Stephen Jesse

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2954485/stephen-jesse-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 336 14,019 101 h-index g-index citations papers 8.2 6.47 15,473 339 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
336	Building an Integrated Ecosystem of Computational and Observational Facilities to Accelerate Scientific Discovery. <i>Communications in Computer and Information Science</i> , 2022 , 58-75	0.3	1
335	Mapping Conductance and Switching Behavior of Graphene Devices In Situ Small Methods, 2022, 6, e2	101245	5 2
334	Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. <i>Nanotechnology</i> , 2021 , 32, 035703	3.4	4
333	Oxygen Vacancy Injection as a Pathway to Enhancing Electromechanical Response in Ferroelectrics. <i>Advanced Materials</i> , 2021 , e2106426	24	1
332	Exploring order parameters and dynamic processes in disordered systems via variational autoencoders. <i>Science Advances</i> , 2021 , 7,	14.3	11
331	van der Waals Epitaxy Growth of Bi2Se3 on a Freestanding Monolayer Graphene Membrane: Implications for Layered Materials and Heterostructures. <i>ACS Applied Nano Materials</i> , 2021 , 4, 7607-76	13 ^{5.6}	
330	Atomic-scale Feedback-controlled Electron Beam Fabrication of 2D Materials. <i>Microscopy and Microanalysis</i> , 2021 , 27, 3072-3073	0.5	
329	Autonomous Experiments in Scanning Probe Microscopy and Spectroscopy: Choosing Where to Explore Polarization Dynamics in Ferroelectrics. <i>ACS Nano</i> , 2021 ,	16.7	8
328	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. <i>ACS Nano</i> , 2021 ,	16.7	11
327	Doping transition-metal atoms in graphene for atomic-scale tailoring of electronic, magnetic, and quantum topological properties. <i>Carbon</i> , 2021 , 173, 205-214	10.4	12
326	Imaging Secondary Electron Emission from a Single Atomic Layer Small Methods, 2021, 5, e2000950	12.8	2
325	Signal Origin of Electrochemical Strain Microscopy and Link to Local Chemical Distribution in Solid State Electrolytes <i>Small Methods</i> , 2021 , 5, e2001279	12.8	4
324	Probing polarization dynamics at specific domain configurations: Computer-vision based automated experiment in piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2021 , 119, 132902	3.4	3
323	Probing Metastable Domain Dynamics Automated Experimentation in Piezoresponse Force Microscopy. <i>ACS Nano</i> , 2021 , 15, 15096-15103	16.7	2
322	Piezoresponse amplitude and phase quantified for electromechanical characterization. <i>Journal of Applied Physics</i> , 2020 , 128, 171105	2.5	10
321	Accurately Imaging, Tracking and Moving Single Atoms. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2556-25	5 5 57.5	
320	Twin domains modulate light-matter interactions in metal halide perovskites. <i>APL Materials</i> , 2020 , 8, 011106	5.7	12

(2020-2020)

319	Strain Themical Gradient and Polarization in Metal Halide Perovskites. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901235	6.4	14
318	Electron-beam introduction of heteroatomic PtBi structures in graphene. <i>Carbon</i> , 2020 , 161, 750-757	10.4	13
317	Variable voltage electron microscopy: Toward atom-by-atom fabrication in 2D materials. <i>Ultramicroscopy</i> , 2020 , 211, 112949	3.1	11
316	Imaging mechanism for hyperspectral scanning probe microscopy via Gaussian process modelling. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	9
315	Detection of defects in atomic-resolution images of materials using cycle analysis. <i>Advanced Structural and Chemical Imaging</i> , 2020 , 6,	3.9	10
314	Bayesian Microscopy: Model Selection for Extracting Weak Nonlinearities from Scanning Probe Microscopy Data. <i>Microscopy and Microanalysis</i> , 2020 , 26, 2126-2127	0.5	
313	Doping of Cr in Graphene Using Electron Beam Manipulation for Functional Defect Engineering. <i>ACS Applied Nano Materials</i> , 2020 , 3, 10855-10863	5.6	7
312	Tunable quadruple-well ferroelectric van der Waals crystals. <i>Nature Materials</i> , 2020 , 19, 43-48	27	61
311	Statistical learning of governing equations of dynamics from in-situ electron microscopy imaging data. <i>Materials and Design</i> , 2020 , 195, 108973	8.1	5
310	Nanoscale Mass Spectrometry Multimodal Imaging Tip-Enhanced Photothermal Desorption. <i>ACS Nano</i> , 2020 ,	16.7	3
309	Dynamic Manipulation in Piezoresponse Force Microscopy: Creating Nonequilibrium Phases with Large Electromechanical Response. <i>ACS Nano</i> , 2020 , 14, 10569-10577	16.7	7
308	Fast Scanning Probe Microscopy via Machine Learning: Non-Rectangular Scans with Compressed Sensing and Gaussian Process Optimization. <i>Small</i> , 2020 , 16, e2002878	11	19
307	Local Strain and Polarization Mapping in Ferrielectric Materials. <i>ACS Applied Materials & ACS Applied & ACS</i>	9.5	2
306	Super-resolution and signal separation in contact Kelvin probe force microscopy of electrochemically active ferroelectric materials. <i>Journal of Applied Physics</i> , 2020 , 128, 055101	2.5	3
305	Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. <i>Npj Computational Materials</i> , 2020 , 6,	10.9	1
304	Bayesian inference in band excitation scanning probe microscopy for optimal dynamic model selection in imaging. <i>Journal of Applied Physics</i> , 2020 , 128, 054105	2.5	4
303	Ferroelectricity in Si-Doped Hafnia: Probing Challenges in Absence of Screening Charges. <i>Nanomaterials</i> , 2020 , 10,	5.4	7
302	To switch or not to switch has machine learning approach for ferroelectricity. <i>Nanoscale Advances</i> , 2020 , 2, 2063-2072	5.1	6

