Alireza Abbaspourrad

List of Publications by Citations

Source: https://exaly.com/author-pdf/295571/alireza-abbaspourrad-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

183 papers

4,485 citations

35 h-index 59 g-index

201 ext. papers

5,665 ext. citations

8.2 avg, IF

6.42 L-index

#	Paper	IF	Citations
183	Droplet microfluidics: A tool for biology, chemistry and nanotechnology. <i>TrAC - Trends in Analytical Chemistry</i> , 2016 , 82, 118-125	14.6	206
182	A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: Experimental and docking theoretical investigations. <i>Sensors and Actuators B: Chemical</i> , 2019 , 284, 568-574	8.5	183
181	25th anniversary article: double emulsion templated solid microcapsules: mechanics and controlled release. <i>Advanced Materials</i> , 2014 , 26, 2205-18	24	180
180	A novel electrochemical epinine sensor using amplified CuO nanoparticles and a n-hexyl-3-methylimidazolium hexafluorophosphate electrode. <i>New Journal of Chemistry</i> , 2019 , 43, 2362	2- 2 :367	169
179	Protein expression, aggregation, and triggered release from polymersomes as artificial cell-like structures. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 6416-20	16.4	145
178	Amphiphilic crescent-moon-shaped microparticles formed by selective adsorption of colloids. Journal of the American Chemical Society, 2011 , 133, 5516-24	16.4	135
177	Polymer microcapsules with programmable active release. <i>Journal of the American Chemical Society</i> , 2013 , 135, 7744-50	16.4	132
176	Delayed buckling and guided folding of inhomogeneous capsules. <i>Physical Review Letters</i> , 2012 , 109, 134302	7.4	112
175	Emulsion-based systems for fabrication of electrospun nanofibers: food, pharmaceutical and biomedical applications. <i>RSC Advances</i> , 2017 , 7, 28951-28964	3.7	110
174	Controlling release from pH-responsive microcapsules. <i>Langmuir</i> , 2013 , 29, 12697-702	4	102
173	Encapsulation and Enhanced Retention of Fragrance in Polymer Microcapsules. <i>ACS Applied Materials & District Mate</i>	9.5	101
172	Stimuli-Responsive CoreBhell Microcapsules with Tunable Rates of Release by Using a Depolymerizable Poly(phthalaldehyde) Membrane. <i>Macromolecules</i> , 2013 , 46, 3309-3313	5.5	72
171	Enhancing the physicochemical stability of Etarotene solid lipid nanoparticle (SLNP) using whey protein isolate. <i>Food Research International</i> , 2018 , 105, 962-969	7	66
170	Formation of shelf stable Pickering high internal phase emulsions (HIPE) through the inclusion of whey protein microgels. <i>Food and Function</i> , 2018 , 9, 982-990	6.1	61
169	Microfluidic Fabrication of Colloidal Nanomaterials-Encapsulated Microcapsules for Biomolecular Sensing. <i>Nano Letters</i> , 2017 , 17, 2015-2020	11.5	60
168	Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. <i>Food Chemistry</i> , 2014 , 152, 271-5	8.5	60
167	Production of galacto-oligosaccharides from whey permeate using Egalactosidase immobilized on functionalized glass beads. <i>Food Chemistry</i> , 2018 , 251, 115-124	8.5	58

(2019-2017)

