Bingbing Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2954115/publications.pdf Version: 2024-02-01

RINCRING FAN

#	Article	IF	CITATIONS
1	Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance. International Materials Reviews, 2023, 68, 487-520.	9.4	19
2	MXene-based hybrid system exhibits excellent synergistic antibiosis. Nanotechnology, 2022, 33, 085101.	1.3	7
3	Electromagnetic Interference Shielding Performance of Flexible, Hydrophobic Honeycomb‧tructured Ag@Ti ₃ C ₂ T <i>_x</i> Composites. Advanced Electronic Materials, 2022, 8, 2101028.	2.6	12
4	Design of 3D lightweight Ti3C2T MXene porous film with graded holes for efficient electromagnetic interference shielding performance. Ceramics International, 2022, 48, 14578-14586.	2.3	14
5	The effect of honeycomb pore size on the electromagnetic interference shielding performance of multifunctional 3D honeycomb-like Ag/Ti3C2T hybrid structures. Ceramics International, 2022, 48, 16892-16900.	2.3	7
6	Twoâ€Dimensional C/MoS ₂ â€Functionalized Ti ₃ C ₂ T <i>_x</i> Nanosheets for Achieving Strong Electromagnetic Wave Absorption. Advanced Electronic Materials, 2022, 8, .	2.6	14
7	Tailoring electromagnetic responses of delaminated Mo2TiC2T MXene through the decoration of Ni particles of different morphologies. Chemical Engineering Journal, 2022, 440, 135855.	6.6	87
8	Synthesis and electromagnetic wave absorption of novel Mo2TiC2Tx MXene with diverse etching methods. Journal of Materials Science, 2022, 57, 7849-7862.	1.7	16
9	Ti ₃ C ₂ T _{<i>x</i>} /rGO aerogel towards high electromagnetic wave absorption and thermal resistance. CrystEngComm, 2022, 24, 4556-4563.	1.3	13
10	Sintering behavior of alumina whisker reinforced zirconia ceramics in hot oscillatory pressing. Journal of Advanced Ceramics, 2022, 11, 893-900.	8.9	21
11	Low Weight, low thermal Conductivity, and highly efficient electromagnetic wave absorption of Three-Dimensional Graphene/SiC-nanosheets aerogel. Composites Part A: Applied Science and Manufacturing, 2022, 158, 106980.	3.8	53
12	Promoting the electromagnetic interference shielding of Ti3C2T flakes by loading Fe3O4 nanoparticles: Insights into the performance of oligo-layers exposed to microwave interferences. Ceramics International, 2022, , .	2.3	12
13	Heterostructure composites of TiO2 and CdZnS nanoparticles decorated on Ti3C2Tx nanosheets and their enhanced photocatalytic performance by microwave hydrothermal method. Journal of Alloys and Compounds, 2022, 918, 165681.	2.8	5
14	Submicron Ti ₂ CT _{<i>x</i>} MXene particulates as high-rate intercalation anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15474-15484.	5.2	7
15	Recyclable magnetic carbon foams possessing voltage-controllable electromagnetic shielding and oil/water separation. Carbon, 2022, 197, 570-578.	5.4	15
16	Microwave-assisted hydrothermal synthesis of 2D/2D MoS2/Ti3C2T heterostructure for enhanced microwave absorbing performance. Journal of Alloys and Compounds, 2022, 923, 166253.	2.8	14
17	Heavy Mn-doped CsPbBr ₃ nanocrystals synthesized by high energy ball milling with high stability. Nanotechnology, 2022, 33, 455703.	1.3	3
18	Dense HfB2 ceramics fabricated by high-energy ball milling and spark plasma sintering. Materials Chemistry and Physics, 2021, 258, 123845.	2.0	6

#	Article	IF	CITATIONS
19	Preparation of lightweight corundum-mullite thermal insulation materials by microwave sintering. Processing and Application of Ceramics, 2021, 15, 170-178.	0.4	1
