Helen F Fredricks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2955618/publications.pdf

Version: 2024-02-01

30 3,221 18 30 g-index

30 30 30 30 3376

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Global ocean lipidomes show a universal relationship between temperature and lipid unsaturation. Science, 2022, 376, 1487-1491.	12.6	39
2	Whole Community Metatranscriptomes and Lipidomes Reveal Diverse Responses Among Antarctic Phytoplankton to Changing Ice Conditions. Frontiers in Marine Science, $2021,8,.$	2.5	4
3	Targeted and untargeted lipidomic analysis of haptophyte cultures reveals novel and divergent nutrient-stress adaptations. Organic Geochemistry, 2021, 161, 104315.	1.8	9
4	Using High-Sensitivity Lipidomics To Assess Microscale Heterogeneity in Oceanic Sinking Particles and Single Phytoplankton Cells. Environmental Science & Environmental Science & 2021, 55, 15456-15465.	10.0	6
5	Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nature Communications, 2021, 12, 6634.	12.8	19
6	Coordinated transformation of the gut microbiome and lipidome of bowhead whales provides novel insights into digestion. ISME Journal, 2020, 14, 688-701.	9.8	18
7	The mutual interplay between calcification and coccolithovirus infection. Environmental Microbiology, 2019, 21, 1896-1915.	3.8	23
8	Biochemical diversity of glycosphingolipid biosynthesis as a driver of <i>Coccolithovirus</i> competitive ecology. Environmental Microbiology, 2019, 21, 2182-2197.	3.8	12
9	Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nature Communications, 2018, 9, 5179.	12.8	63
10	The molecular products and biogeochemical significance of lipid photooxidation in West Antarctic surface waters. Geochimica Et Cosmochimica Acta, 2018, 232, 244-264.	3.9	11
11	Intact polar lipid export in the temperate western North Atlantic and Sargasso Sea. Organic Geochemistry, 2017, 114, 45-56.	1.8	9
12	Phosphorus starvation induces membrane remodeling and recycling in <i>Emiliania huxleyi</i> . New Phytologist, 2016, 211, 886-898.	7.3	78
13	LOBSTAHS: An Adduct-Based Lipidomics Strategy for Discovery and Identification of Oxidative Stress Biomarkers. Analytical Chemistry, 2016, 88, 7154-7162.	6.5	65
14	Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency. ISME Journal, 2016, 10, 968-978.	9.8	95
15	Targeted and untargeted lipidomics of Emiliania huxleyi viral infection and life cycle phases highlights molecular biomarkers of infection, susceptibility, and ploidy. Frontiers in Marine Science, 2015, 2, .	2.5	37
16	SAR11 lipid renovation in response to phosphate starvation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7767-7772.	7.1	87
17	Physiological modifications of seston in response to physicochemical gradients within Lake Superior. Limnology and Oceanography, 2014, 59, 1011-1026.	3.1	17
18	Novel molecular determinants of viral susceptibility and resistance in the lipidome of <scp><i>E</i></scp> <i>miliania huxleyi</i> Environmental Microbiology, 2014, 16, 1137-1149.	3.8	68

#	Article	IF	CITATIONS
19	Quantitative exploration of the contribution of settlement, growth, dispersal and grazing to the accumulation of natural marine biofilms on antifouling and fouling-release coatings. Biofouling, 2014, 30, 223-236.	2.2	16
20	Virus infection of Haptolina ericina and Phaeocystis pouchetii implicates evolutionary conservation of programmed cell death induction in marine haptophyte–virus interactions. Journal of Plankton Research, 2014, 36, 943-955.	1.8	8
21	Molecular Ionâ€Independent Quantification of Polar Glycerolipid Classes in Marine Plankton Using Triple Quadrupole MS. Lipids, 2013, 48, 185-195.	1.7	65
22	Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19327-19332.	7.1	189
23	Bacterial and eukaryotic intact polar lipids in the eastern subtropical South Pacific: Water-column distribution, planktonic sources, and fatty acid composition. Geochimica Et Cosmochimica Acta, 2010, 74, 6499-6516.	3.9	87
24	Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 2009, 458, 69-72.	27.8	662
25	Detection of microbial biomass by intact polar membrane lipid analysis in the water column and surface sediments of the Black Sea. Environmental Microbiology, 2009, 11, 2720-2734.	3.8	158
26	Viral Glycosphingolipids Induce Lytic Infection and Cell Death in Marine Phytoplankton. Science, 2009, 326, 861-865.	12.6	229
27	Intact polar lipids of anaerobic methanotrophic archaea and associated bacteria. Organic Geochemistry, 2008, 39, 992-999.	1.8	118
28	Vertical distribution of microbial lipids and functional genes in chemically distinct layers of a highly polluted meromictic lake. Organic Geochemistry, 2008, 39, 1572-1588.	1.8	30
29	Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3846-3851.	7.1	654
30	Sulfolipids dramatically decrease phosphorus demand by picocyanobacteria in oligotrophic marine environments. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8607-8612.	7.1	345