166	Nano- and micromotors for cleaning polluted waters: focused review on pollutant removal mechanisms. <i>Nanoscale</i> , 2017 , 9, 13850-13863	7.7	56
165	Microfluidic synthesis of monodisperse porous microspheres with size-tunable pores. <i>Soft Matter</i> , 2012 , 8, 10636	3.6	52
164	Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 8272-8277	11.5	51
163	Light-harvesting synthetic nano- and micromotors: a review. <i>Nanoscale</i> , 2017 , 9, 12218-12230	7.7	51
162	Fabrication of chitosan/agarose scaffolds containing extracellular matrix for tissue engineering applications. <i>International Journal of Biological Macromolecules</i> , 2020 , 143, 533-545	7.9	51
161	Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. <i>Carbohydrate Polymers</i> , 2018 , 181, 124-131	10.3	49
160	Triple Emulsion Drops with An Ultrathin Water Layer: High Encapsulation Efficiency and Enhanced Cargo Retention in Microcapsules. <i>Advanced Materials</i> , 2016 , 28, 3340-4	24	47
159	A Robust Aqueous Core-Shell-Shell Coconut-like Nanostructure for Stimuli-Responsive Delivery of Hydrophilic Cargo. <i>ACS Nano</i> , 2019 , 13, 9016-9027	16.7	47
158	Pathogenic Bacteria Detection Using RNA-Based Loop-Mediated Isothermal-Amplification-Assisted Nucleic Acid Amplification via Droplet Microfluidics. <i>ACS Sensors</i> , 2019 , 4, 841-848	9.2	46
157	Ultrastable Water-in-Oil High Internal Phase Emulsions Featuring Interfacial and Biphasic Network Stabilization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 26433-26441	9.5	45
156	Improving oxidative stability of echium oil emulsions fabricated by Microfluidics: Effect of ionic gelation and phenolic compounds. <i>Food Chemistry</i> , 2017 , 233, 125-134	8.5	42
155	Surface functionalized hydrophobic porous particles toward water treatment application. <i>Advanced Materials</i> , 2013 , 25, 3215-21	24	41
154	Improvement of physicochemical properties of encapsulated echium oil using nanostructured lipid carriers. <i>Food Chemistry</i> , 2018 , 246, 448-456	8.5	41
153	Preparation of iron nanoparticles-loaded Spondias purpurea seed waste as an excellent adsorbent for removal of phosphate from synthetic and natural waters. <i>Journal of Colloid and Interface Science</i> , 2015 , 452, 69-77	9.3	37
152	Fabrication of chitosan/polyvinylpyrrolidone hydrogel scaffolds containing PLGA microparticles loaded with dexamethasone for biomedical applications. <i>International Journal of Biological Macromolecules</i> , 2020 , 164, 356-370	7.9	37
151	Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells. <i>ACS Applied Materials & District Acron Acron Materials & District & District & District & Distr</i>	9.5	36
150	Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2017 , 505, 293	-386	35
149	Carbon dioxide absorption in water/nanofluid by a symmetric amine-based nanodendritic adsorbent. <i>Applied Energy</i> , 2019 , 242, 1562-1572	10.7	35

148	Fabrication of shape controllable Janus alginate/pNIPAAm microgels via microfluidics technique and off-chip ionic cross-linking. <i>Langmuir</i> , 2015 , 31, 1885-91	4	34
147	Microcapsules for Enhanced Cargo Retention and Diversity. <i>Small</i> , 2015 , 11, 2903-9	11	33
146	Shape-controlled fabrication of TiO2 hollow shells toward photocatalytic application. <i>Applied Catalysis B: Environmental</i> , 2018 , 227, 519-529	21.8	33
145	Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement. <i>Langmuir</i> , 2013 , 29, 12352-7	4	33
144	Perforated Microcapsules with Selective Permeability Created by Confined Phase Separation of Polymer Blends. <i>Chemistry of Materials</i> , 2014 , 26, 7166-7171	9.6	33
143	Monodisperse gas-filled microparticles from reactions in double emulsions. <i>Langmuir</i> , 2012 , 28, 6742-5	4	33
142	Microfluidic-Based Cell-Embedded Microgels Using Nonfluorinated Oil as a Model for the Gastrointestinal Niche. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 9235-9246	9.5	32
141	Optimization of microcapsules shell structure to preserve labile compounds: A comparison between microfluidics and conventional homogenization method. <i>Food Chemistry</i> , 2018 , 241, 460-467	8.5	32
140	A versatile, cost-effective, and flexible wearable biosensor for in situ and ex situ sweat analysis, and personalized nutrition assessment. <i>Lab on A Chip</i> , 2019 , 19, 3448-3460	7.2	31
139	A simple route to renewable high internal phase emulsions (HIPEs) strengthened by successive cross-linking and electrostatics of polysaccharides. <i>Chemical Communications</i> , 2019 , 55, 1225-1228	5.8	31
138	Synthesis and characterization of lactose fatty acid ester biosurfactants using free and immobilized lipases in organic solvents. <i>Food Chemistry</i> , 2018 , 266, 508-513	8.5	29
137	Fluorocarbon Oil Reinforced Triple Emulsion Drops. <i>Advanced Materials</i> , 2016 , 28, 8425-8430	24	29
136	Catechin modulates the copigmentation and encapsulation of anthocyanins in polyelectrolyte complexes (PECs) for natural colorant stabilization. <i>Food Chemistry</i> , 2018 , 264, 342-349	8.5	27
135	Combination of internal structuring and external coating in an oleogel-based delivery system for fish oil stabilization. <i>Food Chemistry</i> , 2019 , 277, 213-221	8.5	27
134	Influence of the protein type on the stability of fish oil in water emulsion obtained by glass microfluidic device. <i>Food Hydrocolloids</i> , 2018 , 77, 96-106	10.6	26
133	Strictures of a microchannel impose fierce competition to select for highly motile sperm. <i>Science Advances</i> , 2019 , 5, eaav2111	14.3	26
132	Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. <i>Analytical Chemistry</i> , 2018 , 90, 14137-14144	7.8	26
131	Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. <i>International Journal of Biological Macromolecules</i> , 2019 , 129, 972-97	9 7.9	25

