Weiping Liu

List of Publications by Citations

Source: https://exaly.com/author-pdf/2956946/weiping-liu-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

346 papers

13,526 citations

63 h-index

94 g-index

349 ext. papers

15,366 ext. citations

7.4 avg, IF

6.78 L-index

#	Paper	IF	Citations
346	Enantioselectivity in environmental safety of current chiral insecticides. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 701-6	11.5	411
345	Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). <i>Chemosphere</i> , 2010 , 78, 846-52	8.4	293
344	Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. <i>Water Research</i> , 2011 , 45, 5200-10	12.5	247
343	Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	221
342	Status of metal accumulation in farmland soils across China: from distribution to risk assessment. <i>Environmental Pollution</i> , 2013 , 176, 55-62	9.3	192
341	Fe-g-C3N4/graphitized mesoporous carbon composite as an effective Fenton-like catalyst in a wide pH range. <i>Applied Catalysis B: Environmental</i> , 2017 , 201, 232-240	21.8	183
340	Enantioselectivity in environmental risk assessment of modern chiral pesticides. <i>Environmental Pollution</i> , 2010 , 158, 2371-83	9.3	183
339	Status of phthalate esters contamination in agricultural soils across China and associated health risks. <i>Environmental Pollution</i> , 2014 , 195, 16-23	9.3	168
338	Cobalt(III)-Catalyzed C-H/N-O Functionalizations: Isohypsic Access to Isoquinolines. <i>Chemistry - A European Journal</i> , 2015 , 21, 15525-8	4.8	163
337	Effects of copper sulfate, hydrogen peroxide and N-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. <i>Aquatic Toxicology</i> , 2010 , 99, 405-12	5.1	162
336	Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter. <i>Environmental Science & Environmental Science & Envir</i>	76 ^{0.3}	160
335	Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. <i>Aquatic Toxicology</i> , 2009 , 94, 56-61	5.1	155
334	Cypermethrin has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish (Danio rerio). <i>Chemosphere</i> , 2011 , 82, 398-404	8.4	152
333	Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). <i>Fish and Shellfish Immunology</i> , 2010 , 28, 854-61	4.3	148
332	Enantioselectivity in estrogenic potential and uptake of bifenthrin. <i>Environmental Science & Enancy Technology</i> , 2007 , 41, 6124-8	10.3	139
331	Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. <i>Chemosphere</i> , 2009 , 75, 368-75	8.4	134
330	Action mechanisms of acetolactate synthase-inhibiting herbicides. <i>Pesticide Biochemistry and Physiology</i> , 2007 , 89, 89-96	4.9	131

(2016-2009)

329	Reaction of tetrabromobisphenol A (TBBPA) with manganese dioxide: kinetics, products, and pathways. <i>Environmental Science & amp; Technology</i> , 2009 , 43, 4480-6	10.3	127	
328	Highly efficient detoxification of Cr(VI) by chitosan-Fe(III) complex: process and mechanism studies. <i>Journal of Hazardous Materials</i> , 2013 , 244-245, 689-97	12.8	119	
327	Effects of glufosinate on antioxidant enzymes, subcellular structure, and gene expression in the unicellular green alga Chlorella vulgaris. <i>Aquatic Toxicology</i> , 2008 , 88, 301-7	5.1	116	
326	Enantioselective environmental toxicology of chiral pesticides. <i>Chemical Research in Toxicology</i> , 2015 , 28, 325-38	4	112	
325	Enhanced photocatalytic activity of supported TiO2: dispersing effect of SiO2. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 1999 , 122, 57-60	4.7	106	
324	Enantioselective degradation and ecotoxicity of the chiral herbicide diclofop in three freshwater alga cultures. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 2139-46	5.7	103	
323	Thyroid Disruption by Bisphenol S Analogues via Thyroid Hormone Receptor [lin Vitro, in Vivo, and Molecular Dynamics Simulation Study. <i>Environmental Science & Environmental </i>	10.3	103	
322	Occurrence and risk assessment of organophosphate esters in drinking water from Eastern China. <i>Science of the Total Environment</i> , 2015 , 538, 959-65	10.2	102	
321	Drug metabolism by cytochrome p450 enzymes: what distinguishes the pathways leading to substrate hydroxylation over desaturation?. <i>Chemistry - A European Journal</i> , 2015 , 21, 9083-92	4.8	100	
320	Enantiomer separation of triazole fungicides by high-performance liquid chromatography. <i>Chirality</i> , 2009 , 21, 421-7	2.1	100	
319	Enantioselective separation and analysis of chiral pesticides by high-performance liquid chromatography. <i>TrAC - Trends in Analytical Chemistry</i> , 2009 , 28, 1148-1163	14.6	99	
318	Reinstate regional transport of PM2.5 as a major cause of severe haze in Beijing. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E2739-40	11.5	98	
317	Potential estrogenic effects of phosphorus-containing flame retardants. <i>Environmental Science & Environmental & Envir</i>	10.3	97	
316	Al-doping chitosan E e(III) hydrogel for the removal of fluoride from aqueous solutions. <i>Chemical Engineering Journal</i> , 2014 , 248, 98-106	14.7	96	
315	Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate (PFOS). <i>Environmental Pollution</i> , 2013 , 174, 121-7	9.3	96	
314	Enantioselectivity tuning of chiral herbicide dichlorprop by copper: roles of reactive oxygen species. <i>Environmental Science & Environmental Science </i>	10.3	93	
313	Separation and aquatic toxicity of enantiomers of synthetic pyrethroid insecticides. <i>Chirality</i> , 2005 , 17 Suppl, S127-33	2.1	91	
312	Endocrine-Disrupting Effects of Pesticides through Interference with Human Glucocorticoid Receptor. <i>Environmental Science & amp; Technology</i> , 2016 , 50, 435-43	10.3	90	

311	Enantioselective phytoeffects of chiral pesticides. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 2087-95	5.7	86
310	Enantioselective cytotoxicity of the insecticide bifenthrin on a human amnion epithelial (FL) cell line. <i>Toxicology</i> , 2008 , 253, 89-96	4.4	86
309	Status, influences and risk assessment of hexachlorocyclohexanes in agricultural soils across china. <i>Environmental Science & Environmental Science & </i>	10.3	85
308	I2-catalyzed indole formation via oxidative cyclization of N-aryl enamines. <i>Chemistry - an Asian Journal</i> , 2011 , 6, 1340-3	4.5	85
307	Phase distribution of synthetic pyrethroids in runoff and stream water. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 7-11	3.8	85
306	Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. <i>Chemosphere</i> , 2014 , 96, 146-54	8.4	84
305	Enantioselective degradation and chiral stability of pyrethroids in soil and sediment. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 5040-5	5.7	84
304	Chlorinated Polyfluoroalkyl Ether Sulfonic Acids in Matched Maternal, Cord, and Placenta Samples: A Study of Transplacental Transfer. <i>Environmental Science & Environmental S</i>	10.3	81
303	The effect of exogenous nitric oxide on alleviating herbicide damage in Chlorella vulgaris. <i>Aquatic Toxicology</i> , 2009 , 92, 250-7	5.1	79
302	Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 89, 189-95	7	78
301	Enantiomeric separation of organophosphorus pesticides by high-performance liquid chromatography, gas chromatography and capillary electrophoresis and their applications to environmental fate and toxicity assays. <i>Journal of Chromatography B: Analytical Technologies in the</i>	3.2	75
300	Biomedical and Life Sciences, 2010 , 878, 1264-76 Sorption and degradation of imidacloprid in soil and water. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2006 , 41, 623-34	2.2	75
299	Occurrence, abundance, and distribution of sulfonamide and tetracycline resistance genes in agricultural soils across China. <i>Science of the Total Environment</i> , 2017 , 599-600, 1977-1983	10.2	74
298	Isomer selectivity in aquatic toxicity and biodegradation of bifenthrin and permethrin. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 1861-6	3.8	72
297	Acute exposure to synthetic pyrethroids causes bioconcentration and disruption of the hypothalamus-pituitary-thyroid axis in zebrafish embryos. <i>Science of the Total Environment</i> , 2016 , 542, 876-85	10.2	71
296	Permethrin exposure during puberty has the potential to enantioselectively induce reproductive toxicity in mice. <i>Environment International</i> , 2012 , 42, 144-51	12.9	71
295	Development of chiral stationary phases for high-performance liquid chromatographic separation. <i>TrAC - Trends in Analytical Chemistry</i> , 2012 , 39, 180-194	14.6	71
294	Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 174-81	3.8	71

