Zheng Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2957261/publications.pdf

Version: 2024-02-01

91 4,933 33 69 papers citations h-index g-index

103 103 103 7072

times ranked

docs citations

all docs

citing authors

#	Article	IF	Citations
1	Silkâ€Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Advanced Materials, 2014, 26, 1336-1342.	21.0	1,225
2	Hypoxia and $H < sub > 2 < / sub > O < sub > 2 < / sub > Dual-Sensitive Vesicles for Enhanced Glucose-Responsive Insulin Delivery. Nano Letters, 2017, 17, 733-739.$	9.1	220
3	Electrohydrodynamic printing of silver nanowires for flexible and stretchable electronics. Nanoscale, 2018, 10, 6806-6811.	5.6	208
4	Stretch-Triggered Drug Delivery from Wearable Elastomer Films Containing Therapeutic Depots. ACS Nano, 2015, 9, 9407-9415.	14.6	196
5	Screenâ€Printed Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenesulfonate) Grids as ITOâ€Free Anodes for Flexible Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1705955.	14.9	149
6	Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thinâ∈Film Transistors. Advanced Functional Materials, 2017, 27, 1604447.	14.9	147
7	Soft electrothermal actuators using silver nanowire heaters. Nanoscale, 2017, 9, 3797-3805.	5.6	142
8	Compact, Highly Efficient, and Fully Flexible Circularly Polarized Antenna Enabled by Silver Nanowires for Wireless Body-Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11, 920-932.	4.0	139
9	Batteryâ€Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled Onâ€Demand Drug Delivery. Advanced Functional Materials, 2021, 31, 2100852.	14.9	135
10	Tailoring the Temperature Coefficient of Resistance of Silver Nanowire Nanocomposites and their Application as Stretchable Temperature Sensors. ACS Applied Materials & Diterfaces, 2019, 11, 17836-17842.	8.0	129
11	Batteryâ€Free and Wireless Epidermal Electrochemical System with Allâ€Printed Stretchable Electrode Array for Multiplexed In Situ Sweat Analysis. Advanced Materials Technologies, 2019, 4, 1800658.	5.8	124
12	Inkjet printed silver nanowire network as top electrode for semi-transparent organic photovoltaic devices. Applied Physics Letters, 2015, 106, .	3.3	116
13	A Universal Ternary‧olventâ€Ink Strategy toward Efficient Inkjetâ€Printed Perovskite Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107798.	21.0	109
14	Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation. Advanced Materials, 2017, 29, 1604043.	21.0	90
15	Embedded Ag/Ni Metal-Mesh with Low Surface Roughness As Transparent Conductive Electrode for Optoelectronic Applications. ACS Applied Materials & Interfaces, 2017, 9, 37048-37054.	8.0	84
16	Printable Highâ€Aspect Ratio and Highâ€Resolution Cu Grid Flexible Transparent Conductive Film with Figure of Merit over 80 000. Advanced Electronic Materials, 2019, 5, 1800991.	5.1	76
17	Facile and Efficient Patterning Method for Silver Nanowires and Its Application to Stretchable Electroluminescent Displays. ACS Applied Materials & Interfaces, 2020, 12, 24074-24085.	8.0	73
18	Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 13087-13095.	8.0	62