20	Enhancement of electromagnetic interference shielding from the synergism between Cu@Ni nanorods and carbon materials in flexible composite films. Materials Advances, 2021, 2, 718-727.	2.6	20
21	Multi-phase heterostructures of flower-like Ni(NiO) decorated on two-dimensional Ti3C2Tx/TiO2 for high-performance microwave absorption properties. Ceramics International, 2021, 47, 10764-10772.	2.3	26
22	Liquidâ€phaseâ€induced synthesis of SiC rods by microwave heating. Journal of Materials Science: Materials in Electronics, 2021, 32, 10803-10808.	1.1	1
23	Controlled Hydrothermal/Solvothermal Synthesis of Highâ€Performance LiFePO ₄ for Liâ€lon Batteries. Small Methods, 2021, 5, e2100193.	4.6	52
24	A highly durable CoO _x /N-doped graphitized-nano-diamond electrocatalyst for oxygen reduction reaction. Nanotechnology, 2021, 32, 355708.	1.3	5
25	High-Performance Joule Heating and Electromagnetic Shielding Properties of Anisotropic Carbon Scaffolds. ACS Applied Materials & Interfaces, 2021, 13, 29101-29112.	4.0	51
26	Zero Lithium Miscibility Gap Enables High-Rate Equimolar Li(Mn _, Fe)PO ₄ Solid Solution. Nano Letters, 2021, 21, 5091-5097.	4.5	9
27	Facile synthesis of N/B co-doped hierarchically porous carbon materials based on threonine protic ionic liquids for supercapacitor. Electrochimica Acta, 2021, 380, 138230.	2.6	25
28	Nanosecond Laser Cleaning Method to Reduce the Surface Inert Layer and Activate the Garnet Electrolyte for a Solid-State Li Metal Battery. ACS Applied Materials & Interfaces, 2021, 13, 37082-37090.	4.0	35
29	Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. Journal of Advanced Ceramics, 2021, 10, 1042-1051.	8.9	96
30	Tailoring Microwave Electromagnetic Responses in Ti ₃ C ₂ T _{<i>x</i>} MXene with Fe ₃ O ₄ Nanoparticle Decoration via a Solvothermal Method. Journal of Physical Chemistry C, 2021, 125, 19914-19924.	1.5	33
31	High-energy ball milling assisted one-step preparation of g-C3N4/TiO2@Ti3C2 composites for effective visible light degradation of pollutants. Journal of Alloys and Compounds, 2021, 889, 161771.	2.8	14
32	Z-scheme TiO2@Ti3C2/Cd0.5Zn0.5S nanocomposites with efficient photocatalytic performance via one-step hydrothermal route. Nanotechnology, 2021, 32, 015706.	1.3	12
33	Solvent-Free Process for Blended PVDF-HFP/PEO and LLZTO Composite Solid Electrolytes with Enhanced Mechanical and Electrochemical Properties for Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 11802-11812.	2.5	43
34	The Fabrication and Mechanical Properties of Laminated ZrB2-Mo5SiB2 Ceramics with an Mo-Mo5SiB2 Interlayer. Metals, 2021, 11, 2018.	1.0	5
35	Co decorated polymer-derived SiCN ceramic aerogel composites with ultrabroad microwave absorption performance. Journal of Alloys and Compounds, 2020, 813, 152007.	2.8	40
36	The influence of additive and temperature on thermal shock resistance of ZrB2 based composites fabricated by Spark Plasma Sintering. Materials Chemistry and Physics, 2020, 240, 122061.	2.0	19

#	Article	IF	CITATIONS
37	Interlayer engineering of Ti ₃ C ₂ T _x MXenes towards high capacitance supercapacitors. Nanoscale, 2020, 12, 763-771.	2.8	73
38	Flexible PVDF/carbon materials/Ni composite films maintaining strong electromagnetic wave shielding under cyclic microwave irradiation. Journal of Materials Chemistry C, 2020, 8, 500-509.	2.7	76
39	Investigation of adjacent spacing dependent microwave absorption properties of lamellar structural Ti3C2Tx MXenes. Advanced Powder Technology, 2020, 31, 808-815.	2.0	62
40	Constructing Î ³ -MnO2 hollow spheres with tunable microwave absorption properties. Advanced Powder Technology, 2020, 31, 4642-4647.	2.0	10