(2010-2015)

293	Carbonaceous sulfur-containing chitosan H e(III): A novel adsorbent for efficient removal of copper (II) from water. <i>Chemical Engineering Journal</i> , 2015 , 259, 372-380	14.7	70
292	Single and joint acute toxicity of isocarbophos enantiomers to Daphnia magna. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 4273-7	5.7	69
291	Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell. <i>Toxicology in Vitro</i> , 2008 , 22, 1520-7	3.6	68
290	Enantiomeric resolution and biotoxicity of methamidophos. <i>Journal of Agricultural and Food Chemistry</i> , 2006 , 54, 8134-8	5.7	68
289	Isomer selectivity in aquatic toxicity and biodegradation of cypermethrin. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 6233-8	5.7	67
288	Chiral stability of synthetic pyrethroid insecticides. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 3814-20	5.7	66
287	Isomer-Specific Transplacental Transfer of Perfluoroalkyl Acids: Results from a Survey of Paired Maternal, Cord Sera, and Placentas. <i>Environmental Science & Environmental Sc</i>	10.3	65
286	Arsenic in agricultural soils across China: Distribution pattern, accumulation trend, influencing factors, and risk assessment. <i>Science of the Total Environment</i> , 2018 , 616-617, 156-163	10.2	64
285	Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa. <i>Environmental Science & Environmental Science & Environment</i>	10.3	63
284	Integrative assessment of enantioselectivity in endocrine disruption and immunotoxicity of synthetic pyrethroids. <i>Environmental Pollution</i> , 2010 , 158, 1968-73	9.3	63
283	Induction of hepatic estrogen-responsive gene transcription by permethrin enantiomers in male adult zebrafish. <i>Aquatic Toxicology</i> , 2008 , 88, 146-52	5.1	63
282	Disruption of the hormonal network and the enantioselectivity of bifenthrin in trophoblast: maternal-fetal health risk of chiral pesticides. <i>Environmental Science & Environmental Science & Environm</i>	16 ^{0.3}	62
281	Induction of macrophage apoptosis by an organochlorine insecticide acetofenate. <i>Chemical Research in Toxicology</i> , 2009 , 22, 504-10	4	62
280	Occurrence of phthalate esters in sediments in Qiantang River, China and inference with urbanization and river flow regime. <i>Journal of Hazardous Materials</i> , 2013 , 248-249, 142-9	12.8	61
279	Residues of currently and never used organochlorine pesticides in agricultural soils from Zhejiang Province, China. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 2982-8	5.7	61
278	Spatial distribution of hexachlorocyclohexanes in agricultural soils in Zhejiang province, China, and correlations with elevation and temperature. <i>Environmental Science & Environmental Science & En</i>	3 10.3	59
277	Inhibitory effects of paraquat on photosynthesis and the response to oxidative stress in Chlorella vulgaris. <i>Ecotoxicology</i> , 2009 , 18, 537-43	2.9	59
276	Efficient removal of dyes in water using chitosan microsphere supported cobalt (II) tetrasulfophthalocyanine with H2O2. <i>Journal of Hazardous Materials</i> , 2010 , 177, 560-6	12.8	59

275	Adsorption of acetanilide herbicides on soils and its correlation with soil properties. <i>Pest Management Science</i> , 1999 , 55, 1103-1108		59
274	Inhibitory effects of atrazine on Chlorella vulgaris as assessed by real-time polymerase chain reaction. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 182-7	3.8	58
273	Residues and enantiomeric profiling of organochlorine pesticides in sediments from Yueqing Bay and Sanmen Bay, East China Sea. <i>Chemosphere</i> , 2010 , 80, 652-9	8.4	57
272	Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation. <i>Environmental Pollution</i> , 2017 , 220, 616-624	9.3	56
271	Enantioselective phytotoxicity of the herbicide imazethapyr in rice. <i>Chemosphere</i> , 2009 , 76, 885-92	8.4	56
270	Separation and analysis of diastereomers and enantiomers of cypermethrin and cyfluthrin by gas chromatography. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 755-61	5.7	56
269	Influence of organic matter and its clay complexes on metolachlor adsorption on soil. <i>Pest Management Science</i> , 1992 , 36, 283-286		56
268	Resolution of the Ongoing Challenge of Estimating Nonpoint Source Neonicotinoid Pollution in the Yangtze River Basin Using a Modified Mass Balance Approach. <i>Environmental Science & Environmental Sc</i>	10.3	56
267	Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. <i>Environmental Chemistry Letters</i> , 2018 , 16, 301-309	13.3	55
266	Disrupting effects of bifenthrin on ovulatory gene expression and prostaglandin synthesis in rat ovarian granulosa cells. <i>Toxicology</i> , 2011 , 282, 47-55	4.4	55
265	Inhibition of aquatic toxicity of pyrethroid insecticides by suspended sediment. <i>Environmental Toxicology and Chemistry</i> , 2006 , 25, 1913-9	3.8	55
264	Distribution of organochlorine pesticides in sediments from Yangtze River Estuary and the adjacent East China Sea: implication of transport, sources and trends. <i>Chemosphere</i> , 2014 , 114, 26-34	8.4	54
263	Dissipation and enantioselective degradation of plant growth retardants paclobutrazol and uniconazole in open field, greenhouse, and laboratory soils. <i>Environmental Science & Environmental Science </i>	10.3	54
262	Structural influences in relative sorptivity of chloroacetanilide herbicides on soil. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 4320-5	5.7	53
261	Estrogenic activity of lambda-cyhalothrin in the MCF-7 human breast carcinoma cell line. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 1194-200	3.8	52
260	Kinetics and mechanism of the hydrolysis of imidacloprid. <i>Pest Management Science</i> , 1999 , 55, 482-485		52
259	Multiphase Porous Electrochemical Catalysts Derived from Iron-Based Metal-Organic Framework Compounds. <i>Environmental Science & Environmental Science </i>	10.3	51
258	Molecular interactions of benzophenone UV filters with human serum albumin revealed by spectroscopic techniques and molecular modeling. <i>Journal of Hazardous Materials</i> , 2013 , 263 Pt 2, 618-7	2 <mark>1</mark> 2.8	51

(2013-2018)

257	Fe-N-Graphene Wrapped AlO/Pentlandite from Microalgae: High Fenton Catalytic Efficiency from Enhanced Fe Reduction. <i>Environmental Science & Enhanced Fe Reduction</i> . <i>Environmental Science & Enhanced Fe Reduction</i> .	10.3	50
256	Stereoisomeric separation and toxicity of a new organophosphorus insecticide chloramidophos. <i>Chemical Research in Toxicology</i> , 2007 , 20, 400-5	4	50
255	Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. <i>PLoS ONE</i> , 2011 , 6, e19451	3.7	49
254	Degradation and detoxification of acetochlor in soils treated by organic and thiosulfate amendments. <i>Chemosphere</i> , 2007 , 66, 286-92	8.4	48
253	Environmental exposure to polycyclic aromatic hydrocarbons (PAHs): The correlation with and impact on reproductive hormones in umbilical cord serum. <i>Environmental Pollution</i> , 2017 , 220, 1429-143	9.3	47
252	Degradation and adsorption of fosthiazate in soil. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 6239-42	5.7	47
251	A pH-responsive and magnetically separable dynamic system for efficient removal of highly dilute antibiotics in water. <i>Water Research</i> , 2016 , 90, 24-33	12.5	46
250	Atomic insights into distinct hormonal activities of Bisphenol A analogues toward PPARI and ERE receptors. <i>Chemical Research in Toxicology</i> , 2014 , 27, 1769-79	4	46
249	Functional identification of two novel genes from Pseudomonas sp. strain HZN6 involved in the catabolism of nicotine. <i>Applied and Environmental Microbiology</i> , 2012 , 78, 2154-60	4.8	46
248	Exposure to organochlorine pollutants and type 2 diabetes: a systematic review and meta-analysis. <i>PLoS ONE</i> , 2014 , 9, e85556	3.7	45
247	Origin of air pollution during a weekly heavy haze episode in Hangzhou, China. <i>Environmental Chemistry Letters</i> , 2014 , 12, 543-550	13.3	45
246	A comparative study of rac- and S-metolachlor toxicity to Daphnia magna. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 63, 451-5	7	45
245	Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-CoA carboxylase in nontarget plant Arabidopsis thaliana. <i>Environmental Science & Environmental Science & Environment</i>	10.3	43
244	H2O2-induced surface modification: A facile, effective and environmentally friendly pretreatment of chitosan for dyes removal. <i>Chemical Engineering Journal</i> , 2011 , 166, 474-482	14.7	43
243	Enantioselective phytotoxicity of the herbicide imazethapyr and its effect on rice physiology and gene transcription. <i>Environmental Science & Environmental &</i>	10.3	43
242	Assessing the underlying breast cancer risk of Chinese females contributed by dietary intake of residual DDT from agricultural soils. <i>Environment International</i> , 2014 , 73, 208-15	12.9	42
241	Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methylimidazolium lactate to aquatic algae. <i>Aquatic Toxicology</i> , 2014 , 154, 114-20	5.1	42
240	Enantioselective physiological effects of the herbicide diclofop on cyanobacterium Microcystis aeruginosa. <i>Environmental Science & Environmental Scie</i>	10.3	42