301	Light-Ferroic Interaction in Hybrid OrganicIhorganic Perovskites. <i>Advanced Optical Materials</i> , 2019 , 7, 1901451	8.1	20
300	A self-driving microscope and the Atomic Forge. MRS Bulletin, 2019, 44, 669-670	3.2	9
299	Unsupervised Machine Learning to Distill Structural-Property Insights from 4D-STEM. <i>Microscopy and Microanalysis</i> , 2019 , 25, 12-13	0.5	
298	Few-cycle Regime Atomic Force Microscopy. <i>Scientific Reports</i> , 2019 , 9, 12721	4.9	3
297	Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study. <i>Science Advances</i> , 2019 , 5, eaaw8989	14.3	41
296	Ferroelectric domain engineering of lithium niobate single crystal confined in glass. <i>MRS Communications</i> , 2019 , 9, 334-339	2.7	5
295	Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	74
294	Atom-by-atom fabrication with electron beams. <i>Nature Reviews Materials</i> , 2019 , 4, 497-507	73.3	42
293	Application of pan-sharpening algorithm for correlative multimodal imaging using AFM-IR. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	3
292	Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	28
291	Time-Resolved Electrical Scanning Probe Microscopy of Layered Perovskites Reveals Spatial Variations in Photoinduced Ionic and Electronic Carrier Motion. <i>ACS Nano</i> , 2019 , 13, 2812-2821	16.7	30
290	Spectral Map Reconstruction Using Pan-Sharpening Algorithm: Enhancing Chemical Imaging with AFM-IR. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1024-1025	0.5	O
289	Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2076-2077	0.5	3
288	A STEM-based Path Towards Atomic-scale Silicon-based Devices. <i>Microscopy and Microanalysis</i> , 2019 , 25, 2290-2291	0.5	
287	Compressive Sensing on Diverse STEM Scans: Real-time Feedback, Low-dose and Dynamic Range. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1688-1689	0.5	O
286	Lab on a beam B ig data and artificial intelligence in scanning transmission electron microscopy. <i>MRS Bulletin</i> , 2019 , 44, 565-575	3.2	15
285	From Control of the Electron Beam to Control of Single Atoms. <i>Microscopy and Microanalysis</i> , 2019 , 25, 1678-1679	0.5	
284	Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric. <i>Physical Review Materials</i> , 2019 , 3,	3.2	25

(2018-2019)

283	Atomic Mechanisms for the Si Atom Dynamics in Graphene: Chemical Transformations at the Edge and in the Bulk. <i>Advanced Functional Materials</i> , 2019 , 29, 1904480	15.6	17	
282	Reply to: On the ferroelectricity of CHNHPbI perovskites. <i>Nature Materials</i> , 2019 , 18, 1051-1053	27	21	
281	Manifold learning of four-dimensional scanning transmission electron microscopy. <i>Npj Computational Materials</i> , 2019 , 5,	10.9	19	
280	Direct atomic fabrication and dopant positioning in Si using electron beams with active real-time image-based feedback. <i>Nanotechnology</i> , 2018 , 29, 255303	3.4	31	
279	Dynamic mechanical control of local vacancies in NiO thin films. <i>Nanotechnology</i> , 2018 , 29, 275709	3.4	7	
278	Mitigating e-beam-induced hydrocarbon deposition on graphene for atomic-scale scanning transmission electron microscopy studies. <i>Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics</i> , 2018 , 36, 011801	1.3	20	
277	Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. <i>Advanced Structural and Chemical Imaging</i> , 2018 , 4, 3	3.9	22	
276	Machine learning-enabled identification of material phase transitions based on experimental data: Exploring collective dynamics in ferroelectric relaxors. <i>Science Advances</i> , 2018 , 4, eaap8672	14.3	37	
275	Dynamic Modes in Kelvin Probe Force Microscopy: Band Excitation and G-Mode. <i>Springer Series in Surface Sciences</i> , 2018 , 49-99	0.4	3	
274	Surface Chemistry Controls Anomalous Ferroelectric Behavior in Lithium Niobate. <i>ACS Applied Materials & Materials</i>	9.5	13	
273	Locally Controlled Cu-Ion Transport in Layered Ferroelectric CuInPS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 27188-27194	9.5	35	
272	E-beam manipulation of Si atoms on graphene edges with an aberration-corrected scanning transmission electron microscope. <i>Nano Research</i> , 2018 , 11, 6217-6226	10	17	
271	Atom-by-Atom Assembly in Aberration Corrected STEM and the Role of Chemistry at the Surface of Graphene. <i>Microscopy and Microanalysis</i> , 2018 , 24, 326-327	0.5		
270	Automated Atom-by-Atom Assembly of Structures in Graphene: The Rise of STEM for Atomic Scale Control. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1594-1595	0.5		
269	Theory-assisted determination of nano-rippling and impurities in atomic resolution images of angle-mismatched bilayer graphene. <i>2D Materials</i> , 2018 , 5, 041008	5.9	3	
268	Building Structures Atom by Atom via Electron Beam Manipulation. <i>Small</i> , 2018 , 14, e1801771	11	55	
267	Chemical nature of ferroelastic twin domains in CHNHPbI perovskite. <i>Nature Materials</i> , 2018 , 17, 1013-7	10 1/ 9	114	
266	Dynamic behavior of CH3NH3PbI3 perovskite twin domains. <i>Applied Physics Letters</i> , 2018 , 113, 072102	3.4	26	

265	Time resolved surface photovoltage measurements using a big data capture approach to KPFM. <i>Nanotechnology</i> , 2018 , 29, 445703	3.4	26
264	Direct Probing of Polarization Charge at Nanoscale Level. <i>Advanced Materials</i> , 2018 , 30, 1703675	24	18
263	Graphene Defect Editing, Deposition, and Growth via E-Beam-Induced Organic Reactions in Aberration Corrected STEM. <i>Microscopy and Microanalysis</i> , 2018 , 24, 1994-1995	0.5	1
262	Decoupling Mesoscale Functional Response in PLZT across the Ferroelectric-Relaxor Phase Transition with Contact Kelvin Probe Force Microscopy and Machine Learning. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 42674-42680	9.5	6
261	Towards Atomic-Scale Fabrication in Silicon. <i>Microscopy and Microanalysis</i> , 2018 , 24, 158-159	0.5	
260	Compressed Sensing of Scanning Transmission Electron Microscopy (STEM) With Nonrectangular Scans. <i>Microscopy and Microanalysis</i> , 2018 , 24, 623-633	0.5	22
259	Elasticity Modulation Due to Polarization Reversal and Ionic Motion in the Ferroelectric Superionic Conductor KTiOPO. <i>ACS Applied Materials & English States</i> , 10, 32298-32303	9.5	8
258	Machine Detection of Enhanced Electromechanical Energy Conversion in PbZr Ti O Thin Films. <i>Advanced Materials</i> , 2018 , 30, e1800701	24	14
257	High-veracity functional imaging in scanning probe microscopy via Graph-Bootstrapping. <i>Nature Communications</i> , 2018 , 9, 2428	17.4	11
256	Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images. <i>Npj Computational Materials</i> , 2018 , 4,	10.9	24
255	Synergetic effects of K and Mg ion intercalation on the electrochemical and actuation properties of the two-dimensional TiC MXene. <i>Faraday Discussions</i> , 2017 , 199, 393-403	3.6	50
254	Improved spatial resolution for spot sampling in thermal desorption atomic force microscopy - mass spectrometry via rapid heating functions. <i>Nanoscale</i> , 2017 , 9, 5708-5717	7.7	9
253	Mixed electrochemical derroelectric states in nanoscale ferroelectrics. <i>Nature Physics</i> , 2017 , 13, 812-818	16.2	72
252	Ferroelectric or non-ferroelectric: Why so many materials exhibit E erroelectricity l on the nanoscale. <i>Applied Physics Reviews</i> , 2017 , 4, 021302	17.3	195
251	Enhancing Ion Migration in Grain Boundaries of Hybrid OrganicIhorganic Perovskites by Chlorine. <i>Advanced Functional Materials</i> , 2017 , 27, 1700749	15.6	51
250	Direct Imaging of the Relaxation of Individual Ferroelectric Interfaces in a Tensile-Strained Film. <i>Advanced Electronic Materials</i> , 2017 , 3, 1600508	6.4	7
249	Precision controlled atomic resolution scanning transmission electron microscopy using spiral scan pathways. <i>Scientific Reports</i> , 2017 , 7, 43585	4.9	16
248	Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy. <i>Nanotechnology</i> , 2017 , 28, 065704	3.4	37