41	Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chemical Society Reviews, 2020, 49, 6666-6693.	18.7	466
42	Hypoxia-Responsive Polymeric Micelles for Enhancing Cancer Treatment. Frontiers in Chemistry, 2020, 8, 742.	1.8	12
43	Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIMâ€1). Electroanalysis, 2020, 32, 2756-2763.	1.5	5
44	Ultrastable MXene@Pt/SWCNTs' Nanocatalysts for Hydrogen Evolution Reaction. Advanced Functional Materials, 2020, 30, 2000693.	7.8	164
45	Preparation of Al ₂ O ₃ â€mullite thermal insulation materials with AlF ₃ and SiC as aids by microwave sintering. International Journal of Applied Ceramic Technology, 2020, 17, 2250-2258.	1.1	13
46	One-Step Incorporation of Nitrogen and Vanadium between Ti ₃ C ₂ <i>T</i> _{<i>x</i>} MXene Interlayers Enhances Lithium Ion Storage Capability. Journal of Physical Chemistry C, 2020, 124, 6012-6021.	1.5	24
47	Triple-synergistic 2D material-based dual-delivery antibiotic platform. NPG Asia Materials, 2020, 12, .	3.8	43
48	2D-layered Ti3C2/TiO2 hybrids derived from Ti3C2 MXenes for enhanced electromagnetic wave absorption. Ceramics International, 2020, 46, 17085-17092.	2.3	50
49	Fabrication and properties of Si2N2O ceramics for microwave sintering furnace. Processing and Application of Ceramics, 2020, 14, 32-39.	0.4	11
50	Novel two-dimensional Ti3C2TX/Ni-spheres hybrids with enhanced microwave absorption properties. Ceramics International, 2019, 45, 22880-22888.	2.3	69
51	Preparation of corundum-mullite refractories with lightweight, high strength and high thermal shock resistance. Materialia, 2019, 8, 100517.	1.3	18
52	ZnO amounts-dependent electromagnetic wave absorption capabilities of Ni/ZnO composite microspheres. Journal of Materials Science: Materials in Electronics, 2019, 30, 19966-19976.	1.1	7
53	Preparation of hierarchical NiCo2O4 self-assembled by lamellar flakes and its microwave absorption. Journal of Materials Science: Materials in Electronics, 2019, 30, 17358-17362.	1.1	6
54	Microwave sintering and fracture behavior of zirconia ceramics. Ceramics International, 2019, 45, 17675-17680.	2.3	34

#	Article	IF	CITATIONS
55	Preparation and properties of dense ZrB ₂ composite reinforced by elongated SiC and Al ₃ BC ₃ grains. International Journal of Applied Ceramic Technology, 2019, 16, 2190-2196.	1.1	5
56	The effect of hydrothermal temperature on the crystallographic phase of MnO2 and their microwave absorption properties. Journal of Materials Science: Materials in Electronics, 2019, 30, 475-484.	1.1	15
57	Structure and piezoelectric properties of cazro3-modified (K,Na,Li)(Nb,Sb)O3 ceramics prepared from powders synthesized by microwave heating. Processing and Application of Ceramics, 2019, 13, 368-375.	0.4	2
58	Photo-responsive photonic crystals for broad wavelength shifts. Chemical Communications, 2018, 54, 3057-3060.	2.2	31
59	Temperature dependent AC electric conduction of polymer-derived SiAlCN ceramics. Ceramics International, 2018, 44, 8461-8466.	2.3	17
60	Novel two-dimensional Ti ₃ C ₂ T _x MXenes/nano-carbon sphere hybrids for high-performance microwave absorption. Journal of Materials Chemistry C, 2018, 6, 5690-5697.	2.7	215
61	Preparation of Magnetic Kaolinite Nanotubes for the Removal of Methylene Blue from Aqueous Solution. Journal of Inorganic and Organometallic Polymers and Materials, 2018, 28, 790-799.	1.9	17
62	Synthesis of Ag/rGO composite materials with antibacterial activities using facile and rapid microwave-assisted green route. Journal of Materials Science: Materials in Medicine, 2018, 29, 69.	1.7	21