(2018-2018)

130	Synthesis of Highly Monodispersed, Stable, and Spherical NZVI of 20B0 nm on Filter Paper for the Removal of Phosphate from Wastewater: Batch and Column Study. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 11662-11676	8.3	25	
129	Sonochemically Synthesized Ultrastable High Internal Phase Emulsions via a Permanent Interfacial Layer. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14374-14382	8.3	24	
128	Copigment-polyelectrolyte complexes (PECs) composite systems for anthocyanin stabilization. <i>Food Hydrocolloids</i> , 2018 , 81, 371-379	10.6	23	
127	Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins. <i>Biomacromolecules</i> , 2018 , 19, 1517-1527	6.9	23	
126	Polyelectrolyte microcapsules built on CaCO scaffolds for the integration, encapsulation, and controlled release of copigmented anthocyanins. <i>Food Chemistry</i> , 2018 , 246, 305-312	8.5	23	
125	Protein content of amaranth and quinoa starch plays a key role in their ability as Pickering emulsifiers. <i>Food Chemistry</i> , 2020 , 315, 126246	8.5	22	
124	Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. <i>Food Research International</i> , 2018 , 106, 945-951	7	22	
123	Bioactive whey peptide particles: An emerging class of nutraceutical carriers. <i>Critical Reviews in Food Science and Nutrition</i> , 2018 , 58, 1468-1477	11.5	22	
122	Label-free single-cell protein quantification using a drop-based mix-and-read system. <i>Scientific Reports</i> , 2015 , 5, 12756	4.9	22	
121	Protein Expression, Aggregation, and Triggered Release from Polymersomes as Artificial Cell-like Structures. <i>Angewandte Chemie</i> , 2012 , 124, 6522-6526	3.6	22	
120	Engineered emulsions for obesity treatment. <i>Trends in Food Science and Technology</i> , 2016 , 52, 90-97	15.3	22	
119	Study of the Physicochemical Properties of Fish Oil Solid Lipid Nanoparticle in the Presence of Palmitic Acid and Quercetin. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 671-679	5.7	22	
118	Improvement of vitamin C stability in vitamin gummies by encapsulation in casein gel. <i>Food Hydrocolloids</i> , 2021 , 113, 106414	10.6	22	
117	Multi-porous quaternized chitosan/polystyrene microbeads for scalable, efficient heparin recovery. <i>Chemical Engineering Journal</i> , 2018 , 348, 399-408	14.7	21	
116	Annatto-entrapped casein-chitosan complexes improve whey color quality after acid coagulation of milk. <i>Food Chemistry</i> , 2018 , 255, 268-274	8.5	21	
115	Protection of blue color in a spirulina derived phycocyanin extract from proteolytic and thermal degradation via complexation with beet-pectin. <i>Food Hydrocolloids</i> , 2018 , 74, 46-52	10.6	21	
114	In situ H2O2 generation for de-emulsification of fine stable bilge water emulsions. <i>Chemical Engineering Journal</i> , 2018 , 335, 434-442	14.7	21	
113	A Biocompatible Nanodendrimer for Efficient Adsorption and Reduction of Hg(II). ACS Sustainable Chemistry and Engineering, 2018, 6, 13332-13348	8.3	21	

