Jessica R Allegretti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2957546/publications.pdf

Version: 2024-02-01

196777 162838 3,682 79 29 57 citations h-index g-index papers 83 83 83 4188 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative Long-Term Drug Survival of Vedolizumab, Adalimumab, and Infliximab in Biologic-Naïve Patients with Ulcerative Colitis. Digestive Diseases and Sciences, 2023, 68, 223-232.	1.1	3
2	Predictors and Outcomes of Ustekinumab Dose Intensification in Ulcerative Colitis: A Multicenter Cohort Study. Clinical Gastroenterology and Hepatology, 2022, 20, 2399-2401.e4.	2.4	23
3	Outcomes of Standard and Intensified Dosing of Ustekinumab for Chronic Pouch Disorders. Inflammatory Bowel Diseases, 2022, 28, 146-149.	0.9	8
4	Antitumor Necrosis Factor-like Ligand 1A Therapy Targets Tissue Inflammation and Fibrosis Pathways and Reduces Gut Pathobionts in Ulcerative Colitis. Inflammatory Bowel Diseases, 2022, 28, 434-446.	0.9	14
5	Correction to: ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. American Journal of Gastroenterology, 2022, 117, 358-358.	0.2	1
6	Response to McFarland et al American Journal of Gastroenterology, 2022, Publish Ahead of Print, .	0.2	1
7	Effectiveness and Safety of Fecal Microbiota Transplantation for Clostridioides Difficile Infection: Results From a 5344-Patient Cohort Study. Gastroenterology, 2022, 163, 319-322.	0.6	18
8	Real-world characteristics, treatment experiences and corticosteroid utilisation of patients treated with tofacitinib for moderate to severe ulcerative colitis. BMC Gastroenterology, 2022, 22, 177.	0.8	4
9	Beyond Fecal Microbiota Transplantation: Developing Drugs from the Microbiome. Journal of Infectious Diseases, 2021, 223, S276-S282.	1.9	12
10	Inflammatory Bowel Disease Outcomes Following Fecal Microbiota Transplantation for Recurrent <i>C. difficile</i> Infection. Inflammatory Bowel Diseases, 2021, 27, 1371-1378.	0.9	31
11	Fecal Microbiota Transplantation Is Safe and Effective in Patients With Clostridioides difficile Infection and Cirrhosis. Clinical Gastroenterology and Hepatology, 2021, 19, 1627-1634.	2.4	24
12	Risk Factors that Predict the Failure of Multiple Fecal Microbiota Transplantations for Clostridioides difficile Infection. Digestive Diseases and Sciences, 2021, 66, 213-217.	1.1	15
13	Fecal Microbiota Transplantation Is Highly Effective in Real-World Practice: Initial Results From the FMT National Registry. Gastroenterology, 2021, 160, 183-192.e3.	0.6	113
14	Immunosuppressive Therapy and Risk of COVID-19 Infection in Patients With Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2021, 27, 155-161.	0.9	48
15	Fecal Microbiota Transplantation for Chronic Pouchitis: Promising Novel Therapeutic or Lost Cause?. Inflammatory Bowel Diseases, 2021, 27, 1873-1875.	0.9	0
16	The contribution of bile acid metabolism to the pathogenesis of <i>Clostridioides difficile</i> infection. Therapeutic Advances in Gastroenterology, 2021, 14, 175628482110177.	1.4	24
17	Ustekinumab Dose Optimization in Crohn Disease: One Size Does Not Fit All. Inflammatory Bowel Diseases, 2021, 27, e70-e70.	0.9	4
18	Time to Negative SARS-CoV-2 PCR Should Not Delay Care Among Patients With Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2021, 27, 590-592.	0.9	0