239	Determination of enantiomers of synthetic pyrethroids in water by solid phase microextraction - enantioselective gas chromatography. <i>Journal of Agricultural and Food Chemistry</i> , 2004 , 52, 736-41	5.7	42
238	Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. <i>Environment International</i> , 2017 , 108, 261-270	12.9	41
237	Unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality. <i>Environmental Chemistry Letters</i> , 2020 , 18, 1-11	13.3	40
236	Isolation, transposon mutagenesis, and characterization of the novel nicotine-degrading strain Shinella sp. HZN7. <i>Applied Microbiology and Biotechnology</i> , 2014 , 98, 2625-36	5.7	40
235	Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity. <i>Scientific Reports</i> , 2015 , 5, 11975	4.9	40
234	Enantioselectivity in zebrafish embryo toxicity of the insecticide acetofenate. <i>Chemical Research in Toxicology</i> , 2008 , 21, 1050-5	4	40
233	Stereoisomeric separation and toxicity of the nematicide fosthiazate. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 2339-44	3.8	40
232	Enantioselectivity in the phytotoxicity of herbicide imazethapyr. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 1624-31	5.7	39
231	Separation and aquatic toxicity of enantiomers of the organophosphorus insecticide trichloronate. <i>Chirality</i> , 2006 , 18, 713-6	2.1	39
230	Association of pyrethroids exposure with onset of puberty in Chinese girls. <i>Environmental Pollution</i> , 2017 , 227, 606-612	9.3	38
229	Permethrin is a potential thyroid-disrupting chemical: In vivo and in silico envidence. <i>Aquatic Toxicology</i> , 2016 , 175, 39-46	5.1	38
228	Risks from sediments contaminated with organochlorine pesticides in Hangzhou, China. <i>Chemosphere</i> , 2013 , 90, 2341-6	8.4	38
227	Concentrations of DDTs and enantiomeric fractions of chiral DDTs in agricultural soils from Zhejiang Province, China, and correlations with total organic carbon and pH. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 8294-301	5.7	38
226	Enantioselective induction of estrogen-responsive gene expression by permethrin enantiomers in embryo-larval zebrafish. <i>Chemosphere</i> , 2009 , 74, 1238-44	8.4	37
225	Hepatic and extrahepatic expression of estrogen-responsive genes in male adult zebrafish (Danio rerio) as biomarkers of short-term exposure to 17beta-estradiol. <i>Environmental Monitoring and Assessment</i> , 2008 , 146, 105-11	3.1	37
224	Competitive sorption between imidacloprid and imidacloprid-urea on soil clay minerals and humic acids. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 6823-7	5.7	37
223	Relationships of Pyrethroid Exposure with Gonadotropin Levels and Pubertal Development in Chinese Boys. <i>Environmental Science & Environmental Science</i>	10.3	36
222	Distribution and uptake pathways of organochlorine pesticides in greenhouse and conventional vegetables. <i>Science of the Total Environment</i> , 2015 , 505, 1142-7	10.2	36

(2016-2013)

Qiantang River in eastern China: the results of urbanization and tide. <i>Science of the Total Environment</i> , 2013 , 443, 194-9	10.2	36
Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119551	21.8	36
Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women. <i>Environmental Science & Environmental Science & Environment</i>	10.3	35
Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. <i>Toxicology</i> , 2011 , 290, 42-9	4.4	35
Enantiomer-specific, bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 cells. <i>Toxicology</i> , 2009 , 261, 119-25	4.4	35
Enantioselective estrogenicity of o,p@dichlorodiphenyltrichloroethane in the MCF-7 human breast carcinoma cell line. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1-8	3.8	35
Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 578-85	3.8	35
Influence of organic matter and pH on bentazone sorption in soils. <i>Journal of Agricultural and Food Chemistry</i> , 2003 , 51, 5362-6	5.7	35
Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. <i>Environmental Pollution</i> , 2018 , 240, 116-124	9.3	34
Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 107, 186-91	7	34
Enantiomeric separation of imidazolinone herbicides using chiral high-performance liquid chromatography. <i>Chirality</i> , 2007 , 19, 171-8	2.1	34
Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic-Pituitary-Gonadal Axis. <i>Environmental Science & Environmental Science</i>	10.3	33
Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor \Box and estrogen-related receptor \Box <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2597-605	3.8	33
Screening of chemicals with anti-estrogenic activity using in vitro and in vivo vitellogenin induction responses in zebrafish (Danio rerio). <i>Chemosphere</i> , 2010 , 78, 793-9	8.4	33
Enantioselectivity in chronic toxicology and accumulation of the synthetic pyrethroid insecticide bifenthrin in Daphnia magna. <i>Environmental Toxicology and Chemistry</i> , 2009 , 28, 1475-9	3.8	33
Selected persistent organic pollutants associated with the risk of primary ovarian insufficiency in women. <i>Environment International</i> , 2019 , 129, 51-58	12.9	32
Long-term exposure to the non-steroidal anti-inflammatory drug (NSAID) naproxen causes thyroid disruption in zebrafish at environmentally relevant concentrations. <i>Science of the Total Environment</i> , 2019 , 676, 387-395	10.2	32
Residue patterns of currently, historically and never-used organochlorine pesticides in agricultural soils across China and associated health risks. <i>Environmental Pollution</i> , 2016 , 219, 315-322	9.3	32
	Qiantang River in eastern China: the results of urbanization and tide. Science of the Total Environment, 2013, 443, 194-9 Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis B: Environmental, 2021, 282, 119551 Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women. Environmental Science & Emp; Technology, 2018, 52, 3240-3248 Enantioselective endocrine-disrupting effects of bifenthrin on hormone synthesis in rat ovarian cells. Toxicology, 2011, 290, 42-9 Enantiomer-specific, bifenthrin-induced apoptosis mediated by MAPK signalling pathway in Hep G2 cells. Toxicology, 2009, 261, 119-25 Enantioselective estrogenicity of o.p. Optichlorodiphenyltrichloroethane in the MCF-7 human breast carcinoma cell line. Environmental Toxicology and Chemistry, 2009, 28, 1-8 Enantioselectivity in the immunotoxicity of the insecticide acetofenate in an in vitro model. Environmental Toxicology and Chemistry, 2009, 28, 578-85 Influence of organic matter and pH on bentazone sorption in soils. Journal of Agricultural and Food Chemistry, 2003, 51, 5362-6 Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environmental Pollution, 2018, 240, 116-124 Dynamics of uptake and elimination of pyrethroid insecticides in zebrafish (Danio rerio) eleutheroembryos. Ecotoxicology and Environmental Safety, 2014, 107, 186-91 Enantiomeric separation of imidazolinone herbicides using chiral high-performance liquid chromatography. Chirality, 2007, 19, 171-8 Pyrethroid Insecticide Cypermethrin Accelerates Pubertal Onset in Male Mice via Disrupting Hypothalamic-Pituitary-Gonadal Axis. Environmental Science & Emp; Technology, 2017, 51, 10212-10221 Distinct mechanisms of endocrine disruption of DDT-related pesticides toward estrogen receptor B and estrogen-related receptor DEnvironmental Toxicology and Chemistry, 2012, 31, 2597-605 Screening of chem	Qiantang River in eastern China: the results of urbanization and tide. Science of the Total Environment, 2013, 443, 194-9 Sandwich structure stabilized atomic Fe catalyst for highly efficient Fenton-like reaction at all pH values. Applied Catalysis 8: Environmental, 2021, 282, 119551 Pyrethroid Pesticide Exposure and Risk of Primary Ovarian Insufficiency in Chinese Women. Environmental Science & Department of

