
Philippe Bertus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2957279/publications.pdf Version: 2024-02-01

DHILIDDE REDTUS

#	Article	IF	CITATIONS
1	Enantiomerically Pure Cyclopropenylcarbinols as a Source of Chiral Alkylidenecyclopropane Derivatives. Angewandte Chemie - International Edition, 2006, 45, 3963-3965.	13.8	95
2	New and easy route to primary cyclopropylamines from nitriles. Chemical Communications, 2001, , 1792-1793.	4.1	80
3	A Direct Synthesis of 1-Aryl- and 1-Alkenylcyclopropylamines from Aryl and Alkenyl Nitriles. Journal of Organic Chemistry, 2003, 68, 7133-7136.	3.2	67
4	Cyclopropenylcarbinol Derivatives as New Versatile Intermediates in Organic Synthesis: Application to the Formation of Enantiomerically Pure Alkylidenecyclopropane Derivatives. Chemistry - A European Journal, 2009, 15, 8449-8464.	3.3	67
5	Ti(II)-Mediated Conversion of α-Heterosubstituted (O, N, S) Nitriles to Functionalized Cyclopropylamines. Effect of Chelation on the Cyclopropanation Step. Journal of Organic Chemistry, 2002, 67, 3965-3968.	3.2	63
6	The first direct coupling of 1-trialkylsilyl-1-alkynes with vinyl triflates; a new access to enynes. Tetrahedron Letters, 2001, 42, 8641-8644.	1.4	60
7	Titanium-Mediated Synthesis of Primary Cyclopropylamines from Nitriles and Grignard Reagents. Synlett, 2007, 2007, 1346-1356.	1.8	60
8	First Evidence for the Use of Organosilver Compounds in Pd-Catalyzed Coupling Reactions; A Mechanistic Rationale for the Pd/Ag-Catalyzed Enyne Synthesis?. Organic Letters, 2001, 3, 1661-1664.	4.6	58
9	Spirocyclopropyl pyrrolidines as a new series of α-l-fucosidase inhibitors. Bioorganic and Medicinal Chemistry, 2006, 14, 4047-4054.	3.0	49
10	Titanium-mediated synthesis of bicyclic cyclopropylamines from unsaturated nitriles. Tetrahedron Letters, 2003, 44, 2485-2487.	1.4	45
11	Titaniumâ€Mediated Synthesis of 1,4â€Diketones from Grignard Reagents and Acyl Cyanohydrins. Angewandte Chemie - International Edition, 2010, 49, 8691-8694.	13.8	45
12	Dieneâ^'Titanium Complexes as Synthetic Intermediates for the Construction of Three- or Five-Membered Carbocycles. Organic Letters, 2008, 10, 777-780.	4.6	43
13	Solvent-free direct reductive amination by catalytic use of an organotin reagent incorporated on an ionic liquid. Chemical Communications, 2009, , 6207.	4.1	42
14	Pd/Ag-Catalyzed Direct Coupling of 1-Trimethylsilyl Alkynes with Vinyl Triflates. European Journal of Organic Chemistry, 2001, 2001, 4391-4393.	2.4	38
15	Synthesis of enynes and epoxyenynes by coupling: use of a new set of catalysts based on Pd–Ag salts. Journal of Organometallic Chemistry, 1998, 567, 173-180.	1.8	37
16	Evidence for the in situ formation of copper acetylides during Pd/Cu catalyzed synthesis of enynes: a new synthesis of allenynols. New Journal of Chemistry, 2004, 28, 12-14.	2.8	36
17	The spirocyclopropyl moiety as a methyl surrogate in the structure of l-fucosidase and l-rhamnosidase inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 8020-8026.	3.0	34
18	Double Addition of Organometallics to Nitriles: Toward an Access to Tertiary Carbinamines. Advanced Synthesis and Catalysis, 2017, 359, 179-201.	4.3	34

