
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2956863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Study on ferroelectric polarization induced resistive switching characteristics of neodymium-doped bismuth ferrite thin films for random access memory applications. Current Applied Physics, 2022, 39, 221-229.	2.4	9
2	Optoelectronic properties of transparent conducting CdO:ZnO composite thin films by RF-magnetron sputtering. Journal of Materials Science: Materials in Electronics, 2022, 33, 15638-15651.	2.2	1
3	Enhanced physical properties of ZEO thin films for device applications. Materials Today: Proceedings, 2021, 39, 1620-1624.	1.8	0
4	Influence of deposition time on the visible-light-driven photocatalytic activity of Cu2O thin films by reactive sputtering at room temperature. Materials Letters, 2021, 284, 128980.	2.6	12
5	X-ray computed tomography and thermal neutron radiography for detection of low dense compounds inside pyro elements used in space applications. European Physical Journal Plus, 2021, 136, 1.	2.6	1
6	Effect of hydrophilic coating on mesh wicks used in heat pipes. Surface Engineering, 2020, 36, 680-686.	2.2	11
7	Ferroelectric polarization induced memristive behavior in bismuth ferrite (BiFeO3) based memory devices. Superlattices and Microstructures, 2020, 148, 106726.	3.1	14
8	Fabrication and characterization of resistive random access memory (ReRAM) devices using molybdenum trioxide (MoO3) as switching layer. Superlattices and Microstructures, 2020, 147, 106682.	3.1	21
9	Realization of In:ZnO/PEDOT:PSS based multifunctional device for ultraviolet (UV) light detection and resistive switching memory applications. Journal of Applied Physics, 2020, 128, 044503.	2.5	11
10	Deposition and characterization of earth abundant CuZnS ternary thin films by vacuum spray pyrolysis and fabrication of p―CZS/ nâ€AZO heterojunction solar cells. International Journal of Energy Research, 2020, 44, 7778-7788.	4.5	10
11	Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes. Journal of Materials Science: Materials in Electronics, 2020, 31, 7100-7113.	2.2	47
12	Room temperature deposition of high figure of merit p-type transparent conducting Cu–Zn–S thin films and their application in organic solar cells as an efficient hole transport layer. Journal of Alloys and Compounds, 2020, 829, 154507.	5.5	9
13	On the conversion of amorphous In2S3 thin films to polycrystalline In2S3 and to In2O3 through thermal oxidation process. Materials Science in Semiconductor Processing, 2020, 111, 104983.	4.0	14
14	Effect of substrate temperature on properties of co-evaporated copper antimony sulfide thin films. Thin Solid Films, 2020, 697, 137838.	1.8	8
15	Detection and Characterisation of Low Dense Charges Inside Metallic Devices Used in Space Applications by Neutron Radiography. Journal of Nondestructive Evaluation, 2020, 39, 1.	2.4	2
16	Synergetic effects of aluminium and indium dopants in the physical properties of ZnO thin films via spray pyrolysis. Superlattices and Microstructures, 2020, 142, 106511.	3.1	17
17	A Study on the Emergence of P-Type Behaviour in Sr-Cu-O Mixed Phase Systems. Journal of Physics: Conference Series, 2019, 1172, 012008.	0.4	0
18	Indium sulfide based metal-semiconductor-metal ultraviolet-visible photodetector. Sensors and Actuators A: Physical, 2019, 299, 111643.	4.1	26