203	Facile, green encapsulation of cobalt tetrasulfophthalocyanine monomers in mesoporous silicas for the degradative hydrogen peroxide oxidation of azo dyes. <i>Journal of Hazardous Materials</i> , 2011 , 193, 209-15	12.8	32
202	Enantioselective effects of chiral herbicide diclofop acid on rice Xiushui 63 seedlings. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2009 , 83, 85-91	2.7	32
201	Dual enantioselective effect of the insecticide bifenthrin on locomotor behavior and development in embryonic-larval zebrafish. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1561-7	3.8	32
200	Enantioselective cytotoxicity of isocarbophos is mediated by oxidative stress-induced JNK activation in human hepatocytes. <i>Toxicology</i> , 2010 , 276, 115-21	4.4	32
199	Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor: The more efficient R-enantiomer and its environmental friendly. <i>Science of the Total Environment</i> , 2018 , 626, 860-866	10.2	31
198	Enantioselective induction of cytotoxicity by o,p@DDD in PC12 cells: implications of chirality in risk assessment of POPs metabolites. <i>Environmental Science & Environmental </i>	10.3	31
197	Enantioselective Effects of Metalaxyl Enantiomers in Adolescent Rat Metabolic Profiles Using NMR-Based Metabolomics. <i>Environmental Science & Environmental Science & Environm</i>	10.3	30
196	The circadian clock gene regulatory module enantioselectively mediates imazethapyr-induced early flowering in Arabidopsis thaliana. <i>Journal of Plant Physiology</i> , 2014 , 171, 92-8	3.6	30
195	Enantioselectivity in aquatic toxicity of synthetic pyrethroid insecticide fenvalerate. <i>Ecotoxicology</i> and Environmental Safety, 2009 , 72, 1913-8	7	30
194	Toxicity of chiral pesticide Rac-metalaxyl and R-metalaxyl to Daphnia magna. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2008 , 81, 531-4	2.7	30
193	Influence of herbicide structure, clay acidity, and humic acid coating on acetanilide herbicide adsorption on homoionic clays. <i>Journal of Agricultural and Food Chemistry</i> , 2002 , 50, 4003-8	5.7	30
192	Metabolic Mechanism of Aryl Phosphorus Flame Retardants by Cytochromes P450: A Combined Experimental and Computational Study on Triphenyl Phosphate. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 14411-14421	10.3	29
191	Stable cuprous active sites in Cu-graphitic carbon nitride: Structure analysis and performance in Fenton-like reactions. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120782	12.8	28
190	Inhibited Nitric Oxide Production of Human Endothelial Nitric Oxide Synthase by Nitrated and Oxygenated Polycyclic Aromatic Hydrocarbons. <i>Environmental Science & Environmental Science & Environment</i>	2 ⁻² 930	28
189	A heavy haze episode in Beijing in February of 2014: Characteristics, origins and implications. <i>Atmospheric Pollution Research</i> , 2015 , 6, 867-876	4.5	28
188	Photoperiod and temperature influence endocrine disruptive chemical-mediated effects in male adult zebrafish. <i>Aquatic Toxicology</i> , 2009 , 92, 38-43	5.1	28
187	Preparation, stabilization, and bioefficacy of beta-cyclodextrin inclusion compounds of chloramidophos. <i>Journal of Agricultural and Food Chemistry</i> , 2008 , 56, 2708-13	5.7	28
186	Adsorption of Triclopyr on Soil and Some of Its Components. <i>Journal of Agricultural and Food Chemistry</i> , 1994 , 42, 1026-1029	5.7	28

185	A Heavy Haze Episode in Shanghai in December of 2013: Characteristics, Origins and Implications. <i>Aerosol and Air Quality Research</i> , 2015 , 15, 1881-1893	4.6	28
184	Occurrence and geographic distribution of polycyclic aromatic hydrocarbons in agricultural soils in eastern China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 12168-12175	5.1	27
183	Nano-MnO x on activated carbon prepared by hydrothermal process for fast and highly efficient degradation of azo dyes. <i>Applied Catalysis A: General</i> , 2014 , 485, 91-98	5.1	27
182	Enantioselective interaction of acid haphthyl acetate esterase with chiral organophosphorus insecticides. <i>Journal of Agricultural and Food Chemistry</i> , 2014 , 62, 1477-81	5.7	27
181	Cloning of a novel nicotine oxidase gene from Pseudomonas sp. strain HZN6 whose product nonenantioselectively degrades nicotine to pseudooxynicotine. <i>Applied and Environmental Microbiology</i> , 2013 , 79, 2164-71	4.8	27
180	EAl2O3 Modified with Praseodymium: An Application in the Heterogeneous Catalytic Ozonation of Succinic Acid in Aqueous Solution. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 12345-123	3 19	27
179	Enantioselective separation and phytotoxicity on rice seedlings of paclobutrazol. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 4300-5	5.7	27
178	Relation of diclofop-methyl toxicity and degradation in algae cultures. <i>Environmental Toxicology and Chemistry</i> , 2007 , 26, 970-5	3.8	27
177	Characterization of inclusion complexation between fenoxaprop-p-ethyl and cyclodextrin. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 7193-7	5.7	27
176	Pentabromoethylbenzene Exposure Induces Transcriptome Aberration and Thyroid Dysfunction:, and Investigations. <i>Environmental Science & Environmental </i>	10.3	27
175	High-dispersive FeS2 on graphene oxide for effective degradation of 4-chlorophenol. <i>RSC Advances</i> , 2015 , 5, 2449-2456	3.7	26
174	Enantiomeric resolution and growth-retardant activity in rice seedlings of uniconazole. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 160-4	5.7	26
173	Effects of metolachlor on transcription of thyroid system-related genes in juvenile and adult Japanese medaka (Oryzias latipes). <i>General and Comparative Endocrinology</i> , 2011 , 170, 487-93	3	26
172	Enantioselective degradation of metalaxyl in anaerobic activated sewage sludge. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2009 , 82, 327-31	2.7	26
171	Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor. <i>Science of the Total Environment</i> , 2019 , 653, 1140-1148	10.2	26
170	Lead, mercury, and cadmium in umbilical cord serum and birth outcomes in Chinese fish consumers. <i>Chemosphere</i> , 2016 , 148, 270-5	8.4	25
169	Magnetic lanthanide oxide catalysts: An application and comparison in the heterogeneous catalytic ozonation of diethyl phthalate in aqueous solution. <i>Separation and Purification Technology</i> , 2016 , 159, 57-67	8.3	25
168	A novel (S)-6-hydroxynicotine oxidase gene from Shinella sp. strain HZN7. <i>Applied and Environmental Microbiology</i> , 2014 , 80, 5552-60	4.8	25