PHILIPPE BERTUS

#	Article	IF	CITATIONS
19	Studies on the titanium-catalyzed cyclopropanation of nitriles. Organic and Biomolecular Chemistry, 2005, 3, 3482.	2.8	28
20	Zirconium-Catalyzed Ethylmagnesiation of Imines â^' Scope and Mechanism. European Journal of Organic Chemistry, 2001, 2001, 3677.	2.4	26
21	Unusual Cleavage of the Enolsilane C-O Bond: Transformation of 2-Silyloxy-1,3-dienes into 1,3-Dienyl-2-zirconium Compounds and their Cross-Coupling Reactions. Synlett, 2001, 2001, 0123-0125.	1.8	24
22	A Versatile and Highly Stereoselective Access to Vinyl Triflates Derived from 1,3-Dicarbonyl and Related Compounds. Journal of Organic Chemistry, 2008, 73, 7845-7848.	3.2	24
23	A Straightforward Synthesis of Cyclopropanes from Aldehydes and Ketones. European Journal of Organic Chemistry, 2000, 2000, 3713-3719.	2.4	20
24	Pentadienyl transfer reagents based on zirconium: preparation and reactions with carbonyl compounds. Tetrahedron, 2004, 60, 1375-1383.	1.9	18
25	Ti-Mediated Synthesis of Aminocyclopropyl-Substituted Carbohydrates. European Journal of Organic Chemistry, 2005, 2005, 5084-5088.	2.4	17
26	Titanium- and Lewis Acid-Mediated Cyclopropanation of Imides. Organic Letters, 2007, 9, 659-662.	4.6	16
27	Pentadienylzirconium compounds: easily accessible new reagents for selective pentadienylation reactions. Tetrahedron Letters, 2001, 42, 1677-1680.	1.4	15
28	Titanium-mediated [4 + 1] assembly of 1,3-dienes and nitriles: formation of 3-cyclopentenyl amines and cyclopentenones. Chemical Communications, 2005, , 3030.	4.1	15
29	Synthesis of a C-glucosylated cyclopropylamide and evaluation as a glycogen phosphorylase inhibitor. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4774-4778.	2.2	14
30	New Transformations from a 3-Silyloxy 2-Aza-1,3-diene: Consecutive Zr-Mediated Retro-Brook Rearrangement and Reactions with Electrophiles. Tetrahedron, 2000, 56, 4467-4472.	1.9	13
31	Simple and convenient access to α,α,α-trisubstituted amides by double addition of Grignard reagents to acyl cyanohydrins. Chemical Communications, 2012, 48, 8655.	4.1	13
32	Titaniumâ€Mediated Addition of Grignard Reagents to Acyl Cyanohydrins: Aminocyclopropane versus 1,4â€Diketone Formation. European Journal of Organic Chemistry, 2014, 2014, 171-180.	2.4	13
33	Conversion of Imines into C,N-Dimagnesiated Compounds and Trapping with Electrophiles. One-Pot Access to 1-Azaspirocyclic Framework. Synthesis, 2002, 2002, 1115-1120.	2.3	12
34	Specific solvent effect on R2ZrCl2 (R=butyl, ethyl) reactivity, a density functional study. Journal of Organometallic Chemistry, 2002, 664, 268-276.	1.8	12
35	Asymmetric synthesis of the cyclopentanones related to NCS and N1999A2 antitumor antibiotics. Tetrahedron Letters, 2003, 44, 3391-3395.	1.4	12
36	A direct conversion of α,β-unsaturated ketones to vinylcyclopropanes: new zirconium-mediated reaction. Chemical Communications, 2000, , 171-172.	4.1	11