#	Article	lF	CITATIONS
19	The elastic microstructures of inkjet printed polydimethylsiloxane as the patterned dielectric layer for pressure sensors. Applied Physics Letters, 2017, 110, .	3.3	59
20	Homoleptic tris-cyclometalated iridium(<scp>iii</scp>) complexes with phenylimidazole ligands for highly efficient sky-blue OLEDs. New Journal of Chemistry, 2015, 39, 246-253.	2.8	55
21	Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nature Electronics, 2020, 3, 622-629.	26.0	53
22	Flexible CMOSâ€Like Circuits Based on Printed Pâ€Type and Nâ€Type Carbon Nanotube Thinâ€Film Transistors. Small, 2016, 12, 5066-5073.	10.0	51
23	Inkjetâ€Printed Highâ€Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Smallâ€Molecule Hole Transport Material. Small, 2019, 15, e1900111.	10.0	50
24	Design and operation of silver nanowire based flexible and stretchable touch sensors. Journal of Materials Research, 2015, 30, 79-85.	2.6	48
25	Printed thin film transistors and CMOS inverters based on semiconducting carbon nanotube ink purified by a nonlinear conjugated copolymer. Nanoscale, 2016, 8, 4588-4598.	5.6	44
26	Pyridine-Based Electron-Transport Materials with High Solubility, Excellent Film-Forming Ability, and Wettability for Inkjet-Printed OLEDs. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38716-38727.	8.0	43
27	High performance inkjet-printed QLEDs with 18.3% EQE: improving interfacial contact by novel halogen-free binary solvent system. Nano Research, 2021, 14, 4125-4131.	10.4	42
28	Fabrication and electrical properties of all-printed carbon nanotube thin film transistors on flexible substrates. Journal of Materials Chemistry, 2012, 22, 20747.	6.7	41
29	Selective Conversion from p-Type to n-Type of Printed Bottom-Gate Carbon Nanotube Thin-Film Transistors and Application in Complementary Metal–Oxide–Semiconductor Inverters. ACS Applied Materials & Diterfaces, 2017, 9, 12750-12758.	8.0	41
30	Inkjet-Printed Quantum Dot Light-Emitting Diodes with an Air-Stable Hole Transport Material. ACS Applied Materials & Diversary (1988) Applied Materials & Diver	8.0	40
31	Printed thin-film transistors with functionalized single-walled carbon nanotube inks. Journal of Materials Chemistry, 2012, 22, 2051-2056.	6.7	39
32	Inkjet printing of oxide thin film transistor arrays with small spacing with polymer-doped metal nitrate aqueous ink. Journal of Materials Chemistry C, 2017, 5, 7495-7503.	5.5	36
33	Flexible 1–3 Composite Ultrasound Transducers With Silver-Nanowire-Based Stretchable Electrodes. IEEE Transactions on Industrial Electronics, 2020, 67, 6955-6962.	7.9	35
34	Highly Airâ€Stable Electronâ€Transport Material for Inkâ€Jetâ€Printed OLEDs. Chemistry - A European Journal, 2016, 22, 16576-16585.	3.3	31
35	High-performance metal-oxide thin-film transistors based on inkjet-printed self-confined bilayer heterojunction channels. Journal of Materials Chemistry C, 2019, 7, 6169-6177.	5.5	31
36	Hybrid Printing Metal-mesh Transparent Conductive Films with Lower Energy Photonically Sintered Copper/tin Ink. Scientific Reports, 2017, 7, 13239.	3.3	30

#	Article	IF	CITATIONS
37	Ambipolar Deep-Subthreshold Printed-Carbon-Nanotube Transistors for Ultralow-Voltage and Ultralow-Power Electronics. ACS Nano, 2020, 14, 14036-14046.	14.6	30
38	Printable Stretchable Silver Ink and Application to Printed RFID Tags for Wearable Electronics. Materials, 2019, 12, 3036.	2.9	29
39	Printing practice for the fabrication of flexible and stretchable electronics. Science China Technological Sciences, 2019, 62, 224-232.	4.0	29
40	Blended host ink for solution processing high performance phosphorescent OLEDs. Scientific Reports, 2019, 9, 6845.	3.3	28
41	Transparent Thermotherapeutic Skin Patch Based on Highly Conductive and Stretchable Copper Mesh Heater. Advanced Electronic Materials, 2021, 7, 2100611.	5.1	28
42	Overcoming Electrochemical Instabilities of Printed Silver Electrodes in All-Printed Ion Gel Gated Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Samp; Interfaces, 2019, 11, 41531-41543.	8.0	27
43	Inâ€Depth Investigation of Inkjetâ€Printed Silver Electrodes over Largeâ€Area: Ink Recipe, Flow, and Solidification. Advanced Materials Interfaces, 2022, 9, .	3.7	27
44	Ethanolamine-assisted synthesis of size-controlled indium tin oxide nanoinks for low temperature solution deposited transparent conductive films. Journal of Materials Chemistry C, 2015, 3, 11464-11470.	5 . 5	26
45	Metal Mesh as a Transparent Omnidirectional Strain Sensor. Advanced Materials Technologies, 2019, 4, 1800698.	5.8	26
46	High-resolution and large-size stretchable electrodes based on patterned silver nanowires composites. Nano Research, 2022, 15, 4590-4598.	10.4	26
47	Thermally Crossâ€Linkable Host Materials for Solutionâ€Processed OLEDs: Synthesis, Characterization, and Optoelectronic Properties. European Journal of Organic Chemistry, 2016, 2016, 3737-3747.	2.4	25
48	Continuous and rapid fabrication of photochromic fibers by facilely coating tungsten oxide/polyvinyl alcohol composites. RSC Advances, 2018, 8, 28581-28587.	3.6	25
49	Fully Printed, Large-Size Alternating Current Electroluminescent Device on Fabric for Wearable Textile Display. ACS Applied Electronic Materials, 2021, 3, 1747-1757.	4.3	24
50	Printed highly conductive Cu films with strong adhesion enabled by low-energy photonic sintering on low-Tg flexible plastic substrate. Nanotechnology, 2017, 28, 035203.	2.6	23
51	Novel ternary bipolar host material with carbazole, triazole and phosphine oxide moieties for high efficiency sky-blue OLEDs. New Journal of Chemistry, 2014, 38, 650-656.	2.8	22
52	Selective Dispersion of Largeâ€Diameter Semiconducting Carbon Nanotubes by Functionalized Conjugated Dendritic Oligothiophenes for Use in Printed Thin Film Transistors. Advanced Functional Materials, 2017, 27, 1703938.	14.9	22
53	Performance improvement for printed indium gallium zinc oxide thin-film transistors with a preheating process. RSC Advances, 2016, 6, 41439-41446.	3.6	20
54	27.5L:Late-News Paper: Hybrid Printing of High Resolution Metal Mesh as A Transparent Conductor for Touch Panels and OLED Displays. Digest of Technical Papers SID International Symposium, 2015, 46, 398-400.	0.3	19