112	A Spiderweb-Like Metal-Organic Framework Multifunctional Foam. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9506-9513	16.4	20
111	Palladium nanoparticles supported on a poly(N-vinyl-2-pyrrolidone)-modified mesoporous carbon nanocage as a novel heterogeneous catalyst for the Heck reaction in water. <i>Tetrahedron Letters</i> , 2012 , 53, 3763-3766	2	20
110	Osmotic Pressure Triggered Rapid Release of Encapsulated Enzymes with Enhanced Activity. <i>Advanced Functional Materials</i> , 2017 , 27, 1700975	15.6	19
109	Controlling the Release from Enzyme-Responsive Microcapsules with a Smart Natural Shell. <i>ACS Applied Materials & Applied & Ap</i>	9.5	19
108	Development and Characterization of Salvia macrosiphon/Chitosan Edible Films. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 1487-1496	8.3	19
107	Facile Synthesis of Sustainable High Internal Phase Emulsions by a Universal and Controllable Route. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16657-16664	8.3	19
106	Extraction of phycocyanin-A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques. <i>Journal of Food Science</i> , 2020 , 85, 727-735	3.4	18
105	A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite. <i>Applied Catalysis A: General</i> , 2012 , 423-424, 78-90	5.1	18
104	Robust, sustainable and multifunctional nanofibers with smart switchability for water-in-oil and oil-in-water emulsion separation and liquid marble preparation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26456-26468	13	18
103	Ultrasonic encapsulation of cinnamon flavor to impart heat stability for baking applications. <i>Food Hydrocolloids</i> , 2020 , 99, 105316	10.6	18
102	GBR membrane of novel poly (butylene succinate-co-glycolate) co-polyester co-polymer for periodontal application. <i>Scientific Reports</i> , 2018 , 8, 7513	4.9	18
101	The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. <i>Composites Part B: Engineering</i> , 2019 , 175, 107088	10	17
100	Improvement of the storage stability of C-phycocyanin in beverages by high-pressure processing. <i>Food Hydrocolloids</i> , 2021 , 110, 106055	10.6	17
99	Enhanced compatibility of starch with poly(lactic acid) and poly(e-caprolactone) by incorporation of POSS nanoparticles: Study on thermal properties. <i>International Journal of Biological Macromolecules</i> , 2019, 141, 578-584	7.9	16
98	Encapsulation of copigmented anthocyanins within polysaccharide microcapsules built upon removable CaCO3 templates. <i>Food Hydrocolloids</i> , 2018 , 84, 200-209	10.6	16
97	A supported dendrimer with terminal symmetric primary amine sites for adsorption of salicylic acid. <i>Journal of Colloid and Interface Science</i> , 2019 , 540, 501-514	9.3	15
96	Thermoresponsive, water-dispersible microcapsules with a lipid-polysaccharide shell to protect heat-sensitive colorants. <i>Food Hydrocolloids</i> , 2018 , 81, 419-428	10.6	15
95	Nutritional and Bioactive Components of Pomegranate Waste Used in Food and Cosmetic Applications: A Review. <i>Foods</i> , 2021 , 10,	4.9	15

(2018-2018)