(2016-2017)

247	Placing single atoms in graphene with a scanning transmission electron microscope. <i>Applied Physics Letters</i> , 2017 , 111, 113104	3.4	87
246	Atom-by-atom fabrication by electron beam via induced phase transformations. <i>MRS Bulletin</i> , 2017 , 42, 653-659	3.2	16
245	Three-State Ferroelastic Switching and Large Electromechanical Responses in PbTiO Thin Films. <i>Advanced Materials</i> , 2017 , 29, 1702069	24	53
244	Breaking the Time Barrier in Kelvin Probe Force Microscopy: Fast Free Force Reconstruction Using the G-Mode Platform. <i>ACS Nano</i> , 2017 , 11, 8717-8729	16.7	50
243	Automated Interpretation and Extraction of Topographic Information from Time of Flight Secondary Ion Mass Spectrometry Data. <i>Scientific Reports</i> , 2017 , 7, 17099	4.9	18
242	Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. <i>ACS Nano</i> , 2017 , 11, 12742-12752	16.7	183
241	Decoding Apparent Ferroelectricity in Perovskite Nanofibers. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 42131-42138	9.5	5
240	G-mode - Full Information Capture Applied to Scanning Probe Microscopy. <i>Microscopy and Microanalysis</i> , 2017 , 23, 184-185	0.5	
239	Atomistic-Scale Simulations of Defect Formation in Graphene under Noble Gas Ion Irradiation. <i>ACS Nano</i> , 2016 , 10, 8376-84	16.7	92
238	Exploring Polarization Rotation Instabilities in Super-Tetragonal BiFeO3 Epitaxial Thin Films and Their Technological Implications. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600307	6.4	9
237	Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space. <i>Scientific Reports</i> , 2016 , 6, 30557	4.9	39
236	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. <i>Scientific Reports</i> , 2016 , 6, 30481	4.9	55
235	Acoustic Detection of Phase Transitions at the Nanoscale. Advanced Functional Materials, 2016, 26, 478-	41856 6	25
234	Nanoscale Elastic Changes in 2D Ti3C2Tx (MXene) Pseudocapacitive Electrodes. <i>Advanced Energy Materials</i> , 2016 , 6, 1502290	21.8	92
233	Graphene engineering by neon ion beams. <i>Nanotechnology</i> , 2016 , 27, 125302	3.4	20
232	Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy. Nanotechnology, 2016 , 27, 105706	3.4	33
231	Nanoscale mapping of heterogeneity of the polarization reversal in lead-free relaxor-ferroelectric ceramic composites. <i>Nanoscale</i> , 2016 , 8, 2168-76	7.7	25
230	Fire up the atom forge. <i>Nature</i> , 2016 , 539, 485-487	50.4	55

229	Local Crystallography for Quantitative Analysis of Atomically Resolved Images. <i>Microscopy and Microanalysis</i> , 2016 , 22, 948-949	0.5	
228	Local Probing of Ferroelectric and Ferroelastic Switching through Stress-Mediated Piezoelectric Spectroscopy. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500470	4.6	15
227	Nanosculpting of complex oxides by massive ionic transfer. <i>Nanotechnology</i> , 2016 , 27, 505703	3.4	1
226	High Performance Computing Tools for Cross Correlation of Multi-Dimensional Data Sets Across Instrument Platforms. <i>Microscopy and Microanalysis</i> , 2016 , 22, 288-289	0.5	
225	Submicron Spatial Resolution in Thermal Desorption Mass Spectrometry via Rapid Heating Functions using Thermal AFM Probes. <i>Microscopy and Microanalysis</i> , 2016 , 22, 368-369	0.5	1
224	Inverse Problem Solution for Quantitative Investigations of Nanocrystals Formation and Growth. <i>Microscopy and Microanalysis</i> , 2016 , 22, 794-795	0.5	
223	Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy. <i>Nanotechnology</i> , 2016 , 27, 425707	3.4	80
222	Rapid mapping of polarization switching through complete information acquisition. <i>Nature Communications</i> , 2016 , 7, 13290	17.4	15
221	Decoupling indirect topographic cross-talk in band excitation piezoresponse force microscopy imaging and spectroscopy. <i>Applied Physics Letters</i> , 2016 , 108, 252902	3.4	13
220	G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics. <i>Applied Physics Letters</i> , 2016 , 108, 193103	3.4	21
219	Correlation between piezoresponse nonlinearity and hysteresis in ferroelectric crystals at the nanoscale. <i>Applied Physics Letters</i> , 2016 , 108, 172905	3.4	2
218	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-18	16.7	76
217	Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites. <i>Nano Letters</i> , 2016 , 16, 3630-7	11.5	103
216	Polarization Control via He-Ion Beam Induced Nanofabrication in Layered Ferroelectric Semiconductors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7349-55	9.5	17
215	Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach. <i>Nanoscale</i> , 2016 , 8, 13838-58	7.7	22
215		7·7 3·4	12
	approach. <i>Nanoscale</i> , 2016 , 8, 13838-58 Imaging via complete cantilever dynamic detection: general dynamic mode imaging and		

(2015-2016)