#	Article	IF	CITATIONS
55	A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS Applied Materials & Samp; Interfaces, 2021, 13, 59085-59091.	8.0	19
56	Optimizing the central steric hindrance of cross-linkable hole transport materials for achieving highly efficient RGB QLEDs. Materials Chemistry Frontiers, 2020, 4, 3368-3377.	5.9	18
57	Novel phosphorescent iridium(<scp>iii</scp>) emitters for both vacuum-deposition and inkjet-printing of OLEDs with exceptionally high efficiency. Journal of Materials Chemistry C, 2019, 7, 4178-4184.	5.5	17
58	Durability Study of Thermal Transfer Printed Textile Electrodes for Wearable Electronic Applications. ACS Applied Materials & Electronic Applications.	8.0	17
59	Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers. Journal of Materials Chemistry C, 2020, 8, 16798-16807.	5. 5	16
60	Printable poly(methylsilsesquioxane) dielectric ink and its application in solution processed metal oxide thin-film transistors. RSC Advances, 2015, 5, 20924-20930.	3.6	14
61	High-Resolution Inkjet-Printed Oxide Thin-Film Transistors with a Self-Aligned Fine Channel Bank Structure. ACS Applied Materials & Structure.	8.0	14
62	Radiation-Hard and Repairable Complementary Metal–Oxide–Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2020, 12, 49963-49970.	8.0	14
63	Selective silencing of the electrical properties of metallic single-walled carbon nanotubes by 4-nitrobenzenediazonium tetrafluoroborate. Journal of Materials Science, 2014, 49, 2054-2062.	3.7	11
64	Highâ€Performance Partially Printed Hybrid CMOS Inverters Based on Indiumâ€Zincâ€Oxide and Chirality Enriched Carbon Nanotube Thinâ€Film Transistors. Advanced Electronic Materials, 2019, 5, 1900034.	5.1	11
65	Optically and electrically modulated printed carbon nanotube synaptic transistors with a single input terminal and multi-functional output characteristics. Journal of Materials Chemistry C, 2020, 8, 6914-6922.	5.5	11
66	Peripherally diketopyrrolopyrrole-functionalized dendritic oligothiophenes – synthesis, molecular structure, properties and applications. Polymer Chemistry, 2017, 8, 1460-1476.	3.9	9
67	A printed aluminum cathode with low sintering temperature for organic light-emitting diodes. RSC Advances, 2015, 5, 608-611.	3.6	8
68	Itoâ€Free Flexible Electronics: Screenâ€Printed Poly(3,4â€Ethylenedioxythiophene):Poly(Styrenesulfonate) Grids as ITOâ€Free Anodes for Flexible Organic Lightâ€Emitting Diodes (Adv. Funct. Mater. 11/2018). Advanced Functional Materials, 2018, 28, 1870072.	14.9	8
69	Finely Controlled Synthesis of Zn _{1–<i>x</i>} Mg _{<i>x</i>} O Nanoparticles with Uniform Size Distribution Used as Electron Transport Materials for Red QLEDs. ACS Applied Electronic Materials, 2022, 4, 1875-1881.	4.3	8
70	Double layer printed high performance OLED based on PEDOT:PSS/Ir(bt) < sub>2 < /sub>acac:CDBP. AIP Advances, 2018, 8, 115112.	1.3	7
71	Tuning the optical and electrochemical properties of conjugated all-thiophene dendrimers via core functionalization with a benzothiadiazole unit. RSC Advances, 2017, 7, 1606-1616.	3.6	4
72	Molecular Modulation Based on the Terminal Substituent in Twistacenes for Organic Lightâ€Emitting Diodes. Asian Journal of Organic Chemistry, 2018, 7, 424-431.	2.7	4