94	Highly water-dispersible and antibacterial magnetic clay nanotubes functionalized with polyelectrolyte brushes: high adsorption capacity and selectivity toward heparin in batch and continuous system. <i>Green Chemistry</i> , 2018 , 20, 5491-5508	10	15
93	Highly Efficient Recovery of Heparin Using a Green and Low-Cost Quaternary Ammonium Functionalized Halloysite Nanotube. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 15349-15360	8.3	15
92	Mechanistic investigation via QCM-D into the color stability imparted to betacyanins by the presence of food grade anionic polysaccharides. <i>Food Hydrocolloids</i> , 2019 , 93, 226-234	10.6	14
91	Improvement of the colloidal stability of phycocyanin in acidified conditions using whey protein-phycocyanin interactions. <i>Food Hydrocolloids</i> , 2020 , 105, 105747	10.6	14
90	The Influence of Water Composition on Flavor and Nutrient Extraction in Green and Black Tea. <i>Nutrients</i> , 2019 , 11,	6.7	14
89	Oleogel-structured composite for the stabilization of B fatty acids in fish oil. <i>Food and Function</i> , 2018 , 9, 5598-5606	6.1	14
88	Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. <i>Chemical Papers</i> , 2019 , 73, 2441-2447	1.9	13
87	Tailoring Delivery System Functionality Using Microfluidics. <i>Annual Review of Food Science and Technology</i> , 2018 , 9, 481-501	14.7	13
86	Dispersing hydrophobic natural colourant Etarotene in shellac particles for enhanced stability and tunable colour. <i>Royal Society Open Science</i> , 2017 , 4, 170919	3.3	13
85	Investigation of the Interaction between -Acetyl-l-Cysteine and Ovalbumin by Spectroscopic Studies, Molecular Docking Simulation, and Real-Time Quartz Crystal Microbalance with Dissipation. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 10184-10190	5.7	12
84	Electrolytic transesterification of waste frying oil using Na/zeolite-chitosan biocomposite for biodiesel production. <i>Waste Management</i> , 2021 , 127, 48-62	8.6	12
83	Generation of liposomes using a supercritical carbon dioxide eductor vacuum system: Optimization of process variables. <i>Journal of CO2 Utilization</i> , 2019 , 29, 163-171	7.6	12
82	Magnetic Dendritic Halloysite Nanotube for Highly Selective Recovery of Heparin Digested from Porcine Intestinal Mucosa. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 14561-14573	8.3	12
81	Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. <i>Comprehensive Reviews in Food Science and Food Safety</i> , 2021 , 20, 3164-3191	16.4	11
80	Preparation of microparticles through co-flowing of partially miscible liquids. <i>Chemical Engineering Journal</i> , 2017 , 320, 144-150	14.7	10
79	Glass surface modification via Cu(0)-mediated living radical polymerization of fluorinated and non-fluorinated acrylates. <i>Polymer Chemistry</i> , 2017 , 8, 7457-7468	4.9	10
78	2,4-D adsorption from agricultural subsurface drainage by canola stalk-derived activated carbon: insight into the adsorption kinetics models under batch and column conditions. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 16983-16997	5.1	10
77	A Microfluidic-Based Model for Spatially Constrained Culture of Intestinal Microbiota. <i>Advanced Functional Materials</i> , 2018 , 28, 1805568	15.6	10

