
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2954871/publications.pdf Version: 2024-02-01



LUDE DOBNIKAD

| #  | Article                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | The Lennard-Jones potential: when (not) to use it. Physical Chemistry Chemical Physics, 2020, 22, 10624-10633.                                                                  | 2.8  | 133       |
| 2  | Field-Induced Self-Assembly of Suspended Colloidal Membranes. Physical Review Letters, 2009, 103, 228301.                                                                       | 7.8  | 127       |
| 3  | Direct Measurement of Three-Body Interactions amongst Charged Colloids. Physical Review Letters, 2004, 92, 078301.                                                              | 7.8  | 110       |
| 4  | The crucial effect of early-stage gelation on the mechanical properties of cement hydrates. Nature Communications, 2016, 7, 12106.                                              | 12.8 | 109       |
| 5  | Emergent colloidal dynamics in electromagnetic fields. Soft Matter, 2013, 9, 3693.                                                                                              | 2.7  | 100       |
| 6  | Observation of Condensed Phases of Quasiplanar Core-Softened Colloids. Physical Review Letters, 2007, 99, 248301.                                                               | 7.8  | 98        |
| 7  | E. coli Superdiffusion and Chemotaxis—Search Strategy, Precision, and Motility. Biophysical Journal, 2009, 97, 946-957.                                                         | 0.5  | 85        |
| 8  | Liquid-crystalline ordering of antimicrobial peptide–DNA complexes controls TLR9 activation. Nature<br>Materials, 2015, 14, 696-700.                                            | 27.5 | 75        |
| 9  | Optimal multivalent targeting of membranes with many distinct receptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7210-7215. | 7.1  | 71        |
| 10 | Testing the relevance of effective interaction potentials between highly-charged colloids in suspension. New Journal of Physics, 2006, 8, 277-277.                              | 2.9  | 54        |
| 11 | Many-body interactions and the melting of colloidal crystals. Journal of Chemical Physics, 2003, 119, 4971-4985.                                                                | 3.0  | 53        |
| 12 | Three-body interactions in colloidal systems. Physical Review E, 2004, 69, 031402.                                                                                              | 2.1  | 51        |
| 13 | Pattern Formation and Coarse-Graining in Two-Dimensional Colloids Driven by Multiaxial Magnetic<br>Fields. Langmuir, 2014, 30, 5088-5096.                                       | 3.5  | 50        |
| 14 | Counterion-mediated electrostatic interactions between helical molecules. Soft Matter, 2009, 5, 868-877.                                                                        | 2.7  | 46        |
| 15 | On the Origin and Characteristics of Noise-Induced Lévy Walks of E. Coli. PLoS ONE, 2011, 6, e18623.                                                                            | 2.5  | 45        |
| 16 | Rational design of molecularly imprinted polymers. Soft Matter, 2016, 12, 35-44.                                                                                                | 2.7  | 44        |
| 17 | Nanoparticle Organization in Sandwiched Polymer Brushes. Nano Letters, 2014, 14, 2617-2622.                                                                                     | 9.1  | 37        |
| 18 | Membrane potential drives direct translocation of cell-penetrating peptides. Nanoscale, 2019, 11, 1949-1958.                                                                    | 5.6  | 36        |

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Spontaneous Wenzel to Cassie dewetting transition on structured surfaces. Physical Review Fluids, 2016, 1, .                                                                              | 2.5  | 36        |
| 20 | Predicting DNA-mediated colloidal pair interactions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E378-9; author reply E380.               | 7.1  | 30        |
| 21 | Crystallinity of Double-Stranded RNA-Antimicrobial Peptide Complexes Modulates Toll-Like Receptor<br>3-Mediated Inflammation. ACS Nano, 2017, 11, 12145-12155.                            | 14.6 | 30        |
| 22 | Effect of many-body interactions on the solid-liquid phase behavior of charge-stabilized colloidal suspensions. Europhysics Letters, 2003, 61, 695-701.                                   | 2.0  | 29        |
| 23 | New universal aspects of diffusion in strongly chaotic systems. Journal of Physics A, 1997, 30,<br>L803-L813.                                                                             | 1.6  | 24        |
| 24 | Ground states of colloidal molecular crystals on periodic substrates. Soft Matter, 2008, 4, 1491.                                                                                         | 2.7  | 23        |
| 25 | Dynamic Assembly of Magnetic Colloidal Vortices. Langmuir, 2016, 32, 5094-5101.                                                                                                           | 3.5  | 23        |
| 26 | Ground states of model core-softened colloids. Journal of Physics Condensed Matter, 2008, 20,<br>494220.                                                                                  | 1.8  | 21        |
| 27 | Poisson–Boltzmann Brownian dynamics of charged colloids in suspension. Computer Physics<br>Communications, 2004, 159, 73-92.                                                              | 7.5  | 20        |
| 28 | Assembly of Superparamagnetic Filaments in External Field. Langmuir, 2016, 32, 9321-9328.                                                                                                 | 3.5  | 20        |
| 29 | Collective ordering of colloids in grafted polymer layers. Soft Matter, 2013, 9, 5565.                                                                                                    | 2.7  | 19        |
| 30 | Controlling Cargo Trafficking in Multicomponent Membranes. Nano Letters, 2018, 18, 5350-5356.                                                                                             | 9.1  | 19        |
| 31 | Layering, freezing, and re-entrant melting of hard spheres in soft confinement. Physical Review E, 2012, 85, 021502.                                                                      | 2.1  | 18        |
| 32 | A review of immune amplification via ligand clustering by self-assembled liquid–crystalline DNA complexes. Advances in Colloid and Interface Science, 2016, 232, 17-24.                   | 14.7 | 18        |
| 33 | Spontaneous Domain Formation in Spherically Confined Elastic Filaments. Physical Review Letters, 2019, 123, 047801.                                                                       | 7.8  | 17        |
| 34 | Phonon dispersion curves of two-dimensional colloidal crystals: the wavelength-dependence of friction. Soft Matter, 2008, 4, 2199.                                                        | 2.7  | 16        |
| 35 | Chemotactic Sensing towards Ambient and Secreted Attractant Drives Collective Behaviour of E. coli.<br>PLoS ONE, 2013, 8, e74878.                                                         | 2.5  | 16        |
| 36 | Computational design of probes to detect bacterial genomes by multivalent binding. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8719-8726. | 7.1  | 14        |