PHILIPPE BERTUS

#	Article	IF	CITATIONS
37	A stereoselective access to a ferrocene-based planar chiral triazolium salt. Journal of Organometallic Chemistry, 2015, 797, 1-7.	1.8	11
38	Reactivity of sugar α-aminonitrile derivatives under titanium-mediated cyclopropanation conditions. Tetrahedron, 2012, 68, 1145-1152.	1.9	10
39	A Short Access to Symmetrically α,α-Disubstituted α-Amino Acids from Acyl Cyanohydrins. Synthesis, 2016, 48, 906-916.	2.3	10
40	A Concise Stereoselective Synthesis of 2‣ubstituted 1â€Aminocyclopropanecarboxylic Acids. European Journal of Organic Chemistry, 2009, 2009, 5072-5078.	2.4	9
41	The Combination of Prolinoamino Acids and Cyclopropylamino Acids Leads to Fully Functionalized, Stable βâ€īurns in Water. ChemBioChem, 2011, 12, 1039-1042.	2.6	8
42	Reaction of 3-trimethylsilyloxy-2-aza-1,3-dienes with zirconocene: a transition metal promoted retro-Brook rearrangement. Tetrahedron Letters, 2000, 41, 3053-3056.	1.4	6
43	Titanium-Mediated Cyclopropanation of Nitriles with Unsaturated Grignard Reagents: Application to the Synthesis of Constrained Lysine Derivatives. Synthesis, 2015, 47, 992-1006.	2.3	6
44	Zinc-Mediated Double Addition on Functionalized Nitriles. Synthesis, 2019, 51, 1329-1341.	2.3	6
45	Synthesis of a 5-Spirocyclopropyl Deoxyrhamnojirimycin as a Constrained Naringinase Inhibitor. Synthesis, 2007, 2007, 3589-3594.	2.3	5
46	Asymmetric Titanium-Catalyzed Cyclopropanation of Nitriles with Grignard Reagents. SynOpen, 2018, 02, 0041-0049.	1.7	5
47	From Dialkyltitanium Species to Titanacyclopropanes: An Ab Initio Study. Organometallics, 2019, 38, 4171-4182.	2.3	5
48	Heteromultifunctional Oxazolones as Versatile Linkers for Click Chemistry Reactions. European Journal of Organic Chemistry, 2019, 2019, 7359-7366.	2.4	5
49	Synthesis of 2-(1-aminocyclopropyl)pyrrolidine-3,4-diol derivatives applying titanium-mediated reaction conditions. Tetrahedron, 2012, 68, 1802-1809.	1.9	4
50	Convenient and easy access to 2-hydroxycyclopent-2-enones from acylcyanohydrins. Tetrahedron, 2019, 75, 4657-4662.	1.9	4
51	Vinyl nosylates as partner in copper and silver co-catalyzed Sonogashira cross-coupling reactions. Tetrahedron, 2018, 74, 7111-7119.	1.9	3
52	Convenient Access to 2-Arylpyrroles from 2-Lithio-N,N-dibenzylcyclopropylamine and Nitriles. Synlett, 2006, 2339-2341.	1.8	2
53	Preparation and Some Synthetic Applications of 2-Hydroxyethyl-Substituted Cyclopropylamines. Synlett, 2008, 2008, 2455-2458.	1.8	2
54	Titanium-Catalyzed Cyclopropanation of Boc-Protected Cyanohydrins: A Short Access to Aminocyclopropanecarboxylic Acid Derivatives. Synthesis, 2010, 2010, 3410-3414.	2.3	2

PHILIPPE BERTUS

#	Article	IF	CITATIONS
55	Cyclopropylâ€ŧryptamine Analogues: Synthesis and Biological Evaluation as 5â€HT ₆ Receptor Ligands. ChemMedChem, 2013, 8, 70-73.	3.2	2
56	Successive addition of two different Grignard reagents to nitriles: access to α,α-disubstituted propargylamine derivatives. Organic and Biomolecular Chemistry, 2018, 16, 1519-1526.	2.8	2
57	Hydrometalation or Condensation in the Reaction of Cl2ZrEt2with H2CO. A Theoretical Account. Organometallics, 2004, 23, 2892-2899.	2.3	1
58	Reactivity of dialkylzirconium species and solvent polarity. International Journal of Quantum Chemistry, 2006, 106, 704-711.	2.0	1
59	Synthetic Access to the First Spirocyclopropyl Iminosugar. Synlett, 2006, 2006, 223-226.	1.8	1
60	Synthesis of New Cyclopropanated Tryptamine Analogues. Synlett, 2008, 2008, 1479-1482.	1.8	1
61	On the mechanism of the zirconium-catalysed addition of ethyl Grignard reagents to imines. Comptes Rendus Chimie, 2002, 5, 127-130.	0.5	Ο
62	Titanium-Mediated Synthesis of Bicyclic Cyclopropylamines from Unsaturated Nitriles ChemInform, 2003, 34, no.	0.0	0
63	A Direct Synthesis of 1-Aryl- and 1-Alkenylcyclopropylamines from Aryl and Alkenyl Nitriles ChemInform, 2004, 35, no.	0.0	Ο
64	Pentadienyl Transfer Reagents Based on Zirconium: Preparation and Reactions with Carbonyl Compounds ChemInform, 2004, 35, no.	0.0	0
65	Evidence for the in situ Formation of Copper Acetylides During Pd/Cu Catalyzed Synthesis of Enynes: A New Synthesis of Allenynols ChemInform, 2004, 35, no.	0.0	0
66	Titanium-Mediated [4 + 1] Assembly of 1,3-Dienes and Nitriles: Formation of 3-Cyclopentenyl Amines and Cyclopentenones ChemInform, 2005, 36, no.	0.0	0
67	Diastereoselective Synthesis of trans-2-Substituted Cyclopropylamines. Synlett, 2006, 2006, 3164-3166.	1.8	0
68	Ti(II)â€Mediated Conversion of αâ€Heterosubstituted (O, N, S) Nitriles to Functionalized Cyclopropylamines. Effect of Chelation on the Cyclopropanation Step ChemInform, 2002, 33, 65-65.	0.0	0