211	Phases and Interfaces from Real Space Atomically Resolved Data: Physics-Based Deep Data Image Analysis. <i>Nano Letters</i> , 2016 , 16, 5574-81	11.5	26
210	Complete information acquisition in dynamic force microscopy. <i>Nature Communications</i> , 2015 , 6, 6550	17.4	44
209	Bias assisted scanning probe microscopy direct write lithography enables local oxygen enrichment of lanthanum cuprates thin films. <i>Nanotechnology</i> , 2015 , 26, 325302	3.4	1
208	Identification of phases, symmetries and defects through local crystallography. <i>Nature Communications</i> , 2015 , 6, 7801	17.4	51
207	Co-registered Topographical, Band Excitation Nanomechanical, and Mass Spectral Imaging Using a Combined Atomic Force Microscopy/Mass Spectrometry Platform. <i>ACS Nano</i> , 2015 , 9, 4260-9	16.7	27
206	Defective interfaces in yttrium-doped barium zirconate films and consequences on proton conduction. <i>Nano Letters</i> , 2015 , 15, 2343-9	11.5	20
205	Domain pinning near a single-grain boundary in tetragonal and rhombohedral lead zirconate titanate films. <i>Physical Review B</i> , 2015 , 91,	3.3	25
204	Domain Wall Motion Across Various Grain Boundaries in Ferroelectric Thin Films. <i>Journal of the American Ceramic Society</i> , 2015 , 98, 1848-1857	3.8	29
203	Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection. <i>Nanotechnology</i> , 2015 , 26, 175707	3.4	23
202	Quantitative Description of Crystal Nucleation and Growth from in Situ Liquid Scanning Transmission Electron Microscopy. <i>ACS Nano</i> , 2015 , 9, 11784-91	16.7	36
201	Band excitation Kelvin probe force microscopy utilizing photothermal excitation. <i>Applied Physics Letters</i> , 2015 , 106, 104102	3.4	14
200	Big data in reciprocal space: Sliding fast Fourier transforms for determining periodicity. <i>Applied Physics Letters</i> , 2015 , 106, 091601	3.4	29
199	Mesoscopic harmonic mapping of electromechanical response in a relaxor ferroelectric. <i>Applied Physics Letters</i> , 2015 , 106, 222901	3.4	8
198	Nanoscale mapping of electromechanical response in ionic conductive ceramics with piezoelectric inclusions. <i>Journal of Applied Physics</i> , 2015 , 118, 072014	2.5	14
197	Patterning: Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). <i>Small</i> , 2015 , 11, 5854-5854	11	2
196	Paving the way to nanoionics: atomic origin of barriers for ionic transport through interfaces. <i>Scientific Reports</i> , 2015 , 5, 17229	4.9	31
195	Full information acquisition in piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2015 , 107, 26310	032.4	26
194	Current and surface charge modified hysteresis loops in ferroelectric thin films. <i>Journal of Applied Physics</i> , 2015 , 118, 072013	2.5	49

193	Multidimensional dynamic piezoresponse measurements: Unraveling local relaxation behavior in relaxor-ferroelectrics via big data. <i>Journal of Applied Physics</i> , 2015 , 118, 072003	2.5	15
192	Deep Data Analysis of Atomic Level Structure-Property Relationship in an Iron Superconductor Fe 105 Te 075 Se 025. <i>Microscopy and Microanalysis</i> , 2015 , 21, 2345-2346	0.5	
191	Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films. <i>APL Materials</i> , 2015 , 3, 036106	5.7	3
190	Atomic-Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. <i>Small</i> , 2015 , 11, 5895-900	11	53
189	Quantitative Nanometer-Scale Mapping of Dielectric Tunability. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500088	4.6	6
188	Kelvin probe force microscopy in liquid using electrochemical force microscopy. <i>Beilstein Journal of Nanotechnology</i> , 2015 , 6, 201-14	3	28
187	Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy. <i>ACS Nano</i> , 2015 , 9, 6484-92	16.7	191
186	A-site stoichiometry and piezoelectric response in thin film PbZr1\(\mathbb{Z}\)TixO3. <i>Journal of Applied Physics</i> , 2015 , 117, 204104	2.5	12
185	Big data and deep data in scanning and electron microscopies: deriving functionality from multidimensional data sets. <i>Advanced Structural and Chemical Imaging</i> , 2015 , 1, 6	3.9	63
184	Electrocatalysis-induced elasticity modulation in a superionic proton conductor probed by band-excitation atomic force microscopy. <i>Nanoscale</i> , 2015 , 7, 20089-94	7.7	5
183	Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy. <i>ACS Nano</i> , 2015 , 9, 1848-57	16.7	35
182	Carrier density modulation in a germanium heterostructure by ferroelectric switching. <i>Nature Communications</i> , 2015 , 6, 6067	17.4	64
181	Probing charge screening dynamics and electrochemical processes at the solid-liquid interface with electrochemical force microscopy. <i>Nature Communications</i> , 2014 , 5, 3871	17.4	73
180	Intermittency, quasiperiodicity and chaos in probe-induced ferroelectric domain switching. <i>Nature Physics</i> , 2014 , 10, 59-66	16.2	116
179	Water-mediated electrochemical nano-writing on thin ceria films. <i>Nanotechnology</i> , 2014 , 25, 075701	3.4	11
178	Dual harmonic Kelvin probe force microscopy at the graphenellquid interface. <i>Applied Physics Letters</i> , 2014 , 104, 133103	3.4	42
177	Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. <i>ACS Nano</i> , 2014 , 8, 10229-36	16.7	110
176	Breaking the limits of structural and mechanical imaging of the heterogeneous structure of coal macerals. <i>Nanotechnology</i> , 2014 , 25, 435402	3.4	12

(2013-2014)

175	Deterministic arbitrary switching of polarization in a ferroelectric thin film. <i>Nature Communications</i> , 2014 , 5, 4971	17.4	31
174	Direct probing of charge injection and polarization-controlled ionic mobility on ferroelectric LiNbO(3) surfaces. <i>Advanced Materials</i> , 2014 , 26, 958-63	24	44
173	Band excitation in scanning probe microscopy: recognition and functional imaging. <i>Annual Review of Physical Chemistry</i> , 2014 , 65, 519-36	15.7	88
172	Deep data analysis of conductive phenomena on complex oxide interfaces: physics from data mining. <i>ACS Nano</i> , 2014 , 8, 6449-57	16.7	63
171	Mapping internal structure of coal by confocal micro-Raman spectroscopy and scanning microwave microscopy. <i>Fuel</i> , 2014 , 126, 32-37	7.1	30
170	Influence of a Single Grain Boundary on Domain Wall Motion in Ferroelectrics. <i>Advanced Functional Materials</i> , 2014 , 24, 1409-1417	15.6	57
169	Spatially-resolved mapping of history-dependent coupled electrochemical and electronical behaviors of electroresistive NiO. <i>Scientific Reports</i> , 2014 , 4, 6725	4.9	10
168	Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis. <i>APL Materials</i> , 2014 , 2, 120701	5.7	10
167	Effect of doping on surface reactivity and conduction mechanism in samarium-doped ceria thin films. <i>ACS Nano</i> , 2014 , 8, 12494-501	16.7	29
166	Chemically induced Jahn-Teller ordering on manganite surfaces. <i>Nature Communications</i> , 2014 , 5, 4528	17.4	22
165	Second harmonic detection in the electrochemical strain microscopy of Ag-ion conducting glass. <i>Applied Physics Letters</i> , 2014 , 105, 193106	3.4	9
164	Controlled mechnical modification of manganite surface with nanoscale resolution. <i>Nanotechnology</i> , 2014 , 25, 475302	3.4	8
163	Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr1-xTixO3 Epitaxial Thin Films. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400098	4.6	11
162	Fundamental limitation to the magnitude of piezoelectric response of <001>pc textured K0.5Na0.5NbO3 ceramic. <i>Applied Physics Letters</i> , 2014 , 104, 172902	3.4	24
161	Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices. <i>ACS Nano</i> , 2013 , 7, 6806-15	16.7	38
160	Probing local ionic dynamics in functional oxides at the nanoscale. <i>Nano Letters</i> , 2013 , 13, 3455-62	11.5	49
159	Toward quantitative electrochemical measurements on the nanoscale by scanning probe microscopy: environmental and current spreading effects. <i>ACS Nano</i> , 2013 , 7, 8175-82	16.7	18
158	Mechanical control of electroresistive switching. <i>Nano Letters</i> , 2013 , 13, 4068-74	11.5	48