#	Article	IF	Citations
19	Costâ€effectiveness analysis of sequential fecal microbiota transplantation for fulminant Clostridioides difficile infection. Journal of Gastroenterology and Hepatology (Australia), 2021, 36, 2432-2440.	1.4	8
20	SARS-CoV-2 vaccines and donor recruitment for FMT. The Lancet Gastroenterology and Hepatology, 2021, 6, 264-266.	3.7	5
21	ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. American Journal of Gastroenterology, 2021, 116, 1124-1147.	0.2	218
22	Functional Restoration of Bacteriomes and Viromes by Fecal Microbiota Transplantation. Gastroenterology, 2021, 160, 2089-2102.e12.	0.6	45
23	Real-World Comparison of Tofacitinib vs Ustekinumab Among Bio-Exposed Patients With Ulcerative Colitis: A Propensity Score Analysis. Inflammatory Bowel Diseases, 2021, 27, 1694-1697.	0.9	19
24	Anti-TL1A Antibody PF-06480605 Safety and Efficacy for Ulcerative Colitis: A Phase 2a Single-Arm Study. Clinical Gastroenterology and Hepatology, 2021, 19, 2324-2332.e6.	2.4	28
25	Infliximab De-escalation in Patients With Crohn's Disease in Clinical Remission Is Safe and Well-tolerated. Inflammatory Bowel Diseases, 2021, 27, 2031-2033.	0.9	3
26	Single Topic Conference on Autoimmune Liver Disease from the Canadian Association for the Study of the Liver. Canadian Liver Journal, 2021, 4, 401-425.	0.3	1
27	COVID-19 Vaccination Intent and Perceptions Among Patients With Inflammatory Bowel Diseases. Clinical Gastroenterology and Hepatology, 2021, 19, 1730-1732.e2.	2.4	50
28	Impact of fecal microbiota transplantation with capsules on the prevention of metabolic syndrome among patients with obesity. Hormones, 2021, 20, 209-211.	0.9	24
29	Effects of Fecal Microbiota Transplantation With Oral Capsules in Obese Patients. Clinical Gastroenterology and Hepatology, 2020, 18, 855-863.e2.	2.4	171
30	Patients Eligible for Trials of Microbe-Based Therapeutics Do Not Represent the Population With Recurrent Clostridioides difficile Infection. Clinical Gastroenterology and Hepatology, 2020, 18, 1099-1101.	2.4	12
31	Clinical Predictors of Recurrence After Primary Clostridioides difficile Infection: A Prospective Cohort Study. Digestive Diseases and Sciences, 2020, 65, 1761-1766.	1.1	23
32	Fecal Microbiota Transplant Decreases Mortality in Patients with Refractory Severe or Fulminant Clostridioides difficile Infection. Clinical Gastroenterology and Hepatology, 2020, 18, 2234-2243.e1.	2.4	44
33	Outcomes of Fecal Microbiota Transplantation in Patients With Inflammatory Bowel Diseases and Recurrent Clostridioides difficile Infection. Gastroenterology, 2020, 159, 1982-1984.	0.6	28
34	Heading in the Right Dissection: Toward an Endoscopic Cancer Cure in a Patient with Long-Standing Ulcerative Colitis. Digestive Diseases and Sciences, 2020, 65, 2818-2822.	1.1	0
35	Understanding the mechanisms of efficacy of fecal microbiota transplant in treating recurrent <i>Clostridioides difficile</i> infection and beyond: the contribution of gut microbial-derived metabolites. Gut Microbes, 2020, 12, 1810531.	4.3	32
36	Long-Term Efficacy and Safety of Fecal Microbiota Transplantation for Treatment of Recurrent Clostridioides difficile Infection. Journal of Clinical Gastroenterology, 2020, 54, 701-706.	1.1	32

#	Article	IF	CITATIONS
37	Stool processing speed and storage duration do not impact the clinical effectiveness of fecal microbiota transplantation. Gut Microbes, 2020, 11, 1806-1808.	4.3	14
38	Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel. The Lancet Gastroenterology and Hepatology, 2020, 5, 430-432.	3.7	108
39	Fecal microbiota transplantation improves metabolic syndrome parameters: systematic review with meta-analysis based on randomized clinical trials. Nutrition Research, 2020, 83, 1-14.	1.3	57
40	Reorganisation of faecal microbiota transplant services during the COVID-19 pandemic. Gut, 2020, 69, 1555-1563.	6.1	110
41	Fecal transplantation for ulcerative colitis: current evidence and future applications. Expert Opinion on Biological Therapy, 2020, 20, 343-351.	1.4	29
42	AGA Technical Review on the Management of Moderate to Severe Ulcerative Colitis. Gastroenterology, 2020, 158, 1465-1496.e17.	0.6	85
43	Faecal microbiota transplantations and urinary tract infections – Authors' reply. Lancet, The, 2020, 395, 271.	6.3	2
44	Fecal microbiota transplantation for the treatment of recurrent and severe Clostridium difficile infection in solid organ transplant recipients: A multicenter experience. American Journal of Transplantation, 2019, 19, 501-511.	2.6	101
45	The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications. Lancet, The, 2019, 394, 420-431.	6.3	234
46	Donor Screening for Fecal Microbiota Transplantation. New England Journal of Medicine, 2019, 381, 2070-2072.	13.9	96
47	Microbiota modulation-based therapy for luminal GI disorders: current applications of probiotics and fecal microbiota transplantation. Expert Opinion on Biological Therapy, 2019, 19, 1343-1355.	1.4	11
48	Insights into the role of fecal microbiota transplantation for the treatment of inflammatory bowel disease. Therapeutic Advances in Gastroenterology, 2019, 12, 175628481983689.	1.4	61
49	Fecal Microbiota Transplantation in Patients With Primary Sclerosing Cholangitis: A Pilot Clinical Trial. American Journal of Gastroenterology, 2019, 114, 1071-1079.	0.2	155
50	Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent <i>Clostridioides difficile</i> infection. Gut, 2019, 68, 1791-1800.	6.1	182
51	Cryptogenic Multifocal Ulcerative Sclerosing Enteritis: A Curious Case of Intestinal Obstruction in the Setting of Human Immunodeficiency Virus. ACG Case Reports Journal, 2019, 6, e00070.	0.2	2
52	Fecal Microbiota Transplantation in Patients With Primary Sclerosing Cholangitis: The Next Steps in This Promising Story. American Journal of Gastroenterology, 2019, 114, 1354-1355.	0.2	8
53	Risk Factors for Gastrointestinal Symptoms Following Successful Eradication of Clostridium difficile by Fecal Microbiota Transplantation (FMT). Journal of Clinical Gastroenterology, 2019, 53, e405-e408.	1.1	15
54	International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut, 2019, 68, 2111-2121.	6.1	290