167	Enantioselective changes in oxidative stress and toxin release in Microcystis aeruginosa exposed to chiral herbicide diclofop acid. <i>Aquatic Toxicology</i> , 2014 , 146, 12-9	5.1	25
166	Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2009, 150, 414-20	3.2	25
165	Enantioselectivity in biotransformation and bioaccumulation processes of typical chiral contaminants. <i>Environmental Pollution</i> , 2018 , 243, 1274-1286	9.3	25
164	Characteristics and origins of air pollutants in Wuhan, China, based on observations and hybrid receptor models. <i>Journal of the Air and Waste Management Association</i> , 2017 , 67, 739-753	2.4	24
163	Residues and chiral signatures of organochlorine pesticides in mollusks from the coastal regions of the Yangtze River Delta: source and health risk implication. <i>Chemosphere</i> , 2014 , 114, 40-50	8.4	24
162	A sirA-like gene, sirA2, is essential for 3-succinoyl-pyridine metabolism in the newly isolated nicotine-degrading Pseudomonas sp. HZN6 strain. <i>Applied Microbiology and Biotechnology</i> , 2011 , 92, 1023-32	5.7	24
161	Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions: emerging contaminants. <i>Environmental Science and Pollution Research</i> , 2009 , 16, 459-65	5.1	24
160	Early life exposure of zebrafish (Danio rerio) to synthetic pyrethroids and their metabolites: a comparison of phenotypic and behavioral indicators and gene expression involved in the HPT axis and innate immune system. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 12992-13003	5.1	23
159	Hexachlorocyclohexanes in tree bark across Chinese agricultural regions: spatial distribution and enantiomeric signatures. <i>Environmental Science & Environmental & Environmen</i>	10.3	23
158	Evaluation of the role of the glutathione redox cycle in Cu(II) toxicity to green algae by a chiral perturbation approach. <i>Aquatic Toxicology</i> , 2012 , 120-121, 19-26	5.1	23
157	p, p@ichlorodiphenyldichloroethylene induces colorectal adenocarcinoma cell proliferation through oxidative stress. <i>PLoS ONE</i> , 2014 , 9, e112700	3.7	23
156	Activity, toxicity, molecular docking, and environmental effects of three imidazolinone herbicides enantiomers. <i>Science of the Total Environment</i> , 2018 , 622-623, 594-602	10.2	23
155	Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. <i>Scientific Reports</i> , 2018 , 8, 934	4.9	22
154	Enantioselective cytotoxicity profile of o,p@DDT in PC 12 cells. <i>PLoS ONE</i> , 2012 , 7, e43823	3.7	22
153	Exposure characteristics for congeners, isomers, and enantiomers of perfluoroalkyl substances in mothers and infants. <i>Environment International</i> , 2020 , 144, 106012	12.9	22
152	The occurrence and sources of polychlorinated biphenyls (PCBs) in agricultural soils across China with an emphasis on unintentionally produced PCBs. <i>Environmental Pollution</i> , 2021 , 271, 116171	9.3	22
151	Environmental exposure to DDT and its metabolites in cord serum: Distribution, enantiomeric patterns, and effects on infant birth outcomes. <i>Science of the Total Environment</i> , 2017 , 580, 491-498	10.2	21
150	Binding Specificity Determines the Cytochrome P450 3A4 Mediated Enantioselective Metabolism of Metconazole. <i>Journal of Physical Chemistry B</i> , 2018 , 122, 1176-1184	3.4	21

Prenatal exposure to polychlorinated biphenyl and umbilical cord hormones and birth outcomes in an island population. <i>Environmental Pollution</i> , 2018 , 237, 581-591	9.3	21
Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E2209	o- 1 165	21
The organochlorine p,p@dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnt/Etatenin signaling. <i>Toxicology Letters</i> , 2014 , 229, 284-91	4.4	21
Molecular mechanism of enantioselective inhibition of acetolactate synthase by imazethapyr enantiomers. <i>Journal of Agricultural and Food Chemistry</i> , 2010 , 58, 4202-6	5.7	21
Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. <i>Science China Chemistry</i> , 2010 , 53, 1003-1009	7.9	21
Immunotoxicity of pyrethroid metabolites in an in vitro model. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 2505-10	3.8	21
Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. <i>Chemosphere</i> , 2016 , 164, 618-626	8.4	21
Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel. <i>Chemical Engineering Journal</i> , 2021 , 415, 128893	14.7	21
Congener-specific CC and CC chlorinated paraffins in Chinese agricultural soils: Spatio-vertical distribution, homologue pattern and environmental behavior. <i>Environmental Pollution</i> , 2019 , 245, 789-7	983	20
Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. <i>Environment International</i> , 2019 , 133, 105133	12.9	19
Acid-Labile Degradation of Injectable Fiber Fragments to Release Bioreducible Micelles for Targeted Cancer Therapy. <i>Biomacromolecules</i> , 2018 , 19, 1100-1110	6.9	19
Novel Pathways of Endocrine Disruption Through Pesticides Interference With Human Mineralocorticoid Receptors. <i>Toxicological Sciences</i> , 2018 , 162, 53-63	4.4	19
High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic. <i>Environmental Chemistry Letters</i> , 2017 , 15, 709-715	13.3	19
Sorption and catalytic hydrolysis of diethatyl-ethyl on homoionic clays. <i>Journal of Agricultural and Food Chemistry</i> , 2000 , 48, 1935-40	5.7	19
Low concentrations of o,p@DDT inhibit gene expression and prostaglandin synthesis by estrogen receptor-independent mechanism in rat ovarian cells. <i>PLoS ONE</i> , 2012 , 7, e49916	3.7	19
In Silico Prediction of Cytochrome P450-Mediated Biotransformations of Xenobiotics: A Case Study of Epoxidation. <i>Chemical Research in Toxicology</i> , 2015 , 28, 1522-31	4	18
Prenatal exposure to chlorinated polyfluoroalkyl ether sulfonic acids and perfluoroalkyl acids: Potential role of maternal determinants and associations with birth outcomes. <i>Journal of Hazardous Materials</i> , 2019 , 380, 120867	12.8	18
Enantioselective Phytotoxicity of Dichlorprop to Arabidopsis thaliana: The Effect of Cytochrome P450 Enzymes and the Role of Fe. <i>Environmental Science & amp; Technology</i> , 2017 , 51, 12007-12015	10.3	18
	an island population. Environmental Pollution, 2018, 237, 581-591 Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2205 The organochlorine p.p.@dichlorodiphenyltrichloroethane induces colorectal cancer growth through Wnty/Eatenin signaling. Toxicology Letters, 2014, 229, 284-91 Molecular mechanism of enantioselective inhibition of acetolactate synthase by imazethapyr enantiomers. Journal of Agricultural and Food Chemistry, 2010, 58, 4202-6 Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 53, 1003-1009 Immunotoxicity of pyrethroid metabolites in an in vitro model. Environmental Toxicology and Chemistry, 2010, 29, 2505-10 Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere, 2016, 164, 618-626 Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel. Chemical Engineering Journal, 2021, 415, 128893 Congener-specific CC and CC chlorinated paraffins in Chinese agricultural soils: Spatio-vertical distribution, homologue pattern and environmental behavior. Environmental Pollution, 2019, 245, 789-7 Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. Environment International, 2019, 133, 105133 Acid-Labile Degradation of Injectable Fiber Fragments to Release Bioreducible Micelles for Targeted Cancer Therapy. Biomacromolecules, 2018, 19, 1100-1110 Novel Pathways of Endocrine Disruption Through Pesticides Interference With Human Mineralocorticoid Receptors. Toxicological Sciences, 2018, 162, 53-63 High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic. Env	an island population. Environmental Pollution, 2018, 237, 581-591 Anthropogenic serosols are a potential cause for migration of the summer monsoon rain belt in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2209-fb5 The organochlorine p.p.Odichlorodiphenyltrichloroethane induces colorectal cancer growth through Wht/Batenin signaling. Toxicology Letters, 2014, 229, 284-91 Molecular mechanism of enantioselective inhibition of acetolactate synthase by imazethapyr enantiomers. Journal of Agricultural and Food Chemistry, 2010, 58, 4202-6 Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 58, 4202-6 Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 58, 4202-6 Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 58, 4202-6 Understanding the endocrine disruption of chiral pesticides: The enantioselectivity in estrogenic activity of synthetic pyrethroids. Science China Chemistry, 2010, 58, 4202-6 Understanding the endocrine-disruption of chiral pesticides in an in vitro model. Environmental Toxicology and Chemistry, 2010, 29, 2505-10 Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish. Chemosphere, 2016, 164, 618-626 Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel. Chemical Engineering Journal, 2021, 415, 128893 447 Congener-specific CC and CC chlorinated paraffins in Chinese agricultural soils: Spatio-vertical distribution, homologue pattern and environmental behavior. Environmental Pollution, 2019, 245, 789-798) Glucocorticoid and mineralocorticiod receptors and corticosteroid homeostasis