76	Structural Chemistry Enables Fluorescence of Amino Acids in the Crystalline Solid State. <i>Crystal Growth and Design</i> , 2020 , 20, 1673-1680	3.5	9
75	High water content, maltose and sodium dodecyl sulfate were effective in preventing the long-term retrogradation of glutinous rice grains - A comparative study. <i>Food Hydrocolloids</i> , 2020 , 98, 105247	10.6	9
74	Starch-based Janus particles: Proof-of-concept heterogeneous design via a spin-coating spray approach. <i>Food Hydrocolloids</i> , 2019 , 91, 301-310	10.6	8
73	Effect of TiO2 nanoparticles on the thermal properties of decorated multiwall carbon nanotubes: A Raman investigation. <i>Journal of Applied Physics</i> , 2010 , 108, 083501	2.5	8
72	Covalent polybenzimidazole-based triazine frameworks: A robust carrier for non-steroidal anti-inflammatory drugs. <i>Materials Science and Engineering C</i> , 2020 , 108, 110482	8.3	8
71	A mix-and-read drop-based in vitro two-hybrid method for screening high-affinity peptide binders. <i>Scientific Reports</i> , 2016 , 6, 22575	4.9	8
70	Generation of ironized and multivitamin-loaded liposomes using venturi-based rapid expansion of a supercritical solution (Vent-RESS). <i>Green Chemistry</i> , 2020 , 22, 1618-1629	10	7
69	Modulation of whey protein-kappa carrageenan hydrogel properties via enzymatic protein modification. <i>Food and Function</i> , 2018 , 9, 2313-2319	6.1	7
68	Highly Selective Aldol Condensation Using Amine-functionalized SiO2-Al2O3 Mixed-oxide under Solvent-free Condition. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 2074-2082	4.9	7
67	Synthesis of lactose lauryl ester in organic solvents using aluminosilicate zeolite as a catalyst. <i>Food Chemistry</i> , 2019 , 279, 401-407	8.5	7
66	High-Throughput, Green, Low-Cost, and Efficient Recovery of Heparin from a Biological Mixture Using Bio-Originated Magnetic Nanofibers. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 3895-39	083	7
65	Core-Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media. <i>ACS Applied Materials & District Materials & District Media Materials & District Media Media Materials & District Media Me</i>	9.5	6
64	Synergistic Bathochromic and Hyperchromic Shifts of Anthocyanin Spectra Observed Following Complexation with Iron Salts and Chondroitin Sulfate. <i>Food and Bioprocess Technology</i> , 2018 , 11, 991-10	ρ Θ Ί	6
63	Highly Selective Vapor-Phase Acylation of Veratrole over H3PO4/TiO2-ZrO2: Using Ethyl Acetate as a Green and Efficient Acylating Agent. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 273-284	4.9	6
62	A digital imaging method for evaluating the kinetics of vapochromic response. <i>Talanta</i> , 2020 , 209, 1205	20 2	6
61	Nanoperlite effect on thermal, rheological, surface and cellular properties of poly lactic acid/nanoperlite nanocomposites for multipurpose applications. <i>Polymer Testing</i> , 2020 , 91, 106779	4.5	6
60	Cationic Covalent Organic Framework as an Ion Exchange Material for Efficient Adsorptive Separation of Biomolecules. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 35019-35025	9.5	6
59	Whey protein improves the stability of C-phycocyanin in acidified conditions during light storage. <i>Food Chemistry</i> , 2021 , 344, 128642	8.5	6

58	Changes in the Glutinous Rice Grain and Physicochemical Properties of Its Starch upon Moderate Treatment with Pulsed Electric Field. <i>Foods</i> , 2021 , 10,	4.9	6
57	Facile preparation of superhydrophobic and oleophobic surfaces via the combination of Cu(0)-mediated reversible-deactivation radical polymerization and click chemistry. <i>Journal of Polymer Science Part A</i> , 2018 , 56, 1684-1694	2.5	6
56	Exceptional colloidal stability of acidified whey protein beverages stabilized by soybean soluble polysaccharide. <i>Journal of Food Science</i> , 2020 , 85, 989-997	3.4	5
55	A novel paper based colorimetric assay for the detection of TiO2 nanoparticles. <i>Analytical Methods</i> , 2018 , 10, 275-280	3.2	5
54	Purification technology for renewable production of fuel from methanolysis of waste sunflower oil in the presence of high silica zeolite beta. <i>Green Chemistry Letters and Reviews</i> , 2021 , 14, 2-14	4.7	5
53	Engineered Microbial Routes for Human Milk Oligosaccharides Synthesis. <i>ACS Synthetic Biology</i> , 2021 , 10, 923-938	5.7	5
52	l-Histidine Crystals as Efficient Vehicles to Deliver Hydrophobic Molecules. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 39376-39384	9.5	4
51	Expansion and rupture of charged microcapsules. <i>Materials Horizons</i> , 2014 , 1, 92-95	14.4	4
50	Bioactives in bovine milk: chemistry, technology, and applications. <i>Nutrition Reviews</i> , 2021 , 79, 48-69	6.4	4
49	Green synthesis of pyrano [3,2-b]pyran derivatives using nano SiMgfluorapatite catalyst and the evaluation of their antibacterial and antioxidant properties. <i>Medicinal Chemistry Research</i> , 2020 , 29, 17	9 2 -180	3 ⁴
48	Biological small-molecule assays using gradient-based microfluidics. <i>Biosensors and Bioelectronics</i> , 2021 , 178, 113038	11.8	4
47	Solvent-mediated pressure-treated bixin-casein complexation for targeted color delivery. <i>Food Chemistry</i> , 2019 , 278, 434-442	8.5	4
46	Improvement of lactoferrin thermal stability by complex coacervation using soy soluble polysaccharides. <i>Food Hydrocolloids</i> , 2022 , 107736	10.6	4
45	Water-Triggered Rapid Release of Biocide with Enhanced Antimicrobial Activity in Biodiesel. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900156	3.9	3
44	Mitigating the Astringency of Acidified Whey Protein in Proteinaceous High Internal Phase Emulsions <i>ACS Applied Bio Materials</i> , 2020 , 3, 8438-8445	4.1	3
43	Preparation and characterization of polylactic-co-glycolic acid/insulin nanoparticles encapsulated in methacrylate coated gelatin with sustained release for specific medical applications. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2020 , 31, 910-937	3.5	3
42	Synthesis of Cross-Linked Spherical Polycationic Adsorbents for Enhanced Heparin Recovery. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 2822-2831	5.5	3
41	Quantitative comparison of adsorption and desorption of commonly used sweeteners in the oral cavity. <i>Food Chemistry</i> , 2019 , 271, 577-580	8.5	3