#	Article	IF	CITATIONS
19	Biocidal properties of sputtered CdO:ZnO multi-component thin films for potential use in pathogenic bacteria control. Materials Research Express, 2019, 6, 104009.	1.6	6
20	Fabrication of visible light photodetector using co-evaporated Indium Sulfide thin films. Journal of Materials Science: Materials in Electronics, 2019, 30, 17986-17998.	2.2	13
21	Effect of oxygen partial pressure on the tuning of copper oxide thin films by reactive sputtering for solar light driven photocatalysis. Solar Energy, 2019, 187, 368-378.	6.1	36
22	Enhanced luminescence property of 1 D nanorods realised by aqueous chemical growth on indium doped zinc oxide thin films. Thin Solid Films, 2019, 686, 137279.	1.8	8
23	Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material. Indian Journal of Physics, 2019, 93, 185-195.	1.8	8
24	Properties of Au incorporated In2O3 films. Materials Science in Semiconductor Processing, 2019, 93, 134-147.	4.0	14
25	Effect of Zn/Sn molar ratio on the microstructural and optical properties of Cu 2 Zn 1-x Sn x S 4 thin films prepared by spray pyrolysis technique. Physica B: Condensed Matter, 2018, 533, 22-27.	2.7	16
26	Post-deposition thermal treatment of sprayed ZnO:Al thin films for enhancing the conductivity. Physica B: Condensed Matter, 2018, 533, 83-89.	2.7	19
27	Effect of substrate temperature and oxygen partial pressure on RF sputtered NiO thin films. Materials Research Express, 2018, 5, 046401.	1.6	20
28	An investigation on the In doping of ZnO thin films by spray pyrolysis. AIP Conference Proceedings, 2018, , .	0.4	1
29	Modeling of Fume Formation from Shielded Metal Arc Welding Process. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1268-1278.	2.1	1
30	Room temperature deposition of highly crystalline Cu-Zn-S thin films for solar cell applications using SILAR method. Journal of Alloys and Compounds, 2017, 712, 649-656.	5.5	27
31	High-speed photoresponse properties of ultraviolet (UV) photodiodes using vertically aligned Al:ZnO nanowires. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600658.	1.8	10
32	Deposition rate dependant formation and properties of Sn ₂ S ₃ and SnS thin films by co-evaporation. Materials Research Express, 2017, 4, 046404.	1.6	9
33	Effect of annealing on the optical properties and photoconductivity of SnS thin film. AIP Conference Proceedings, 2017, , .	0.4	5
34	Solution Processed p-Type Cu2ZnSnS4 Thin Films for Absorber Layer. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1556-1562.	3.7	5
35	Control of exposure to hexavalent chromium concentration in shielded metal arc welding fumes by nano-coating of electrodes. International Journal of Occupational and Environmental Health, 2017, 23, 128-142.	1.2	8
36	Role of Oxygen Interstitial Defects in Fabrication of UV Photodiodes Using Vertically Aligned (Al,Ga):ZnO Nanowires. Nanoscience and Nanotechnology Letters, 2017, 9, 489-495.	0.4	4

#	Article	IF	CITATIONS
37	Effect of substrate temperature on the physical properties of co-evaporated Sn2S3 thin films. Ceramics International, 2016, 42, 12262-12269.	4.8	50
38	Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films. , 2016, , .		4
39	Co-evaporated SnS thin films for visible light photodetector applications. RSC Advances, 2016, 6, 95680-95692.	3.6	134
40	Effect of Nb doping on the structural, morphological, optical and electrical properties of RF magnetron sputtered In2 O3 nanostructured films. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 14, 1600095.	0.8	7
41	Role of p-NiO electron blocking layers in fabrication of (P-N):ZnO/Al:ZnO UV photodiodes. Current Applied Physics, 2016, 16, 1052-1061.	2.4	27
42	Highly transparent conducting CdO thin films by radiofrequency magnetron sputtering for optoelectronic applications. Journal of Nanophotonics, 2016, 10, 033007.	1.0	25
43	Effect of surfactant addition on hydrophilicity of ZnO–Al2O3 composite and enhancement of flow boiling heat transfer. Experimental Thermal and Fluid Science, 2016, 70, 325-334.	2.7	19
44	Application of Taguchi method in the optimization of process parameters for a sol–gel-derived nano-alumina film. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2016, 230, 574-585.	1.1	3
45	Heat Treatment Impact on the Properties of Na and N Dual Doped ZnO Thin Flms by Spray Pyrolysis. , 2015, 10, 714-722.		2
46	Effect of Post-Annealing on the Properties of Eu Doped ZnO Nano Thin Films. , 2015, 10, 723-729.		21
47	Welding fumes reduction by coating of nano-TiO2 on electrodes. Journal of Materials Processing Technology, 2015, 219, 237-247.	6.3	22
48	Investigation on P-N dual acceptor doped p-type ZnO thin films and subsequent growth of pencil-like nanowires. Semiconductor Science and Technology, 2015, 30, 035009.	2.0	18
49	Welding fume reduction by nano-alumina coating on electrodes – towards green welding process. Journal of Cleaner Production, 2015, 108, 131-144.	9.3	31
50	Deposition and characterization of Cu2SnS3 thin films by co-evaporation for photovoltaic application. Solar Energy Materials and Solar Cells, 2015, 143, 128-134.	6.2	68
51	Growth and characterization of near white light emitting Al-Ga:ZnO nanowires. Materials Research Express, 2015, 2, 075004.	1.6	7
52	Realization of highly transparent conducting CdO thin films by R.F. Magnetron sputtering for optoelectronic applications. , 2015, , .		0
53	Fabrication and characterization of p-ZnO:(P,N)/n-ZnO:Al homojunction ultra-violet (UV) light emitting diodes (Presentation Recording). , 2015, , .		0
54	Flow boiling heat transfer enhancement on copper surface using Fe doped Al2O3–TiO2 composite coatings. Applied Surface Science, 2015, 334, 102-109.	6.1	42