131	Enantioselective separation and degradation of the herbicide dichlorprop methyl in sediment. <i>Chirality</i> , 2009 , 21, 480-3	2.1	18
130	Separation and toxicity of salithion enantiomers. <i>Chirality</i> , 2009 , 21, 922-8	2.1	18
129	A Study of Characteristics and Origins of Haze Pollution in Zhengzhou, China, Based on Observations and Hybrid Receptor Models. <i>Aerosol and Air Quality Research</i> , 2017 , 17, 513-528	4.6	18
128	Maternal exposure to fipronil results in sulfone metabolite enrichment and transgenerational toxicity in zebrafish offspring: Indication for an overlooked risk in maternal transfer?. <i>Environmental Pollution</i> , 2019 , 246, 876-884	9.3	18
127	Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis. Journal of Hazardous Materials, 2015 , 295, 37-42	12.8	17
126	Residential emissions predicted as a major source of fine particulate matter in winter over the Yangtze River Delta, China. <i>Environmental Chemistry Letters</i> , 2018 , 16, 1117-1127	13.3	17
125	Determination of endocrine-disrupting potencies of agricultural soils in China via a battery of steroid receptor bioassays. <i>Environmental Pollution</i> , 2018 , 234, 846-854	9.3	17
124	Magnetic Pr6O11/SiO2@Fe3O4 particles as the heterogeneous catalyst for the catalytic ozonation of acetochlor: Performance and aquatic toxicity. <i>Separation and Purification Technology</i> , 2018 , 197, 63-6	<i>\$</i> .3	17
123	Metabolism of halogenated alkanes by cytochrome P450 enzymes. Aerobic oxidation versus anaerobic reduction. <i>Chemistry - an Asian Journal</i> , 2014 , 9, 1175-82	4.5	17
122	Spatial distribution and implications to sources of halogenated flame retardants in riverine sediments of Taizhou, an intense e-waste recycling area in eastern China. <i>Chemosphere</i> , 2017 , 184, 1202	^{8:} 2 08	17
121	Spatial and seasonal variations in air-soil exchange, enantiomeric signatures and associated health risks of hexachlorocyclohexanes (HCHs) in a megacity Hangzhou in the Yangtze River Delta region, China. Science of the Total Environment, 2017, 599-600, 264-272	10.2	16
120	Enantioseparation of four amide herbicide stereoisomers using high-performance liquid chromatography. <i>Journal of Chromatography A</i> , 2016 , 1471, 145-154	4.5	16
119	Levels and patterns of DDTs in maternal colostrum from an island population and exposure of neonates. <i>Environmental Pollution</i> , 2016 , 209, 132-9	9.3	16
118	Stereoselective accumulations of hexachlorocyclohexanes (HCHs) are correlated with Sphingomonas spp. in agricultural soils across China. <i>Environmental Pollution</i> , 2018 , 240, 27-33	9.3	16
117	Probing the chiral separation mechanism and the absolute configuration of malathion, malaoxon and isomalathion enantiomers by chiral high performance liquid chromatography coupled with chiral detector-binding energy computations. <i>Journal of Chromatography A</i> , 2013 , 1281, 26-31	4.5	16
116	CORRELATION OF IMAZAPYR ADSORPTION AND DESORPTION WITH SOIL PROPERTIES. <i>Soil Science</i> , 1999 , 164, 411-416	0.9	16
115	Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor. <i>Chemical Research in Toxicology</i> , 2016 , 29, 841-50	4	16
114	Computational Biotransformation Profile of Emerging Phenolic Pollutants by Cytochromes P450: Phenol-Coupling Mechanism. <i>Environmental Science & Emerging Technology</i> , 2020 , 54, 2902-2912	10.3	15

113	Transplacental transfer of organochlorine pesticides: Concentration ratio and chiral properties. <i>Environment International</i> , 2019 , 130, 104939	12.9	15
112	Residues, sources and tissue distributions of organochlorine pesticides in dog sharks (Mustelus griseus) from Zhoushan Fishing Ground, China. <i>Marine Pollution Bulletin</i> , 2013 , 73, 374-80	6.7	15
111	Enantioselective interaction with acetylcholinesterase of an organophosphate insecticide fenamiphos. <i>Chirality</i> , 2010 , 22, 612-7	2.1	15
110	Acute and chronic toxicity of organophosphate monocrotophos to Daphnia magna. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2009 , 44, 38-43	2.2	15
109	Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China. <i>Scientific Reports</i> , 2016 , 6, 38475	4.9	15
108	Tree bark as a biomonitor for assessing the atmospheric pollution and associated human inhalation exposure risks of polycyclic aromatic hydrocarbons in rural China. <i>Environmental Pollution</i> , 2019 , 246, 398-407	9.3	15
107	Enantiomeric environmental behavior, oxidative stress and toxin release of harmful cyanobacteria Microcystis aeruginosa in response to napropamide and acetochlor. <i>Environmental Pollution</i> , 2019 , 246, 728-733	9.3	15
106	Congener-Specific Mother-Fetus Distribution, Placental Retention, and Transport of C and C Chlorinated Paraffins in Pregnant Women. <i>Environmental Science & Environmental Sci</i>	466 ³	14
105	Metolachlor stereoisomers: Enantioseparation, identification and chiral stability. <i>Journal of Chromatography A</i> , 2016 , 1463, 42-8	4.5	14
104	High-altitude and long-range transport of aerosols causing regional severe haze during extreme dust storms explains why afforestation does not prevent storms. <i>Environmental Chemistry Letters</i> , 2019 , 17, 1333-1340	13.3	13
103	Spatial distributions and enantiomeric signatures of DDT and its metabolites in tree bark from agricultural regions across China. <i>Environmental Pollution</i> , 2017 , 229, 111-118	9.3	13
102	Elucidation of the enantioselective enzymatic hydrolysis of chiral herbicide dichlorprop methyl by chemical modification. <i>Journal of Agricultural and Food Chemistry</i> , 2011 , 59, 1924-30	5.7	13
101	Environmental effects of inclusion complexation between methylated beta-cyclodextrin and diclofop-methyl. <i>Journal of Agricultural and Food Chemistry</i> , 2005 , 53, 6744-9	5.7	13
100	Determination of diclofop-methyl and diclofop residues in soil and crops by gas chromatography. Journal of Chromatography A, 1991 , 547, 509-15	4.5	13
99	Prenatal and postnatal exposure risk assessment of chlorinated paraffins in mothers and neonates: Occurrence, congener profile, and transfer behavior. <i>Journal of Hazardous Materials</i> , 2020 , 395, 122660	12.8	13
98	Photochemical degradation of polyhalogenated carbazoles in hexane by sunlight. <i>Science of the Total Environment</i> , 2019 , 671, 622-631	10.2	12
97	Common source areas of air pollution vary with haze intensity in the Yangtze River Delta, China. <i>Environmental Chemistry Letters</i> , 2020 , 18, 957-965	13.3	12
96	New insights into the effects of the herbicide imazethapyr on Cu(II) ecotoxicity to the aquatic unicellular alga Scenedesmus obliquus. <i>Aquatic Toxicology</i> , 2013 , 140-141, 407-14	5.1	12