#	Article	IF	Citations
55	Nuts and Bolts of Fecal Microbiota Transplantation. Clinical Gastroenterology and Hepatology, 2019, 17, 345-352.	2.4	38
56	Risk of Clostridium difficile Infection with Systemic Antimicrobial Therapy Following Successful Fecal Microbiota Transplant: Should We Recommend Anti-Clostridium difficile Antibiotic Prophylaxis?. Digestive Diseases and Sciences, 2019, 64, 1668-1671.	1.1	24
57	Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Lose Dose. Digestive Diseases and Sciences, 2019, 64, 1672-1678.	1.1	48
58	Microbiome predictors of dysbiosis and VRE decolonization in patients with recurrent C. difficile infections in a multi-center retrospective study. AIMS Microbiology, 2019, 5, 1-18.	1.0	11
59	Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. Cell Host and Microbe, 2018, 23, 229-240.e5.	5.1	292
60	Classifying Fecal Microbiota Transplantation Failure: AnÂObservational Study Examining Timing and CharacteristicsÂofÂFecal Microbiota Transplantation Failures. Clinical Gastroenterology and Hepatology, 2018, 16, 1832-1833.	2.4	23
61	Stool Donor Body Mass Index Does Not Affect Recipient WeightÂAfter a Single Fecal Microbiota Transplantation for Clostridium difficile Infection. Clinical Gastroenterology and Hepatology, 2018, 16, 1351-1353.	2.4	18
62	Scaling Safe Access to Fecal Microbiota Transplantation: Past, Present, and Future. Current Gastroenterology Reports, 2018, 20, 14.	1.1	35
63	The 5D framework: a clinical primer for fecal microbiota transplantation to treat Clostridium difficile infection. Gastrointestinal Endoscopy, 2018, 87, 18-29.	0.5	41
64	Small Intestinal Bacterial Overgrowth: Should Screening Be Included in the Pre-fecal Microbiota Transplantation Evaluation?. Digestive Diseases and Sciences, 2018, 63, 193-197.	1.1	13
65	Early Antibiotic Use After Fecal Microbiota Transplantation Increases Risk of Treatment Failure. Clinical Infectious Diseases, 2018, 66, 134-135.	2.9	38
66	533. Scaling Pediatric Access to Fecal Microbiota Transplantation in the United States: A Time-Series Geospatial Analysis. Open Forum Infectious Diseases, 2018, 5, S197-S197.	0.4	1
67	618. Do Clinical Factors Affect Microbial Engraftment After Fecal Microbiota Transplantation in Recurrent Clostridium difficile Infection?. Open Forum Infectious Diseases, 2018, 5, S225-S226.	0.4	2
68	Endospores and other lysis-resistant bacteria comprise a widely shared core community within the human microbiota. ISME Journal, 2018, 12, 2403-2416.	4.4	40
69	Legalization of Medicinal Marijuana Has Minimal Impact on Use Patterns in Patients With Inflammatory Bowel Diseases, 2018, 24, 2309-2314.	0.9	16
70	Predictors of Clinical Response and Remission at 1ÂYear Among a Multicenter Cohort of Patients with Inflammatory Bowel Disease Treated with Vedolizumab. Digestive Diseases and Sciences, 2017, 62, 1590-1596.	1.1	56
71	The Current Landscape and Lessons from Fecal Microbiota Transplantation for Inflammatory Bowel Diseases, 2017, 23, 1710-1717.	0.9	39
72	The risk of inflammatory bowel disease flares after fecal microbiota transplantation: Systematic review and meta-analysis. Gut Microbes, 2017, 8, 574-588.	4.3	102

#	Article	IF	CITATIONS
73	FMT in IBD: What Have We Learned?. Digestive Diseases and Sciences, 2017, 62, 2618-2620.	1.1	2
74	Faecal microbiota transplantation for <i>Clostridium difficile</i> infection: a multicentre study of nonâ€responders. Medical Journal of Australia, 2017, 207, 159-160.	0.8	5
75	Clearance of Vancomycin-Resistant Enterococcus Colonization With Fecal Microbiota Transplantation Among Patients With Recurrent Clostridium difficile Infection. Open Forum Infectious Diseases, 2016, 3, .	0.4	8
76	Are Patients with Inflammatory Bowel Disease on Chronic Immunosuppressive Therapy at Increased Risk of Cervical High-grade Dysplasia/Cancer? A Meta-analysis. Inflammatory Bowel Diseases, 2015, 21, 1089-1097.	0.9	112
77	Risk Factors for Rehospitalization Within 90 Days in Patients with Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2015, 21, 2583-2589.	0.9	45
78	Fecal Microbiota Transplantation via Colonoscopy for Recurrent C. difficile Infection. Journal of Visualized Experiments, 2014, , .	0.2	22
79	Oral microbes effective for prevention of recurrent Clostridium difficile infections. , 0, , .		0