#	Article	IF	CITATIONS
55	Fabrication and characterization of n-ZnO:Eu/p-ZnO:(Ag, N) homojunction by spray pyrolysis. Materials Research Bulletin, 2014, 49, 44-49.	5.2	7
56	Epitaxial growth of vertically aligned highly conducting ZnO nanowires by modified aqueous chemical growth process. Ceramics International, 2014, 40, 11283-11290.	4.8	21
57	Optical properties of samarium doped ZnO thin films. , 2014, , .		2
58	Enhanced visible emission from vertically aligned ZnO nanostructures by aqueous chemical growth process. Journal of Luminescence, 2014, 155, 149-155.	3.1	34
59	Dual acceptor doping and aging effect of p-ZnO:(Na, N) nanorod thin films by spray pyrolysis. , 2014, , .		3
60	Deposition of the low resistive Ag–N dual acceptor doped p-type ZnO thin films. Ceramics International, 2013, 39, 1799-1806.	4.8	24
61	Deposition of Na–N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO:(Na,) Tj ETQq1 1 0.78 Technology, 2013, 178, 1032-1039.	4314 rgBT 3.5	/Overlock 10 40
62	Growth and characterization of molybdenum doped ZnO thin films by spray pyrolysis. Journal of Physics and Chemistry of Solids, 2013, 74, 418-425.	4.0	49
63	Microstructural, electrical and optical properties of ZnO:Mo thin films with various thickness by spray pyrolysis. Journal of Analytical and Applied Pyrolysis, 2013, 102, 68-75.	5.5	59
64	Aging and annealing effects on properties of Ag-N dual-acceptor doped ZnO thin films. , 2013, , .		3
65	Effects of thickness and atmospheric annealing on structural, electrical and optical properties of GZO thin films by spray pyrolysis. Journal of Alloys and Compounds, 2012, 541, 495-504.	5.5	67
66	The role of substrate temperature on the properties of nanocrystalline Mo doped ZnO thin films by spray pyrolysis. Ceramics International, 2012, 38, 3875-3883.	4.8	62
67	Realization of stable p-type ZnO thin films using Li–N dual acceptors. Journal of Alloys and Compounds, 2011, 509, 8676-8682.	5.5	36
68	Band gap variation in co-evaporated AgInSe2 thin films with 1.26 MeV He+ ion irradiation. Indian Journal of Physics, 2011, 85, 401-409.	1.8	6
69	Effect of annealing on the structural, optical and electrical properties of ZnO thin films by spray pyrolysis. Indian Journal of Physics, 2011, 85, 1381-1391.	1.8	24
70	Effect of iron doping and annealing on structural and optical properties of cerium oxide nanocrystals. Journal of Physics and Chemistry of Solids, 2010, 71, 1020-1025.	4.0	33
71	Physical properties of ZnO thin films deposited at various substrate temperatures using spray pyrolysis. Physica B: Condensed Matter, 2010, 405, 2226-2231.	2.7	155
72	Effect of He+ irradiation on the optical properties of vacuum evaporated silver indium selenide thin films. Journal of Alloys and Compounds, 2010, 495, 284-287.	5.5	8

SANTHOSH KUMAR M C

#	Article	IF	CITATIONS
73	Physical properties of Ga-doped ZnO thin films by spray pyrolysis. Journal of Alloys and Compounds, 2010, 506, 788-793.	5.5	128
74	Realization of stable p-type ZnO thin films using a Li-N dual acceptor doping for optoelectronic applications. , 2010, , .		0
75	Effect of thickness on structural, optical and electrical properties of nanostructured ZnO thin films by spray pyrolysis. Applied Surface Science, 2009, 255, 4579-4584.	6.1	201
76	Effect of aluminium doping and annealing on structural and optical properties of cerium oxide nanocrystals. Journal of Physics and Chemistry of Solids, 2009, 70, 1443-1447.	4.0	29
77	Highly oriented (100) ZnO thin films by spray pyrolysis. Applied Surface Science, 2009, 255, 7212-7215.	6.1	67
78	Effect of H+ irradiation on the optical properties of vacuum evaporated AgInSe2 thin films. Applied Surface Science, 2009, 255, 8324-8327.	6.1	7
79	Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis. Journal of Alloys and Compounds, 2009, 485, 413-417.	5.5	128
80	ZnO Thin Films for Optoelectronic Applications. , 2009, , .		0
81	Formation and properties of AgInSe2 thin films by co-evaporation. Vacuum, 2004, 72, 369-378.	3.5	39
82	Photo-electrical properties of silver indium selenide thin films. Journal of Materials Science Letters, 2003, 22, 287-291.	0.5	4
83	Structural, electrical and optical properties of silver selenide thin films. Semiconductor Science and Technology, 2002, 17, 261-265.	2.0	49
84	Transport properties of silver selenide thin films from 100 to 300 K. Materials Letters, 2002, 56, 491-495.	2.6	9
85	Electrical properties of silver selenide thin films prepared by reactive evaporation. Bulletin of Materials Science, 2002, 25, 407-411.	1.7	25
86	Temperature-Dependent Properties of Co-evaporated CuS Thin Films. Brazilian Journal of Physics, 0, , 1.	1.4	4