95	Temperature and photoperiod affect the endocrine disruption effects of ethinylestradiol, nonylphenol and their binary mixture in zebrafish (Danio rerio). <i>Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology</i> , 2010 , 151, 258-63	3.2	12
94	Conversion of nornicotine to 6-hydroxy-nornicotine and 6-hydroxy-myosmine by Shinella sp. strain HZN7. <i>Applied Microbiology and Biotechnology</i> , 2016 , 100, 10019-10029	5.7	11
93	Toxic effects of trace elements on newborns and their birth outcomes. <i>Science of the Total Environment</i> , 2016 , 550, 73-79	10.2	11
92	Enantioselective Phytotoxic Disturbances of Fatty Acids in by Dichlorprop. <i>Environmental Science</i> & Enamp; Technology, 2019 , 53, 9252-9259	10.3	11
91	A new approach to estimate bioavailability of pyrethroids in soil by compound-specific stable isotope analysis. <i>Journal of Hazardous Materials</i> , 2018 , 349, 1-9	12.8	10
90	A strategy to reduce the dose of multichiral agricultural chemicals: The herbicidal activity of metolachlor against Echinochloa crusgalli. <i>Science of the Total Environment</i> , 2019 , 690, 181-188	10.2	10
89	Enantiomeric resolution of five chiral pesticides on a Chiralpak IB-H column by SFC. <i>Journal of Chromatographic Science</i> , 2011 , 49, 739-43	1.4	10
88	Solid fuel combustion as a major contributor of polycyclic aromatic hydrocarbons in rural China: Evidence from emission inventory and congener profiles in tree bark. <i>Environmental Pollution</i> , 2019 , 246, 621-629	9.3	9
87	Congener-specific composition of polychlorinated biphenyls (PCBs) in soil-air partitioning and the associated health risks. <i>Science of the Total Environment</i> , 2019 , 684, 486-495	10.2	9
86	Hexachlorocyclohexane exposure alters the microbiome of colostrum in Chinese breastfeeding mothers. <i>Environmental Pollution</i> , 2019 , 254, 112900	9.3	9
85	Histopathological and proteomic analysis of hepatic tissue from adult male zebrafish exposed to 17Eestradiol. <i>Environmental Toxicology and Pharmacology</i> , 2010 , 29, 91-5	5.8	9
84	Occurrence and partitioning of polyhalogenated carbazoles in seawater and sediment from East China Sea. <i>Water Research</i> , 2021 , 190, 116717	12.5	9
83	Potential endocrine-disrupting effects of metals via interference with glucocorticoid and mineralocorticoid receptors. <i>Environmental Pollution</i> , 2018 , 242, 12-18	9.3	8
82	Multicenter biomonitoring of polybrominated diphenyl ethers (PBDEs) in colostrum from China: Body burden profile and risk assessment. <i>Environmental Research</i> , 2019 , 179, 108828	7.9	8
81	Stereoisomeric separation and bioassay of a new organophosphorus compound, O,S-dimethyl-N-(2,2,2-trichloro-1-methoxyethyl)phosphoramidothioate: some implications for chiral switch. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 6920-6	5.7	8
80	Inclusion effect of alpha-cyclodextrin on chemical degradation of malathion water. <i>Archives of Environmental Contamination and Toxicology</i> , 2008 , 54, 355-62	3.2	8
79	Transplacental transfer mechanism of organochlorine pesticides: An in vitro transcellular transport study. <i>Environment International</i> , 2020 , 135, 105402	12.9	8
78	City-level air quality improvement in the Beijing-Tianjin-Hebei region from 2016/17 to 2017/18 heating seasons: Attributions and process analysis. <i>Environmental Pollution</i> , 2021 , 274, 116523	9.3	8

(2020-2020)

77	Relative effects of open biomass burning and open crop straw burning on haze formation over central and eastern China: modeling study driven by constrained emissions. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2419-2443	6.8	7
76	Factors influencing the ecological and human health risks of DDTs in soils and air at the isomeric and enantiomeric levels. <i>Journal of Hazardous Materials</i> , 2018 , 359, 316-324	12.8	7
75	Enantioseparation of chiral perfluorooctane sulfonate (PFOS) by supercritical fluid chromatography (SFC): Effects of the chromatographic conditions and separation mechanism. <i>Chirality</i> , 2019 , 31, 870-878	3 ^{2.1}	7
74	Molecular modeling revealed that ligand dissociation from thyroid hormone receptors is affected by receptor heterodimerization. <i>Journal of Molecular Graphics and Modelling</i> , 2013 , 44, 155-60	2.8	7
73	Ozone degradation of chloramphenicol: efficacy, products and toxicity. <i>International Journal of Environmental Technology and Management</i> , 2012 , 15, 180	0.6	7
72	A new perspective on volatile halogenated hydrocarbons in Chinese agricultural soils. <i>Science of the Total Environment</i> , 2020 , 703, 134646	10.2	7
71	Microvessel-Assisted Environmental Thermal Energy Extraction Enabling 24-Hour Continuous Interfacial Vapor Generation. <i>ChemSusChem</i> , 2020 , 13, 6635-6642	8.3	7
70	Large scale control of surface ozone by relative humidity observed during warm seasons in China. <i>Environmental Chemistry Letters</i> , 2021 , 19, 3981	13.3	7
69	Dietary exposure and cancer risk assessment of the Pakistani population exposed to polycyclic aromatic hydrocarbons. <i>Science of the Total Environment</i> , 2021 , 757, 143828	10.2	7
68	Enantiomeric characterization of herbicide lactofen: Enantioseparation, absolute configuration assignment and enantioselective activity and toxicity. <i>Chemosphere</i> , 2018 , 193, 351-357	8.4	7
67	Efficient removal of antibiotics in a fluidized bed reactor by facile fabricated magnetic powdered activated carbon. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 3820-3828	5.1	6
66	A proposed method of enantioselectivity analysis for residual chiral PCBs in gas chromatography. <i>Chemosphere</i> , 2019 , 229, 401-408	8.4	6
65	Suppression of convective precipitation by elevated man-made aerosols is responsible for large-scale droughts in north China. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E8327-E8328	11.5	6
64	Spatio-vertical characterization of the BTEXS group of VOCs in Chinese agricultural soils. <i>Science of the Total Environment</i> , 2019 , 694, 133631	10.2	6
63	Chiral Pesticides and Environmental Safety. ACS Symposium Series, 2011, 97-106	0.4	6
62	Influence of toxicity and dissipation of racemic fenoxaprop and its R-enantiomer in Scenedesmus obliquus suspension by cyclodextrins. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2008 , 43, 231-6	2.2	6
61	Prenatal and postnatal exposure to emerging and legacy per-/polyfluoroalkyl substances: Levels and transfer in maternal serum, cord serum, and breast milk <i>Science of the Total Environment</i> , 2021 , 812, 152446	10.2	6
60	Significant wintertime PM_{2.5} mitigation in the Yangtze River Delta, China, from 2016 to 2019: observational constraints on anthropogenic emission controls. <i>Atmospheric Chemistry and Physics</i> 2020 , 20, 14787-14800	6.8	6

59	Estimation of the psychoactive substances consumption within 12 wastewater treatment plants service areas in a certain city of Guangxi, China applying wastewater-based epidemiology. <i>Science of the Total Environment</i> , 2021 , 778, 146370	10.2	6
58	Enantiomeric impacts of two amide chiral herbicides on Echinochloa crus-galli physiology and gene transcription. <i>Science of the Total Environment</i> , 2019 , 656, 1365-1372	10.2	6
57	Ternary metal oxide embedded carbon derived from metal organic frameworks for adsorption of methylene blue and acid red 73. <i>Chemosphere</i> , 2021 , 280, 130567	8.4	6
56	The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor [Science of the Total Environment, 2019, 697, 134040	10.2	5
55	Sequential Drug Release to Modulate Collagen Synthesis and Promote Micelle Penetration in Tumors. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 1343-1353	5.5	5
54	Adsorption and desorption of dimepiperate by soils. Water, Air, and Soil Pollution, 1994, 73, 325-331	2.6	5
53	Occurrence of Free-Form and Conjugated Bisphenol Analogues in Marine Organisms. <i>Environmental Science & Environmental & Environmental</i>	10.3	5
52	Organochlorine Pesticide Ban Facilitated Reproductive Recovery of Chinese Striped Hamsters. <i>Environmental Science & Environmental Science & Environme</i>	10.3	5
51	Enantioselectivity and allelopathy both have effects on the inhibition of napropamide on Echinochloa crus-galli. <i>Science of the Total Environment</i> , 2019 , 682, 151-159	10.2	4
50	Enantioselectivity in transplacental transfer of perfluoro-1-methylheptanesulfonate (1m-PFOS): Human biomonitoring and in silico study. <i>Environmental Pollution</i> , 2020 , 261, 114136	9.3	4
49	Stereoselective phytotoxicity of HCH mediated by photosynthetic and antioxidant defense systems in Arabidopsis thaliana. <i>PLoS ONE</i> , 2013 , 8, e51043	3.7	4
48	Porous carbon monoliths for electrochemical removal of aqueous herbicides by "one-stop" catalysis of oxygen reduction and HO activation. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125592	12.8	4
47	Dioxybenzone triggers enhanced estrogenic effect via metabolic activation: in silico, in vitro and in vivo investigation. <i>Environmental Pollution</i> , 2021 , 268, 115766	9.3	4
46	Waterborne uranium causes toxic effect and thyroid disruption in zebrafish larvae. <i>Ecotoxicology</i> and Environmental Safety, 2021 , 208, 111585	7	4
45	Prenatal and postnatal transfer of perfluoroalkyl substances from mothers to their offspring. <i>Critical Reviews in Environmental Science and Technology</i> ,1-28	11.1	4
44	Metabolic Susceptibility of 2-Chlorothioxanthone and Its Toxic Effects on mRNA and Protein Expression and Activities of Human CYP1A2 and CYP3A4 Enzymes. <i>Environmental Science & Environmental Science & Technology</i> , 2018 , 52, 11904-11912	10.3	4
43	Carcinogenic Risk of 2,6-DiButylphenol and Its Quinone Metabolite 2,6-DTBQ Through Their Interruption of RARI, , and Investigations <i>Environmental Science & Environmental Science & Environmental</i>	10.3	4
42	Supporting dataset and methods for serum concentrations of selected persistent organic pollutants measured in women with primary ovarian insufficiency. <i>Data in Brief</i> , 2019 , 26, 104430	1.2	3