63	A DOX-loaded polymer micelle for effectively inhibiting cancer cells. RSC Advances, 2018, 8, 25949-25954.	1.7	12
64	Effect of atmosphere on the fabrication of Si2N2O matrix composites. Processing and Application of Ceramics, 2018, 12, 66-71.	0.4	2
65	An impedance match method used to tune the electromagnetic wave absorption properties of hierarchical ZnO assembled by porous nanosheets. CrystEngComm, 2017, 19, 3640-3648.	1.3	51
66	ZrB ₂ ‣iC _w ceramic composites synthesized by in situ reaction and spark plasma sintering. International Journal of Applied Ceramic Technology, 2017, 14, 845-850.	1.1	13
67	Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth. Frontiers of Materials Science, 2017, 11, 353-357.	1.1	1
68	Facile synthesis of yolk–shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/Kirkendall effect and their enhanced microwave absorption properties. Nano Research, 2017, 10, 331-343.	5.8	342
69	Microwave-assisted synthesis of Ag/rGO composites and their cytotoxicity for HT22 Neuronal cell. Materials Research Innovations, 2017, 21, 257-261.	1.0	4
70	Crucial effect of SiC particles on in situ synthesized mullite whisker reinforced Al2O3-SiC composite during microwave sintering. Processing and Application of Ceramics, 2017, 11, 106-112.	0.4	7
71	Yolk–Shell Ni@SnO ₂ Composites with a Designable Interspace To Improve the Electromagnetic Wave Absorption Properties. ACS Applied Materials & Interfaces, 2016, 8, 28917-28925.	4.0	526
72	Preparation of large size ZTA ceramics with eccentric circle shape by microwave sintering. Journal of Advanced Ceramics, 2016, 5, 291-297.	8.9	20

#	Article	IF	CITATIONS
73	Synthesis and characterization of carbonâ€doped ZnSn(OH) ₆ with enhanced photoactivity by hydrothermal method. Crystal Research and Technology, 2016, 51, 11-15.	0.6	8
74	Morphology-Control Synthesis of a Core–Shell Structured NiCu Alloy with Tunable Electromagnetic-Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 12951-12960.	4.0	347
75	Enhanced microwave absorption capabilities of Ni microspheres after coating with SnO2 nanoparticles. Journal of Materials Science: Materials in Electronics, 2015, 26, 5393-5399.	1.1	33
76	Preparation of Honeycomb SnO ₂ Foams and Configuration-Dependent Microwave Absorption Features. ACS Applied Materials & amp; Interfaces, 2015, 7, 26217-26225.	4.0	163
77	Facile synthesis and enhanced microwave absorption properties of novel hierarchical heterostructures based on a Ni microsphere–CuO nano-rice core–shell composite. Physical Chemistry Chemical Physics, 2015, 17, 6044-6052.	1.3	109
78	Facile synthesis of crumpled ZnS net-wrapped Ni walnut spheres with enhanced microwave absorption properties. RSC Advances, 2015, 5, 9806-9814.	1.7	65
79	Time-sensitivity for the preparation and microwave absorption properties of core–shell structured Ni/TiO2 composite microspheres. Journal of Materials Science: Materials in Electronics, 2015, 26, 8848-8853.	1.1	8
80	Preparation and electromagnetic wave absorption properties of novel dendrite-like NiCu alloy composite. RSC Advances, 2015, 5, 42587-42590.	1.7	26
81	Facile preparation and enhanced microwave absorption properties of core–shell composite spheres composited of Ni cores and TiO ₂ shells. Physical Chemistry Chemical Physics, 2015, 17, 8802-8810.	1.3	144
82	Synthesis of flower-like CuS hollow microspheres based on nanoflakes self-assembly and their microwave absorption properties. Journal of Materials Chemistry A, 2015, 3, 10345-10352.	5.2	474
