOCATION?. Evolution; International Journal of Organic Evolution, 2011, 65, 3002-3005.	1.1	21
61	Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions. Procedia, Social and Behavioral Sciences, 2011, 17, 438-461.	0.5	28
62	Biologically Inspired Modeling Approach for Collective Pedestrian Dynamics under Emergency Conditions. Transportation Research Record, 2010, 2196, 176-184.	1.0	31
63	Hunting, gathering, investing, globalizing: The biological roots of economic behaviour. Systems Research and Behavioral Science, 2010, 27, 510-522.	0.9	5
64	Reproductive investment within inflorescences of Stylidium armeria varies with the strength of early resource commitment. Annals of Botany, 2010, 105, 697-705.	1.4	16
65	Nest architecture and traffic flow: large potential effects from small structural features. Ecological Entomology, 2010, 35, 464-468.	1.1	17
66	Enhancing the Safety of Pedestrians during Emergency Egress. Transportation Research Record, 2009, 2137, 31-37.	1.0	54
67	Can irrational behaviour maximise fitness?. Behavioral Ecology and Sociobiology, 2009, 63, 461-471.	0.6	29
68	Ovule number per flower in a world of unpredictable pollination. American Journal of Botany, 2009, 96, 1159-1167.	0.8	81
69	A test of simultaneous resource and pollen limitation in <i>Stylidium armeria</i> . New Phytologist, 2008, 179, 557-565.	3.5	34
70	The Haigâ€Westoby Model Revisited. American Naturalist, 2008, 171, 400-404.	1.0	62
71	Optimality in a partitioned task performed by social insects. Biology Letters, 2008, 4, 627-629.	1.0	14
72	Mass flowering and parental death in the regeneration of <i>Cerberiopsis candelabra</i> (Apocynaceae), a longâ€lived monocarpic tree in New Caledonia1. American Journal of Botany, 2008, 95, 558-567.	0.8	23

#	Article	IF	CITATIONS
73	Adaptive function of drip tips: a test of the epiphyll hypothesis in <i>Psychotria marginata</i> and <i>Faramea occidentalis</i> (Rubiaceae). Journal of Tropical Ecology, 2007, 23, 449-455.	0.5	20
74	Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 956-961.	3.3	259
75	Does tree size influence timing of flowering in Cerberiopsis candelabra (Apocynaceae), a long-lived monocarpic rain-forest tree?. Journal of Tropical Ecology, 2006, 22, 621-629.	0.5	16
76	AGE–SIZE PLASTICITY FOR REPRODUCTION IN MONOCARPIC PLANTS. Ecology, 2006, 87, 2755-2764.	1.5	25
77	Ecological consequences of traffic organisation in ant societies. Physica A: Statistical Mechanics and Its Applications, 2006, 372, 124-131.	1.2	34
78	Sibling competition in a brood-tending leech. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 2461-2466.	1.2	5
79	FLOWERING PHENOLOGY AND SEXUAL ALLOCATION IN SINGLE-MUTATION LINEAGES OF ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2005, 59, 970-978.	1.1	14
80	Central-place foraging continues beyond the nest entrance: the underground performance of leaf-cutting ants. Animal Behaviour, 2005, 70, 737-744.	0.8	30
81	Global optimization from suboptimal parts: foraging sensu lato by leaf-cutting ants. Behavioral Ecology and Sociobiology, 2005, 59, 234-242.	0.6	25
82	Excavation and architecture of Argentine ant nests. Insectes Sociaux, 2005, 52, 350-356.	0.7	44
83	FLOWERING PHENOLOGY AND SEXUAL ALLOCATION IN SINGLE-MUTATION LINEAGES OF ARABIDOPSIS THALIANA. Evolution; International Journal of Organic Evolution, 2005, 59, 970.	1.1	O
84	Pollen Limitation of Plant Reproduction: Pattern and Process. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 467-497.	3.8	888
85	Flowering phenology and sexual allocation in single-mutation lineages of Arabidopsis thaliana. Evolution; International Journal of Organic Evolution, 2005, 59, 970-8.	1.1	4
86	Social group size, potential sperm competition and reproductive investment in a hermaphroditic leech, Helobdella papillornata (Euhirudinea: Glossiphoniidae). Journal of Evolutionary Biology, 2004, 17, 574-580.	0.8	84
87	OFFSPRING QUALITY IN RELATION TO EXCESS FLOWERS IN PULTENAEA GUNNII (FABACEAE). Evolution; International Journal of Organic Evolution, 2004, 58, 2371-2376.	1.1	8
88	Costs of parental care on hunting behaviour of Helobdella papillornata (Euhirudinea:) Tj ETQq0 0 0 rgBT /Overlock	₹ 10 Tf 50	142 Td (Glos
89	Nonequilibrium dynamics of social groups: insights from foraging Argentine ants. Insectes Sociaux, 2004, 51, 226.	0.7	21
90	POLLEN LIMITATION OF PLANT REPRODUCTION: ECOLOGICAL AND EVOLUTIONARY CAUSES AND CONSEQUENCES. Ecology, 2004, 85, 2408-2421.	1.5	1,004