157	Nanoscale Probing of Voltage Activated Oxygen Reduction/Evolution Reactions in Nanopatterned (LaxSr1-x)CoO3-ICathodes. <i>Advanced Energy Materials</i> , 2013 , 3, 788-797	21.8	18
156	Open loop Kelvin probe force microscopy with single and multi-frequency excitation. Nanotechnology, 2013, 24, 475702	3.4	53
155	Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes. <i>Scientific Reports</i> , 2013 , 3, 1621	4.9	28
154	Local crystallography analysis for atomically resolved scanning tunneling microscopy images. <i>Nanotechnology</i> , 2013 , 24, 415707	3.4	12
153	Frequency spectroscopy of irreversible electrochemical nucleation kinetics on the nanoscale. <i>Nanoscale</i> , 2013 , 5, 11964-70	7.7	11
152	Probing Bias-Dependent Electrochemical GasBolid Reactions in (LaxSr1☑)CoO3ICathode Materials. <i>Advanced Functional Materials</i> , 2013 , 23, 5027-5036	15.6	9
151	Spatially resolved mapping of oxygen reduction/evolution reaction on solid-oxide fuel cell cathodes with sub-10 nm resolution. <i>ACS Nano</i> , 2013 , 7, 3808-14	16.7	24
150	Towards the limit of ferroelectric nanostructures: switchable sub-10 nm nanoisland arrays. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5299	7.1	15
149	Direct probe of interplay between local structure and superconductivity in FeTelBellACS Nano, 2013 , 7, 2634-41	16.7	23
148	Local probing of electrochemically induced negative differential resistance in TiO2 memristive materials. <i>Nanotechnology</i> , 2013 , 24, 085702	3.4	17
147	Polarization Dynamics in Ferroelectric Capacitors: Local Perspective on Emergent Collective Behavior and Memory Effects. <i>Advanced Functional Materials</i> , 2013 , 23, 2490-2508	15.6	21
146	Variable temperature electrochemical strain microscopy of Sm-doped ceria. <i>Nanotechnology</i> , 2013 , 24, 145401	3.4	17
145	Universality of Polarization Switching Dynamics in Ferroelectric Capacitors Revealed by 5D Piezoresponse Force Microscopy. <i>Advanced Functional Materials</i> , 2013 , 23, 3971-3979	15.6	20
144	Mapping nanoscale variations in photochemical damage of polymer/fullerene solar cells with dissipation imaging. <i>ACS Nano</i> , 2013 , 7, 10405-13	16.7	18
143	Nanoscale Origins of Nonlinear Behavior in Ferroic Thin Films. <i>Advanced Functional Materials</i> , 2013 , 23, 81-90	15.6	18
142	Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N. <i>Nanotechnology</i> , 2013 , 24, 475701	3.4	3
141	Higher order harmonic detection for exploring nonlinear interactions with nanoscale resolution. <i>Scientific Reports</i> , 2013 , 3, 2677	4.9	15
140	Unraveling the origins of electromechanical response in mixed-phase bismuth ferrite. <i>Physical Review B</i> , 2013 , 88,	3.3	28

139	Influence of the interfacing with an electrically inhomogeneous bottom electrode on the ferroelectric properties of epitaxial PbTiO3. <i>Applied Physics Letters</i> , 2013 , 103, 192901	3.4	3
138	In Situ Formation of Micron-Scale Li-Metal Anodes with High Cyclability. <i>ECS Electrochemistry Letters</i> , 2013 , 3, A4-A7		2
137	Correlative multimodal probing of ionically-mediated electromechanical phenomena in simple oxides. <i>Scientific Reports</i> , 2013 , 3, 2924	4.9	32
136	Nanoscale mapping of oxygen vacancy kinetics in nanocrystalline Samarium doped ceria thin films. <i>Applied Physics Letters</i> , 2013 , 103, 171605	3.4	21
135	ELECTROCHEMICAL STRAIN MICROSCOPY OF LI-ION AND LI-AIR BATTERY MATERIALS. World Scientific Series in Nanoscience and Nanotechnology, 2013 , 393-454	0.1	2
134	Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. <i>MRS Bulletin</i> , 2012 , 37, 651-658	3.2	77
133	Probing surface and bulk electrochemical processes on the LaAlO3-SrTiO3 interface. <i>ACS Nano</i> , 2012 , 6, 3841-52	16.7	62
132	Ionically-mediated electromechanical hysteresis in transition metal oxides. ACS Nano, 2012, 6, 7026-33	16.7	72
131	Poly(Ecaprolactone)-banded spherulites and interaction with MC3T3-E1 cells. <i>Langmuir</i> , 2012 , 28, 4382-	954	27
130	Local detection of activation energy for ionic transport in lithium cobalt oxide. <i>Nano Letters</i> , 2012 , 12, 3399-403	11.5	50
129	First-order reversal curve probing of spatially resolved polarization switching dynamics in ferroelectric nanocapacitors. <i>ACS Nano</i> , 2012 , 6, 491-500	16.7	47
128	Probing local electromechanical effects in highly conductive electrolytes. ACS Nano, 2012, 6, 10139-46	16.7	12
127	Substrate clamping effects on irreversible domain wall dynamics in lead zirconate titanate thin films. <i>Physical Review Letters</i> , 2012 , 108, 157604	7.4	92
126	High-frequency electromechanical imaging of ferroelectrics in a liquid environment. <i>ACS Nano</i> , 2012 , 6, 5559-65	16.7	15
125	Dynamic piezoresponse force microscopy: Spatially resolved probing of polarization dynamics in time and voltage domains. <i>Journal of Applied Physics</i> , 2012 , 112, 052021	2.5	28
124	Electromechanical and elastic probing of bacteria in a cell culture medium. <i>Nanotechnology</i> , 2012 , 23, 245705	3.4	9
123	Controlling magnetoelectric coupling by nanoscale phase transformation in strain engineered bismuth ferrite. <i>Nanoscale</i> , 2012 , 4, 3175-83	7.7	34
122	Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3. <i>Nature Physics</i> , 2012 , 8, 81-88	16.2	271

