
Mike Optis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295409/publications.pdf Version: 2024-02-01

MIKE ODTIS

#	Article	IF	CITATIONS
1	Inadequate documentation in published life cycle energy reports on buildings. International Journal of Life Cycle Assessment, 2010, 15, 644-651.	4.7	57
2	On the Offshore Advection of Boundary-Layer Structures and the Influence on Offshore Wind Conditions. Boundary-Layer Meteorology, 2015, 155, 459-482.	2.3	48
3	The importance of atmospheric turbulence and stability in machine-learning models of wind farm power production. Renewable and Sustainable Energy Reviews, 2019, 112, 27-41.	16.4	46
4	Moving Beyond Monin–Obukhov Similarity Theory in Modelling Wind-Speed Profiles in the Lower Atmospheric Boundary Layer under Stable Stratification. Boundary-Layer Meteorology, 2014, 153, 497-514.	2.3	39
5	Limitations and breakdown of Monin–Obukhov similarity theory for wind profile extrapolation under stable stratification. Wind Energy, 2016, 19, 1053-1072.	4.2	28
6	New methods to improve the vertical extrapolation of near-surface offshore wind speeds. Wind Energy Science, 2021, 6, 935-948.	3.3	21
7	The importance of round-robin validation when assessing machine-learning-based vertical extrapolation of wind speeds. Wind Energy Science, 2020, 5, 489-501.	3.3	18
8	Can machine learning improve the model representation of turbulent kinetic energy dissipation rate in the boundary layer for complex terrain?. Geoscientific Model Development, 2020, 13, 4271-4285.	3.6	14
9	Quantifying sensitivity in numerical weather predictionâ€modeled offshore wind speeds through an ensemble modeling approach. Wind Energy, 2021, 24, 957-973.	4.2	11
10	Uncertainty quantification in the analyses of operational wind power plant performance. Journal of Physics: Conference Series, 2018, 1037, 052021.	0.4	9
11	A participatory process for the design of housing for a First Nations Community. Journal of Housing and the Built Environment, 2012, 27, 207-224.	1.8	7
12	OpenOA: An Open-Source Codebase For Operational Analysis of Wind Farms. Journal of Open Source Software, 2021, 6, 2171.	4.6	6
13	Assessing boundary condition and parametric uncertainty in numerical-weather-prediction-modeled, long-term offshore wind speed through machine learning and analog ensemble. Wind Energy Science, 2021, 6, 1363-1377.	3.3	5
14	Operational-based annual energy production uncertainty: are its components actually uncorrelated?. Wind Energy Science, 2020, 5, 1435-1448.	3.3	4
15	Lowering post onstruction yield assessment uncertainty through better wind plant power curves. Wind Energy, 2022, 25, 5-22.	4.2	2
16	An independent analysis of bias sources and variability in wind plant pre onstruction energy yield estimation methods. Wind Energy, 2022, 25, 1775-1790.	4.2	0