#	Article	IF	CITATIONS
91	Head-on encounter rates and walking speed of foragers in leaf-cutting ant traffic. Insectes Sociaux, 2003, 50, 3-8.	0.7	72
92	Traffic Dynamics of the Leafâ€Cutting Ant,Atta cephalotes. American Naturalist, 2002, 159, 283-293.	1.0	101
93	Correlated response of autogeny to selection for adult starvation resistance in the blowfly, Lucilia cuprina. Heredity, 2002, 88, 35-38.	1.2	5
94	Vegetative and reproductive variation among unisexual and hermaphroditic individuals of Wurmbea dioica (Colchicaceae). Australian Journal of Botany, 2001, 49, 603.	0.3	8
95	Leaf tissue transport as a function of loading ratio in the leaf-cutting ant Atta cephalotes. Ecological Entomology, 2001, 26, 551-556.	1.1	15
96	Foraging behaviour of Atta cephalotes (leaf-cutting ants): an examination of two predictions for load selection. Animal Behaviour, 2000, 60, 781-788.	0.8	33
97	Body size effects on locomotion and load carriage in the highly polymorphic leaf-cutting ants Atta colombica and Atta cephalotes. Behavioral Ecology, 2000, 11, 125-131.	1.0	42
98	Flower number and floral components in ten angiosperm species: an examination of assumptions about trade-offs in reproductive evolution. Biological Journal of the Linnean Society, 1999, 68, 579-592.	0.7	12
99	"EXCESS―FLOWER PRODUCTION AND SELECTIVE FRUIT ABORTION: A MODEL OF POTENTIAL BENEFITS. Ecology, 1998, 79, 2123-2132.	1.5	36
100	"Excess" Flower Production and Selective Fruit Abortion: A Model of Potential Benefits. Ecology, 1998, 79, 2123.	1.5	74
101	Foraging Performance by Atta colombica, a Leaf-Cutting Ant. American Naturalist, 1996, 148, 597-612.	1.0	51
102	Server System and Queuing Models of Leaf Harvesting by Leaf-Cutting Ants. American Naturalist, 1996, 148, 613-629.	1.0	22
103	OVULE PACKAGING IN STOCHASTIC POLLINATION AND FERTILIZATION ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 1995, 49, 100-109.	1.1	78
104	Variable load size-ant size matching in leaf-cutting ants, Atta colombica (Hymenoptera: Formicidae). Journal of Insect Behavior, 1995, 8, 715-722.	0.4	23
105	Pollinator Behavioural Responses to Reward Size in Lobelia Deckenii: No Escape from Pollen Limitation of Seed Set. Journal of Ecology, 1995, 83, 865.	1.9	31
106	Ovule Packaging in Stochastic Pollination and Fertilization Environments. Evolution; International Journal of Organic Evolution, 1995, 49, 100.	1.1	50
107	Batemanâ \in ^M s principle and plant reproduction: The role of pollen limitation in fruit and seed set. Botanical Review, The, 1994, 60, 83-139.	1.7	855
108	A Probabilistic Analysis of Pollinator Behavior and Seed Production in Lobelia Deckenii. Ecology, 1994, 75, 1635-1646.	1.5	15

#	Article	IF	CITATIONS
109	Butterfly wing colour patterns and flying heights in the seasonally wet forest of Barro Colorado Island, Panama. Journal of Tropical Ecology, 1994, 10, 601-610.	0.5	42
110	Phenological Aspects of Male and Female Function in Hermaphroditic Plants. American Naturalist, 1992, 140, 305-324.	1.0	36
111	SEXUAL ALLOCATION STRATEGY IN WINDâ€POLLINATED PLANTS. Evolution; International Journal of Organic Evolution, 1988, 42, 403-407.	1.1	88
112	Sexual Selection and Human Evolution: All or None Adaptation?. American Anthropologist, 1986, 88, 167-172.	0.7	2
113	Evolution: An Expanded View. Science, 1984, 226, 1252-1252.	6.0	0
114	The evolutionary ecology of pollination and the functional biology of agricultural plants., 0,, 65-80.		O