40	Instantaneous interaction of mucin with pectin- and carrageenan-coated nanoemulsions. <i>Food Chemistry</i> , 2020 , 309, 125795	8.5	3
39	The Impact of High-Pressure Processing on the Structure and Sensory Properties of Egg White-Whey Protein Mixture at Acidic Conditions. <i>Food and Bioprocess Technology</i> , 2020 , 13, 379-389	5.1	3
38	The molecular mechanism of the photocatalytic oxidation reactions by horseradish peroxidase in the presence of histidine. <i>Green Chemistry</i> , 2020 , 22, 6105-6114	10	3
37	Flavor components, precursors, formation mechanisms, production and characterization methods: garlic, onion, and chili pepper flavors. <i>Critical Reviews in Food Science and Nutrition</i> , 2021 , 1-23	11.5	3
36	Selective Electrochemical Capture and Release of Heparin Based on Amine-Functionalized Carbon/Titanium Dioxide Nanotube Arrays <i>ACS Applied Bio Materials</i> , 2019 , 2, 2685-2697	4.1	2
35	A Spiderweb-Like Metal©rganic Framework Multifunctional Foam. <i>Angewandte Chemie</i> , 2020 , 132, 9593	3 <i>-</i> 9 6 00	2
34	Multiple Emulsions 2018 , 69-103		2
33	Effect of surfactant addition on particle properties of whey proteins and their subsequent complexation with salivary proteins. <i>International Dairy Journal</i> , 2018 , 87, 107-113	3.5	2
32	Effect of flagellar beating pattern on sperm rheotaxis and boundary-dependent navigation		2
31	Peptide-directed Pd-decorated Au and PdAu nanocatalysts for degradation of nitrite in water <i>RSC Advances</i> , 2021 , 11, 32615-32621	3.7	2
30	Diffusion-Convection Hybrid Microfluidic Platform for Rapid Antibiotic Susceptibility Testing. <i>Analytical Chemistry</i> , 2021 , 93, 5789-5796	7.8	2
29	Antimicrobial Susceptibility Testing in a Rapid Single Test via an Egg-like Multivolume Microchamber-Based Microfluidic Platform. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> 13, 19581-1958	5925	2
28	Elucidating the Interaction Mechanism of Folic Acid with Ovalbumin by Multispectroscopic and Molecular Simulation Methods. <i>ACS Food Science & Technology</i> , 2021 , 1, 660-668		2
27	Rolling controls sperm navigation in response to the dynamic rheological properties of the environment. <i>ELife</i> , 2021 , 10,	8.9	2
26	Improved thermal stability of phycocyanin under acidic conditions by forming soluble complexes with polysaccharides. <i>Food Hydrocolloids</i> , 2021 , 119, 106852	10.6	2
25	Catalyzed Oxidation of Carotenoids by Lactoperoxidase in the Presence of Ethanol. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 1742-1748	5.7	1
24	One-Pot Synthesis of Cross-Linked Polymer Networks as a Hydrophilic Super-Adsorbent for Efficient Recovery of Heparin. <i>ACS Applied Polymer Materials</i> , 2019 , 1, 230-238	4.3	1
23	Photo-crosslinked gelatinpolyvinyl alcohol composite films: UVfiboflavin treatment for improving functional properties. <i>Journal of Food Processing and Preservation</i> , 2020 , 44, e14550	2.1	1