121	Multifrequency imaging in the intermittent contact mode of atomic force microscopy: beyond phase imaging. <i>Small</i> , 2012 , 8, 1264-9	11	21
120	Banded Spherulitic Morphology in Blends of Poly (propylene fumarate) and Poly(?-caprolactone) and Interaction with MC3T3-E1 Cells. <i>Macromolecular Chemistry and Physics</i> , 2012 , 213, 1239-1250	2.6	7
119	Open-loop band excitation Kelvin probe force microscopy. <i>Nanotechnology</i> , 2012 , 23, 125704	3.4	28
118	Ultrathin limit and dead-layer effects in local polarization switching of BiFeO3. <i>Physical Review B</i> , 2012 , 85,	3.3	60
117	Nanoscale Ferroelectricity in Crystalline EGlycine. Advanced Functional Materials, 2012, 22, 2996-3003	15.6	94
116	Ferroelectric domain scaling and switching in ultrathin BiFeO3films deposited on vicinal substrates. <i>New Journal of Physics</i> , 2012 , 14, 053040	2.9	17
115	Spectroscopic imaging in piezoresponse force microscopy: New opportunities for studying polarization dynamics in ferroelectrics and multiferroics. <i>MRS Communications</i> , 2012 , 2, 61-73	2.7	34
114	Half-harmonic Kelvin probe force microscopy with transfer function correction. <i>Applied Physics Letters</i> , 2012 , 100, 063118	3.4	18
113	Three-dimensional vector electrochemical strain microscopy. <i>Journal of Applied Physics</i> , 2012 , 112, 0520) 2 05	24
112	Role of measurement voltage on hysteresis loop shape in Piezoresponse Force Microscopy. <i>Applied Physics Letters</i> , 2012 , 101, 192902	3.4	48
111	The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries. <i>Nanotechnology</i> , 2012 , 23, 325402	3.4	27
110	Electrochemical Strain Microscopy: Probing Electrochemical Transformations in Nanoscale Volumes. <i>Microscopy Today</i> , 2012 , 20, 10-15	0.4	11
109	Band excitation in scanning probe microscopy: sines of change. <i>Journal Physics D: Applied Physics</i> , 2011 , 44, 464006	3	141
108	Combined atomic force microscope-based topographical imaging and nanometer-scale resolved proximal probe thermal desorption/electrospray ionization-mass spectrometry. <i>ACS Nano</i> , 2011 , 5, 552	6-317	41
107	Designing piezoelectric films for micro electromechanical systems. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2011 , 58, 1782-92	3.2	38
106	Nonlinear phenomena in multiferroic nanocapacitors: joule heating and electromechanical effects. <i>ACS Nano</i> , 2011 , 5, 9104-12	16.7	65
105	The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. <i>ACS Nano</i> , 2011 , 5, 5683-91	16.7	101
104	Measuring oxygen reduction/evolution reactions on the nanoscale. <i>Nature Chemistry</i> , 2011 , 3, 707-13	17.6	220

103	Compositional disorder, polar nanoregions and dipole dynamics in Pb(Mg1/3Nb2/3)O3-based relaxor ferroelectrics. <i>Zeitschrift Fl Kristallographie</i> , 2011 , 226, 99-107		42
102	Polarization Manipulation via Orientation Control in Polycrystalline BiFeO3Thin Films on Biaxially Textured, Flexible Metallic Tapes. <i>Applied Physics Express</i> , 2011 , 4, 021501	2.4	5
101	Composition dependence of local piezoelectric nonlinearity in (0.3)Pb(Ni0.33Nb0.67)O3-(0.7)Pb(ZrxTi1🛭)O3 films. <i>Journal of Applied Physics</i> , 2011 , 110, 044109	2.5	9
100	Li-ion dynamics and reactivity on the nanoscale. <i>Materials Today</i> , 2011 , 14, 548-558	21.8	68
99	Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT. <i>Advanced Functional Materials</i> , 2011 , 21, 941-947	15.6	23
98	Ferroelectric Materials: Probing Local and Global Ferroelectric Phase Stability and Polarization Switching in Ordered Macroporous PZT (Adv. Funct. Mater. 5/2011). <i>Advanced Functional Materials</i> , 2011 , 21, 802-802	15.6	1
97	Reduced coercive field in BiFeOlthin films through domain engineering. <i>Advanced Materials</i> , 2011 , 23, 669-72	24	68
96	Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in li ion conductive glass ceramics. <i>Nano Letters</i> , 2011 , 11, 4161-7	11.5	65
95	Temperature-dependent phase transitions in zeptoliter volumes of a complex biological membrane. <i>Nanotechnology</i> , 2011 , 22, 055709	3.4	12
94	Direct Mapping of Ion Diffusion Times on LiCoO2 Surfaces with Nanometer Resolution. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A982	3.9	41
93	Nanoscale control of phase variants in strain-engineered BiFeO[]Nano Letters, 2011 , 11, 3346-54	11.5	70
92	Direct mapping of ionic transport in a Si anode on the nanoscale: time domain electrochemical strain spectroscopy study. <i>ACS Nano</i> , 2011 , 5, 9682-95	16.7	59
91	Spatially resolved mapping of disorder type and distribution in random systems using artificial neural network recognition. <i>Physical Review B</i> , 2011 , 84,	3.3	17
90	Watching domains grow: In-situ studies of polarization switching by combined scanning probe and scanning transmission electron microscopy. <i>Journal of Applied Physics</i> , 2011 , 110, 052014	2.5	51
89	Mapping piezoelectric nonlinearity in the Rayleigh regime using band excitation piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2011 , 98, 212901	3.4	22
88	Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level. <i>Applied Physics Letters</i> , 2011 , 99, 252905	3.4	9
87	Real-space mapping of dynamic phenomena during hysteresis loop measurements: Dynamic switching spectroscopy piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2011 , 98, 202903	3.4	21
86	Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. <i>Nature Nanotechnology</i> , 2010 , 5, 749-54	28.7	460