83	In situ synthesis of novel urchin-like ZnS/Ni ₃ S ₂ @Ni composite with a core–shell structure for efficient electromagnetic absorption. Journal of Materials Chemistry C, 2015, 3, 10862-10869.	2.7	103
84	Facile Synthesis of Novel Heterostructure Based on SnO ₂ Nanorods Grown on Submicron Ni Walnut with Tunable Electromagnetic Wave Absorption Capabilities. ACS Applied Materials & Interfaces, 2015, 7, 18815-18823.	4.0	179
85	Investigation of the electromagnetic absorption properties of Ni@TiO ₂ and Ni@SiO ₂ composite microspheres with core–shell structure. Physical Chemistry Chemical Physics, 2015, 17, 2531-2539.	1.3	275
86	Hierarchical Fe ₂ O ₃ @WO ₃ nanostructures with ultrahigh specific surface areas: microwave-assisted synthesis and enhanced H ₂ S-sensing performance. RSC Advances, 2015, 5, 328-337.	1.7	65
87	ZnS nanowall coated Ni composites: facile preparation and enhanced electromagnetic wave absorption. RSC Advances, 2014, 4, 61219-61225.	1.7	53
88	Solvothermal synthesis and electromagnetic absorption properties of pyramidal Ni superstructures. Journal of Materials Research, 2014, 29, 1431-1439.	1.2	7
89	Synthesis and Characterization of Ti <scp>N</scp> â€coated Cubic Boron Nitride Powders. International Journal of Applied Ceramic Technology, 2014, 11, 946-953.	1.1	10
90	Synthesis and growth mechanism of ZnO rodâ€like nanostructures by a microwaveâ€assisted lowâ€temperature aqueous solution route. Crystal Research and Technology, 2014, 49, 298-302.	0.6	14

#	Article	IF	CITATIONS
91	Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations. Journal of Materials Science, 2014, 49, 424-432.	1.7	9
92	Fabrication and enhanced microwave absorption properties of Al ₂ O ₃ nanoflake-coated Ni core–shell composite microspheres. RSC Advances, 2014, 4, 57424-57429.	1.7	84
93	Microwave-assisted growth of In ₂ O ₃ nanoparticles on WO ₃ nanoplates to improve H ₂ S-sensing performance. Journal of Materials Chemistry A, 2014, 2, 18867-18874.	5.2	88
94	Facile synthesis and novel microwave electromagnetic properties of flower-like Ni structures by a solvothermal method. Journal of Materials Science: Materials in Electronics, 2014, 25, 3614-3621.	1.1	43
95	ZrB2–Al3BC3 composites prepared using Al–B4C–C additives and spark plasma sintering. Ceramics International, 2013, 39, 897-901.	2.3	16
96	Effect of the Particle Size of Quartz Powder on the Synthesis and CO ₂ Absorption Properties of Li ₄ SiO ₄ at High Temperature. Industrial & Engineering Chemistry Research, 2013, 52, 1886-1891.	1.8	64
97	Porous Tungsten Carbide Nanoplates Derived from Tungsten Trioxide Nanoplates. Journal of the American Ceramic Society, 2012, 95, 3370-3373.	1.9	2
98	Preparation of porous mullite composite by microwave sintering. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 1125-1127.	0.4	3
99	Controlled synthesis of ZnO nanostructures with different morphologies in microemulsions. Crystal Research and Technology, 2012, 47, 754-762.	0.6	4
100	The fabrication and mechanical properties of SiC/ZrB2 laminated ceramic composite prepared by spark plasma sintering. Ceramics International, 2012, 38, 5015-5022.	2.3	38
101	Single-crystalline MoO3 nanoplates: topochemical synthesis and enhanced ethanol-sensing performance. Journal of Materials Chemistry, 2011, 21, 9332.	6.7	168
102	Synthesis of ZnSn(OH) ₆ regular octahedrons by a simple hydrothermal process. Crystal Research and Technology, 2011, 46, 1079-1085.	0.6	6
103	Hydrothermal synthesis and characterization of micro/nanostructured ZnSn(OH) ₆ /ZnO composite architectures. Crystal Research and Technology, 2011, 46, 1175-1180.	0.6	5