22	The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices <i>Journal of Assisted Reproduction and Genetics</i> , 2022 , 39, 19	3.4	1
21	Progressive Sperm Separation Using Parallelized, High-Throughput, Microchamber-based Microfluidics		1
20	Gradient-Based Microfluidic Platform for One Single Rapid Antimicrobial Susceptibility Testing. <i>ACS Sensors</i> , 2021 , 6, 1560-1571	9.2	1
19	Xylose-rich Horse Manure Hydrolysate as the Sole Carbon Source for Bacterial Production of Polyhydroxy Butyrate Using Engineered Escherichia coli. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 8946-8950	8.3	1
18	O-124 Contact-free oocyte denudation in a chip-scale ultrasonic microfluidic device. <i>Human Reproduction</i> , 2021 , 36,	5.7	1
17	Application of granular cold-water-swelling starch as a clean-label oil structurant. <i>Food Hydrocolloids</i> , 2021 , 112, 106311	10.6	1
16	Nature-Derived Amphiphilic Polymers Crosslinked by Calcium Ions for Microencapsulation Applications. <i>ACS Applied Polymer Materials</i> , 2021 , 3, 1415-1425	4.3	1
15	Cu(0)-mediated reversible-deactivation radical polymerization of n-butyl acrylate in suspension. <i>Polymer</i> , 2018 , 153, 464-473	3.9	1
14	Development and characterization of probiotic mucilage based edible films for the preservation of fruits and vegetables. <i>Scientific Reports</i> , 2021 , 11, 16608	4.9	1
13	Monitoring the heme iron state in horseradish peroxidase to detect ultratrace amounts of hydrogen peroxide in alcohols <i>RSC Advances</i> , 2021 , 11, 9901-9910	3.7	1
12	Synergistic effects of ascorbic acid, low methoxy pectin, and EDTA on stabilizing the natural red colors in acidified beverages <i>Current Research in Food Science</i> , 2021 , 4, 873-881	5.6	0
11	Improved photostability of folic acid by the radical-scavenging effect of tannic acid. <i>LWT - Food Science and Technology</i> , 2021 , 142, 111050	5.4	O
10	Dihydronicotinamide riboside: synthesis from nicotinamide riboside chloride, purification and stability studies <i>RSC Advances</i> , 2021 , 11, 21036-21047	3.7	0
9	Progressive bovine sperm separation using parallelized microchamber-based microfluidics. <i>Lab on A Chip</i> , 2021 , 21, 2791-2804	7.2	O
8	Synthesis of arylhydrazone-based molecular switches using aryldiazonium silica sulfate nanocomposites and analysis of their isomerization. <i>Dyes and Pigments</i> , 2021 , 194, 109544	4.6	0
7	Physico-mechanical, Antimicrobial, and Antioxidant Properties of Gelatin Edible Films Incorporated with Olibanum Essential Oil and Sodium Hexametaphosphate on the Rainbow Trout Fillet Under Refrigerated Conditions. <i>Journal of Polymers and the Environment</i> , 2021 , 29, 2174-2184	4.5	O
6	Granulation and encapsulation of N-Acetylcysteine (NAC) by internal phase separation. <i>Food Hydrocolloids</i> , 2022 , 107699	10.6	0
5	pH-responsive delivery of rebaudioside a sweetener via mucoadhesive whey protein isolate core-shell nanocapsules. <i>Food Hydrocolloids</i> , 2022 , 129, 107657	10.6	О

4	Impact of protein/peptide templates on metallic nanoparticle synthesis and applications. <i>Nano Structures Nano Objects</i> , 2022 , 30, 100864	5.6	O
3	Microbiome-within-a-Membrane: A Microfluidic-Based Model for Spatially Constrained Culture of Intestinal Microbiota (Adv. Funct. Mater. 48/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870339	15.6	
2	How Much Bean Hemagglutinin Is Safe for Human Consumption?. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 6937-6939	5.7	
1	Physicochemical interactions between mucin and low-calorie sweeteners: Real-time characterization and rheological analyses. <i>LWT - Food Science and Technology</i> , 2022 , 159, 113252	5.4	