85	Spatially resolved probing of Preisach density in polycrystalline ferroelectric thin films. <i>Journal of Applied Physics</i> , 2010 , 108, 084103	2.5	33
84	Direct evidence of mesoscopic dynamic heterogeneities at the surfaces of ergodic ferroelectric relaxors. <i>Physical Review B</i> , 2010 , 81,	3.3	71
83	Correlated polarization switching in the proximity of a 180\(\)domain wall. <i>Physical Review B</i> , 2010 , 82,	3.3	58
82	Collective dynamics underpins Rayleigh behavior in disordered polycrystalline ferroelectrics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 7219-24	11.5	102
81	Mapping Disorder in Polycrystalline Relaxors: A Piezoresponse Force Microscopy Approach. <i>Materials</i> , 2010 , 3, 4860-4870	3.5	15
80	Local measurements of Preisach density in polycrystalline ferroelectric capacitors using piezoresponse force spectroscopy. <i>Applied Physics Letters</i> , 2010 , 96, 112906	3.4	24
79	Real space mapping of polarization dynamics and hysteresis loop formation in relaxor-ferroelectric PbMg1/3Nb2/3O3PbTiO3 solid solutions. <i>Journal of Applied Physics</i> , 2010 , 108, 042006	2.5	43
78	Double-layer mediated electromechanical response of amyloid fibrils in liquid environment. <i>ACS Nano</i> , 2010 , 4, 689-98	16.7	32
77	Real space mapping of Li-ion transport in amorphous Si anodes with nanometer resolution. <i>Nano Letters</i> , 2010 , 10, 3420-5	11.5	215
76	Decoupling electrochemical reaction and diffusion processes in ionically-conductive solids on the nanometer scale. <i>ACS Nano</i> , 2010 , 4, 7349-57	16.7	90
75	Nanoscale switching characteristics of nearly tetragonal BiFeO3 thin films. <i>Nano Letters</i> , 2010 , 10, 2555	5 -61 .5	140
74	Morphology Mapping of Phase-Separated Polymer Films Using Nanothermal Analysis. <i>Macromolecules</i> , 2010 , 43, 6724-6730	5.5	30
73	Resolution theory, and static and frequency-dependent cross-talk in piezoresponse force microscopy. <i>Nanotechnology</i> , 2010 , 21, 405703	3.4	57
72	Band Excitation Scanning Probe Microscopies. <i>Microscopy Today</i> , 2010 , 18, 34-40	0.4	11
71	Defect-mediated polarization switching in ferroelectrics and related materials: from mesoscopic mechanisms to atomistic control. <i>Advanced Materials</i> , 2010 , 22, 314-22	24	52
70	Collective dynamics in nanostructured polycrystalline ferroelectric thin films using local time-resolved measurements and switching spectroscopy. <i>Acta Materialia</i> , 2010 , 58, 67-75	8.4	24
69	Ferroelastic domain wall dynamics in ferroelectric bilayers. <i>Acta Materialia</i> , 2010 , 58, 5316-5325	8.4	28
68	Spatially resolved spectroscopic mapping of polarization reversal in polycrystalline ferroelectric films: crossing the resolution barrier. <i>Physical Review Letters</i> , 2009 , 103, 057601	7.4	27

(2008-2009)

67	Time-resolved electronic phase transitions in manganites. <i>Physical Review Letters</i> , 2009 , 102, 087201	7.4	44
66	Mapping bias-induced phase stability and random fields in relaxor ferroelectrics. <i>Applied Physics Letters</i> , 2009 , 95, 092904	3.4	27
65	Single-crystal-like, c-axis oriented BaTiO3 thin films with high-performance on flexible metal templates for ferroelectric applications. <i>Applied Physics Letters</i> , 2009 , 94, 252903	3.4	18
64	Intrinsic nucleation mechanism and disorder effects in polarization switching on ferroelectric surfaces. <i>Physical Review Letters</i> , 2009 , 102, 017601	7.4	46
63	Disorder identification in hysteresis data: recognition analysis of the random-bond-random-field Ising model. <i>Physical Review Letters</i> , 2009 , 103, 157203	7.4	30
62	Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy. <i>Nanotechnology</i> , 2009 , 20, 395709	3.4	40
61	Adaptive probe trajectory scanning probe microscopy for multiresolution measurements of interface geometry. <i>Nanotechnology</i> , 2009 , 20, 255701	3.4	15
60	Principal component and spatial correlation analysis of spectroscopic-imaging data in scanning probe microscopy. <i>Nanotechnology</i> , 2009 , 20, 085714	3.4	94
59	Functional recognition imaging using artificial neural networks: applications to rapid cellular identification via broadband electromechanical response. <i>Nanotechnology</i> , 2009 , 20, 405708	3.4	27
58	Unraveling Deterministic Mesoscopic Polarization Switching Mechanisms: Spatially Resolved Studies of a Tilt Grain Boundary in Bismuth Ferrite. <i>Advanced Functional Materials</i> , 2009 , 19, 2053-2063	15.6	58
57	Defect-induced asymmetry of local hysteresis loops on BiFeO3 surfaces. <i>Journal of Materials Science</i> , 2009 , 44, 5095-5101	4.3	32
56	Deterministic control of ferroelastic switching in multiferroic materials. <i>Nature Nanotechnology</i> , 2009 , 4, 868-75	28.7	299
55	Intermittent contact mode piezoresponse force microscopy in a liquid environment. <i>Nanotechnology</i> , 2009 , 20, 195701	3.4	27
54	Switching spectroscopy piezoresponse force microscopy of polycrystalline capacitor structures. <i>Applied Physics Letters</i> , 2009 , 94, 042906	3.4	50
53	Spatial distribution of relaxation behavior on the surface of a ferroelectric relaxor in the ergodic phase. <i>Applied Physics Letters</i> , 2009 , 95, 142902	3.4	33
52	Polarization control of electron tunneling into ferroelectric surfaces. <i>Science</i> , 2009 , 324, 1421-5	33.3	398
51	Using Neural Network Algorithms for Compositional Mapping in STEM EELS. <i>Microscopy and Microanalysis</i> , 2009 , 15, 450-451	0.5	О
50	Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. <i>Nature Materials</i> , 2008 , 7, 209-15	27	235