| #  | Article                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Designing stimulus-sensitive colloidal walkers. Soft Matter, 2014, 10, 3463-3470.                                                                                            | 2.7 | 13        |
| 38 | Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation. Scientific Reports, 2017, 7, 45467.                                | 3.3 | 13        |
| 39 | What experiments on pinned nanobubbles can tell about the critical nucleus for bubble nucleation.<br>European Physical Journal E, 2017, 40, 114.                             | 1.6 | 13        |
| 40 | Particle-stabilized Janus emulsions that exhibit pH-tunable stability. Chemical Communications, 2019, 55, 5773-5776.                                                         | 4.1 | 11        |
| 41 | Pseudo-Casimir force in confined nematic polymers. Europhysics Letters, 2001, 53, 735-741.                                                                                   | 2.0 | 9         |
| 42 | Effect of Topographical Steps on the Surface Motility of the Bacterium <i>Pseudomonas aeruginosa</i> . ACS Biomaterials Science and Engineering, 2019, 5, 6436-6445.         | 5.2 | 9         |
| 43 | Controlling the morphological evolution of a particle-stabilized binary-component system. Chemical<br>Communications, 2019, 55, 5575-5578.                                   | 4.1 | 9         |
| 44 | Colloidal ionic complexes on periodic substrates: Ground-state configurations and pattern switching. Physical Review E, 2011, 83, 041403.                                    | 2.1 | 8         |
| 45 | Two-dimensional magnetic colloids under shear. Soft Matter, 2016, 12, 3142-3148.                                                                                             | 2.7 | 7         |
| 46 | Bonding interactions between ligand-decorated colloidal particles. Molecular Physics, 2018, 116, 3392-3400.                                                                  | 1.7 | 7         |
| 47 | The Effect of Attractive Interactions and Macromolecular Crowding on Crystallins Association. PLoS ONE, 2016, 11, e0151159.                                                  | 2.5 | 7         |
| 48 | Small Obstacle in a Large Polar Flock. Physical Review Letters, 2022, 128, .                                                                                                 | 7.8 | 7         |
| 49 | Energy level statistics in the transition regime between integrability and chaos for systems without<br>an anti-unitary symmetry. Journal of Physics A, 1999, 32, 1427-1438. | 1.6 | 6         |
| 50 | Research progress of bicontinuous interfacially jammed emulsion gel (Bijel). Wuli Xuebao/Acta<br>Physica Sinica, 2018, 67, 144701.                                           | 0.5 | 6         |
| 51 | Casimir and pseudo-Casimir interactions in confined polyelectrolytes. Journal of Chemical Physics, 2001, 115, 1951-1959.                                                     | 3.0 | 5         |
| 52 | Active microrheology in two-dimensional magnetic networks. Soft Matter, 2019, 15, 4437-4444.                                                                                 | 2.7 | 5         |
| 53 | Effect of the interaction strength and anisotropy on the diffusio-phoresis of spherical colloids. Soft<br>Matter, 2020, 16, 3621-3627.                                       | 2.7 | 4         |
| 54 | Dimeric and dipolar ground state orders in colloidal molecular crystals. Anais Da Academia Brasileira<br>De Ciencias, 2010, 82, 87-94.                                       | 0.8 | 3         |

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Coarse Graining Escherichia coli Chemotaxis: From Multi-flagella Propulsion to Logarithmic Sensing.<br>Advances in Experimental Medicine and Biology, 2012, 736, 381-396. | 1.6 | 3         |
| 56 | Dynamic Assembly of Magnetic Nanocolloids. Frontiers of Nanoscience, 2019, 13, 23-36.                                                                                     | 0.6 | 2         |
| 57 | Multi-component random model of diffusion in chaotic systems. Journal of Physics A, 1999, 32, 1147-1162.                                                                  | 1.6 | 1         |
| 58 | Three- and four-body interactions in colloidal systems. , 2004, , .                                                                                                       |     | 1         |
| 59 | Phase behaviour of colloidal assemblies on 2D corrugated substrates. Journal of Physics Condensed<br>Matter, 2012, 24, 284118.                                            | 1.8 | 1         |
| 60 | Effect of social distancing on super-spreading diseases: why pandemics modelling is more challenging than molecular simulation. Molecular Physics, 0, , e1936247.         | 1.7 | 1         |