#	Article	IF	CITATIONS
73	Drug Delivery: Thrombinâ€Responsive Transcutaneous Patch for Autoâ€Anticoagulant Regulation (Adv.) Tj ETQq1	10,7843	14 rgBT /O
74	Printed carbon nanotube devices and their applications. , 2012, , .		2
75	49-3L:Late-News Paper: Flexible and Stretchable Hybrid Electronics Systems for Wearable Applications. Digest of Technical Papers SID International Symposium, 2016, 47, 668-671.	0.3	2
76	Photonic sintering of nano-silver conductive ink for printed electronics. , 2016, , .		2
77	66â€2: Printed Carbon Nanotube Thinâ€film Transistors and Application in OLED Backplane Circuits. Digest of Technical Papers SID International Symposium, 2017, 48, 968-971.	0.3	2
78	43.2: Low Surface Roughness Transparent Conductive Electrode for QLED Applications. Digest of Technical Papers SID International Symposium, 2018, 49, 468-470.	0.3	2
79	Quantum Dots: Inkjetâ€Printed Highâ€Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Smallâ€Molecule Hole Transport Material (Small 16/2019). Small, 2019, 15, 1970083.	10.0	2
80	Low temperature synthesis of cubic BaTiO <inf>3</inf> nanoparticles. , 2013, , .		1
81	Printed flexible and stretchable hybrid electronic systems for wearable applications., 2016,,.		1
82	Pâ€14.2: Inkjet printed OLEDs based on novel crossâ€linkable electron transport materials. Digest of Technical Papers SID International Symposium, 2018, 49, 756-758.	0.3	1
83	Pâ€174: Inkjet Printed OLEDs based on Novel Crossâ€linkable Electron Transport Materials. Digest of Technical Papers SID International Symposium, 2018, 49, 1815-1817.	0.3	1
84	Enhanced light extraction of organic light emitting diodes by embedding printed polymethyl methacrylate dot array. , 2014, , .		0
85	P-229: Late-News Poster: Flexible Barrier Layer to Prevent Silver Mesh Transparent Conductive Films from Electrochemical Migration. Digest of Technical Papers SID International Symposium, 2017, 48, 1793-1796.	0.3	O
86	20.1: <i>Invited Paper:</i> Printed Stretchable Electronics and Applications. Digest of Technical Papers SID International Symposium, 2018, 49, 206-206.	0.3	0
87	Pâ€14.2: Stretchable Transparent Electronic Circuit without Resistance Variation at 150% Strain Using Printing and Transfer Fabrication. Digest of Technical Papers SID International Symposium, 2019, 50, 993-995.	0.3	O
88	31.3: <i>Invited Paper:</i> Inkjetâ€Printed Highâ€Efficiency Red QLEDs Based on a Novel Crossâ€linkable Small Molecular HTL. Digest of Technical Papers SID International Symposium, 2019, 50, 335-335.	0.3	0
89	43.1: <i>Invited Paper:</i> Largeâ€area and highâ€performance printed carbon nanotube and metal oxide thin film transistors and their applications. Digest of Technical Papers SID International Symposium, 2019, 50, 483-484.	0.3	O
90	11.1: <i>Invited Paper:</i> Rollâ€ŧoâ€Roll Printed Flexible Electronics and Applications. Digest of Technical Papers SID International Symposium, 2019, 50, 107-107.	0.3	O

ZHENG CUI

#	Article	IF	CITATIONS
91	6.1: Invited Paper: Flexible Electronics Packaging for Wearable Applications. Digest of Technical Papers SID International Symposium, 2021, 52, 38-38.	0.3	0