49	AFM Investigation of Mechanical Properties of Dentin. Israel Journal of Chemistry, 2008, 48, 65-72	3.4	8
48	Local polarization switching in the presence of surface-charged defects: Microscopic mechanisms and piezoresponse force spectroscopy observations. <i>Physical Review B</i> , 2008 , 78,	3.3	31
47	Rapid multidimensional data acquisition in scanning probe microscopy applied to local polarization dynamics and voltage dependent contact mechanics. <i>Applied Physics Letters</i> , 2008 , 93, 112903	3.4	71
46	Local probing of relaxation time distributions in ferroelectric polymer nanomesas: Time-resolved piezoresponse force spectroscopy and spectroscopic imaging. <i>Applied Physics Letters</i> , 2008 , 92, 232903	3.4	22
45	Local thermomechanical characterization of phase transitions using band excitation atomic force acoustic microscopy with heated probe. <i>Applied Physics Letters</i> , 2008 , 93, 073104	3.4	40
44	Direct measurement of periodic electric forces in liquids. <i>Journal of Applied Physics</i> , 2008 , 103, 014306	2.5	9
43	Probing the role of single defects on the thermodynamics of electric-field induced phase transitions. <i>Physical Review Letters</i> , 2008 , 100, 155703	7.4	76
42	Piezoelectric response of nanoscale PbTiO3 in composite PbTiO3toFe2O4 epitaxial films. <i>Applied Physics Letters</i> , 2008 , 93, 074101	3.4	17
41	Nanoelectromechanics of Inorganic and Biological Systems: From Structural Imaging to Local Functionalities. <i>Microscopy Today</i> , 2008 , 16, 28-33	0.4	
40	Local bias-induced phase transitions. <i>Materials Today</i> , 2008 , 11, 16-27	21.8	46
40	Local bias-induced phase transitions. <i>Materials Today</i> , 2008 , 11, 16-27 Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. <i>Advanced Materials</i> , 2008 , 20, 109-114	21.8	46 50
	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics.		
39	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114 Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied	24	50
39	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114 Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108 Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films.	24	50 69
39 38 37	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114 Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108 Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Applied Physics Letters, 2007, 90, 122904 Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning	2.5	50 69 78
39 38 37 36	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114 Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108 Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Applied Physics Letters, 2007, 90, 122904 Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy. Annual Review of Materials Research, 2007, 37, 189-238 The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation	2.5 3.4 12.8	50 69 78 179
39 38 37 36 35	Spatially Resolved Mapping of Polarization Switching Behavior in Nanoscale Ferroelectrics. Advanced Materials, 2008, 20, 109-114 Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. Journal of Applied Physics, 2007, 102, 114108 Nanoscale polarization manipulation and imaging of ferroelectric Langmuir-Blodgett polymer films. Applied Physics Letters, 2007, 90, 122904 Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy. Annual Review of Materials Research, 2007, 37, 189-238 The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale. Nanotechnology, 2007, 18, 435503	24 2.5 3.4 12.8	50 69 78 179 383

(2006-2007)

31	Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. <i>Nanotechnology</i> , 2007 , 18, 405701	3.4	48
30	Quantitative determination of tip parameters in piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2007 , 90, 212905	3.4	29
29	Controlling polarization dynamics in a liquid environment: from localized to macroscopic switching in ferroelectrics. <i>Physical Review Letters</i> , 2007 , 98, 247603	7.4	43
28	Electromechanical detection in scanning probe microscopy: Tip models and materials contrast. <i>Journal of Applied Physics</i> , 2007 , 102, 014109	2.5	71
27	Fabrication, dynamics, and electrical properties of insulated scanning probe microscopy probes for electrical and electromechanical imaging in liquids. <i>Applied Physics Letters</i> , 2007 , 91, 093130	3.4	23
26	High frequency piezoresponse force microscopy in the 1-10MHz regime. <i>Applied Physics Letters</i> , 2007 , 91, 232904	3.4	23
25	Application of spectromicroscopy tools to explore local origins of sensor activity in quasi-1D oxide nanostructures. <i>Nanotechnology</i> , 2006 , 17, 4014-8	3.4	9
24	In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites. <i>Applied Physics Letters</i> , 2006 , 89, 013114	3.4	12
23	High resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy. <i>Physical Review Letters</i> , 2006 , 96, 237602	7.4	74
22	Scanning frequency mixing microscopy of high-frequency transport behavior at electroactive interfaces. <i>Applied Physics Letters</i> , 2006 , 88, 143128	3.4	8
21	Spatial resolution, information limit, and contrast transfer in piezoresponse force microscopy. <i>Nanotechnology</i> , 2006 , 17, 3400-11	3.4	67
20	Vector piezoresponse force microscopy. <i>Microscopy and Microanalysis</i> , 2006 , 12, 206-20	0.5	204
19	A decade of piezoresponse force microscopy: progress, challenges, and opportunities. <i>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control</i> , 2006 , 53, 2226-52	3.2	147
18	Quantitative mapping of switching behavior in piezoresponse force microscopy. <i>Review of Scientific Instruments</i> , 2006 , 77, 073702	1.7	178
17	Evidence for possible flexoelectricity in tobacco mosaic viruses used as nanotemplates. <i>Applied Physics Letters</i> , 2006 , 88, 153902	3.4	28
16	Observing the superparaelectric limit of relaxor (Na12Bi12)0.9Ba0.1TiO3 nanocrystals. <i>Applied Physics Letters</i> , 2006 , 89, 112901	3.4	10
15	Dynamic behaviour in piezoresponse force microscopy. <i>Nanotechnology</i> , 2006 , 17, 1615-28	3.4	102
14	Resonance enhancement in piezoresponse force microscopy: Mapping electromechanical activity, contact stiffness, and Q factor. <i>Applied Physics Letters</i> , 2006 , 89, 022906	3.4	105

13	Switching spectroscopy piezoresponse force microscopy of ferroelectric materials. <i>Applied Physics Letters</i> , 2006 , 88, 062908	3.4	332
12	Electromechanical imaging of biomaterials by scanning probe microscopy. <i>Journal of Structural Biology</i> , 2006 , 153, 151-9	3.4	49
11	Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. <i>Ultramicroscopy</i> , 2006 , 106, 334-40	3.1	62
10	LASER-BASED SYNTHESIS, DIAGNOSTICS, AND CONTROL OF SINGLE-WALLED CARBON NANOTUBES AND NANOHORNS FOR COMPOSITES AND BIOLOGICAL NANOVECTORS 2006 , 205-223		3
9	In situ measurements and modeling of carbon nanotube array growth kinetics during chemical vapor deposition. <i>Applied Physics A: Materials Science and Processing</i> , 2005 , 81, 223-240	2.6	281
8	Observation of ferroelectricity in a confined crystallite using electron-backscattered diffraction and piezoresponse force microscopy. <i>Applied Physics Letters</i> , 2005 , 87, 172903	3.4	11
7	Electronic transport imaging in a multiwire SnO2 chemical field-effect transistor device. <i>Journal of Applied Physics</i> , 2005 , 98, 044503	2.5	58
6	Electromechanical imaging of biological systems with sub-10nm resolution. <i>Applied Physics Letters</i> , 2005 , 87, 053901	3.4	89
5	Scanning probe microscopy imaging of frequency dependent electrical transport through carbon nanotube networks in polymers. <i>Nanotechnology</i> , 2004 , 15, 907-912	3.4	22
4	Dynamic Database Generation for Efficient Calculation of Stellarator Plasma Equilibria. <i>SIAM Journal of Scientific Computing</i> , 2004 , 25, 1880-1895	2.6	
3	In situ growth rate measurements and length control during chemical vapor deposition of vertically aligned multiwall carbon nanotubes. <i>Applied Physics Letters</i> , 2003 , 83, 1851-1853	3.4	117
2	Etching-enhanced Ablation and the Formation of a Microstructure in Silicon by Laser Irradiation in an SF6 Atmosphere. <i>Journal of Materials Research</i> , 2002 , 17, 1002-1013	2.5	22
1	Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres. <i>Applied Surface Science</i> , 2000 , 168, 251-257	6.7	37