41	Supporting dataset and methods for Transplacental Transfer of Organochlorine Pesticides: Concentration Ratio and Chiral Properties. <i>Data in Brief</i> , 2019 , 25, 104278	1.2	3
40	Mechanisms of composition change and toxic potentiation of chloramidophos emulsifiable concentrate during storage. <i>Journal of Agricultural and Food Chemistry</i> , 2009 , 57, 930-7	5.7	3
39	Method for the determination of butachlor residues in water, soil and rice. <i>Pest Management Science</i> , 1991 , 33, 81-86		3
38	Thyroid Dysfunction of Zebrafish () after Early-Life Exposure and Discontinued Exposure to Tetrabromobiphenyl (BB-80) and OH-BB-80 <i>Environmental Science & Early Technology</i> , 2022 ,	10.3	3
37	Environmental exposure to organochlorine pesticides and its association with the risk of hearing loss in the Chinese adult population: A case-control study. <i>Science of the Total Environment</i> , 2021 , 767, 145153	10.2	3
36	Determination of Four Chiral Pesticides in Soil by QuEChERS-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. <i>Wuhan University Journal of Natural Sciences</i> , 2018 , 23, 369-375	0.4	3
35	Enantioseparation and identification for the rationalization of the environmental impact of 4 polychlorinated biphenyls. <i>Chirality</i> , 2018 , 30, 475-483	2.1	2
34	Enantioselective Activity and Toxicity of Chiral Herbicides 2011,		2
33	Enantioselectivity in Estrogenic Potential of Chiral Pesticides. ACS Symposium Series, 2011, 121-134	0.4	2
32	Phytotoxicity and Environmental Fate of Chiral Herbicides. ACS Symposium Series, 2011, 135-150	0.4	2
31	Trimetallic carbon-based catalysts derived from metal-organic frameworks for electro-Fenton removal of aqueous pesticides. <i>Science of the Total Environment</i> , 2021 , 151747	10.2	2
30	Non-stop industries were the main source of air pollution during the 2020 coronavirus lockdown in the North China Plain. <i>Environmental Chemistry Letters</i> , 2021 , 1-11	13.3	2
29	Atmospheric particulate represents a source of C-C perfluoroalkyl carboxylates and 10:2 fluorotelomer alcohol in tree bark. <i>Environmental Pollution</i> , 2021 , 273, 116475	9.3	2
28	Effects of Bisphenol A and Bisphenol S Exposure at Low Doses on the Metabolome of Adolescent Male Sprague-Dawley Rats. <i>Chemical Research in Toxicology</i> , 2021 , 34, 1578-1587	4	2
27	Prenatal exposure and transplacental transfer of perfluoroalkyl substance isomers in participants from the upper and lower reaches of the Yangtze River. <i>Environmental Pollution</i> , 2021 , 270, 116202	9.3	2
26	Polychlorinated biphenyls (PCBs) in the colostrum samples from the Yangtze River Region: Exposure profile and risk assessment. <i>Environmental Pollution</i> , 2021 , 285, 117253	9.3	2
25	Endothelial barrier dysfunction induced by anthracene and its nitrated or oxygenated derivatives at environmentally relevant levels. <i>Science of the Total Environment</i> , 2022 , 802, 149793	10.2	2
24	Adsorption of acetanilide herbicides on soils and its correlation with soil properties 1999 , 55, 1103		2

23	p,p?-Dichlorodiphenyltrichloroethane inhibits the apoptosis of colorectal adenocarcinoma DLD1 cells through PI3K/AKT and Hedgehog/Gli1 signaling pathways. <i>Toxicology Research</i> , 2015 , 4, 1214-1224	4 ^{2.6}	1
22	Protection against Cu(II)-induced oxidative stress and toxicity to Chlorella vulgaris by 2,2@Bipyridine-5,5@dicarboxylic acid. <i>Archives of Environmental Contamination and Toxicology</i> , 2014 , 66, 400-6	3.2	1
21	Enantioseparation and Enantioselective Analysis of Chiral Herbicides 2011,		1
20	Enantioselective Separation and Analysis of Chiral Herbicides. <i>ACS Symposium Series</i> , 2011 , 67-79	0.4	1
19	Enantioselective Cytotoxicity and Molecular Mechanisms of Modern Chiral Pesticides. <i>ACS Symposium Series</i> , 2011 , 153-165	0.4	1
18	Enantioselective Separation and Analysis of Synthetic Pyrethroids. ACS Symposium Series, 2011 , 81-94	0.4	1
17	Enantioselective Toxicity of Chiral Pesticides in Aquatic Systems. <i>ACS Symposium Series</i> , 2011 , 107-120	0.4	1
16	Evaluating in Vivo Toxicity of Chiral Pesticides Using the Zebrafish (Danio rerio) Embryo Model. <i>ACS Symposium Series</i> , 2011 , 167-179	0.4	1
15	Chiral Selectivity in the Environmental Fate of Pyrethroids. ACS Symposium Series, 2008, 238-253	0.4	1
14	Photolysis of dimepiperate in aqueous solution. <i>Pest Management Science</i> , 1992 , 34, 269-271		1
13	Dominant Contributions of Secondary Aerosols and Vehicle Emissions to Water-Soluble Inorganic Ions of PM2.5 in an Urban Site in the Metropolitan Hangzhou, China. <i>Atmosphere</i> , 2021 , 12, 1529	2.7	1
12	Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ERHand Wnt/Ecatenin signaling pathways. <i>Environmental Pollution</i> , 2022 , 292, 118370	9.3	1
11	Boosting Fenton-like reaction efficiency by co-construction of the adsorption and reactive sites on N/O co-doped carbon. <i>Applied Catalysis B: Environmental</i> , 2022 , 301, 120783	21.8	1
10	Adsorption of acetanilide herbicides on soils and its correlation with soil properties 1999 , 55, 1103		1
9	Local production, downward and regional transport aggravated surface ozone pollution during the historical orange-alert large-scale ozone episode in eastern China. <i>Environmental Chemistry Letters</i> ,1	13.3	1
8	Exposure patterns, chemical structural signatures, and health risks of pesticides in breast milk: A multicenter study in China <i>Science of the Total Environment</i> , 2022 , 154617	10.2	1
7	The Modeling Study about Impacts of Emission Control Policies for Chinese 14th Five-Year Plan on PM2.5 and O3 in Yangtze River Delta, China. <i>Atmosphere</i> , 2022 , 13, 26	2.7	1
6	Exposure and Blood¶erebrospinal Fluid Barrier Permeability of PFASs in Neonates. <i>Environmental Science and Technology Letters</i> , 2022 , 9, 64-70	11	1

LIST OF PUBLICATIONS

5	Rapid assessments of light-duty gasoline vehicle emissions using on-road remote sensing and machine learning <i>Science of the Total Environment</i> , 2022 , 815, 152771	10.2	O
4	Current pollution status, spatial features, and health risks of legacy and emerging halogenated flame retardants in agricultural soils across China. <i>Science of the Total Environment</i> , 2022 , 803, 150043	10.2	0
3	Operational Data-Driven Intelligent Modelling and Visualization System for Real-World, On-Road Vehicle Emissions Case Study in Hangzhou City, China. <i>Sustainability</i> , 2022 , 14, 5434	3.6	О
2	Polychlorinated biphenyls (PCBs) in soils from typical paddy fields of China: Occurrence, influencing factors and human health risks. <i>Environmental Pollution</i> , 2022 , 119567	9.3	O
1	Application of Stereoselective Bioassays for Improvement in Pesticide Design: An Example from China Using Methamidophos and Its Derivatives. <i>ACS Symposium Series</i> , 2011 , 201-212	0.4	