Cristiana Lavazza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953876/publications.pdf

Version: 2024-02-01

605	15	25
citations	h-index	g-index
39	39	1131
docs citations	times ranked	citing authors
	citations 39	citations h-index 39 39

#	Article	IF	CITATIONS
1	Process development and validation of expanded regulatory T cells for prospective applications: an example of manufacturing a personalized advanced therapy medicinal product. Journal of Translational Medicine, 2022, 20, 14.	4.4	4
2	Chondrogenic and BMP-4 primings confer osteogenesis potential to human cord blood mesenchymal stromal cells delivered with biphasic calcium phosphate ceramics. Scientific Reports, 2021, 11, 6751.	3.3	4
3	Safety and Effectiveness of Cell Therapy in Neurodegenerative Diseases: Take-Home Messages From a Pilot Feasibility Phase I Study of Progressive Supranuclear Palsy. Frontiers in Neuroscience, 2021, 15, 723227.	2.8	1
4	A circular RNA map for human induced pluripotent stem cells of foetal origin. EBioMedicine, 2020, 57, 102848.	6.1	9
5	Regulatory T cells from patients with end-stage organ disease can be isolated, expanded and cryopreserved according good manufacturing practice improving their function. Journal of Translational Medicine, 2019, 17, 250.	4.4	4
6	Tips and Tricks for Validation of Quality Control Analytical Methods in Good Manufacturing Practice Mesenchymal Stromal Cell Production. Stem Cells International, 2018, 2018, 1-16.	2.5	23
7	Peculiar in vitro behaviour of autologous mesenchymal stromal cells from patients affected by progressive supranuclear palsy. Cytotherapy, 2018, 20, S55.	0.7	O
8	Angiogenic and anti-inflammatory properties of mesenchymal stem cells from cord blood: soluble factors and extracellular vesicles for cell regeneration. European Journal of Cell Biology, 2016, 95, 228-238.	3.6	37
9	A Chemically Defined Medium-Based Strategy to Efficiently Generate Clinically Relevant Cord Blood Mesenchymal Stromal Colonies. Cell Transplantation, 2016, 25, 1501-1514.	2.5	12
10	Finding a new therapeutic approach for no-option Parkinsonisms: mesenchymal stromal cells for progressive supranuclear palsy. Journal of Translational Medicine, 2016, 14, 127.	4.4	41
11	Protein O-mannosylation is crucial for human mesencyhmal stem cells fate. Cellular and Molecular Life Sciences, 2016, 73, 445-458.	5.4	9
12	Long-living cord blood mesenchymal stem cells and their clinical use. Cytotherapy, 2015, 17, S41.	0.7	0
13	Extensive Characterization of Platelet Gel Releasate from Cord Blood in Regenerative Medicine. Cell Transplantation, 2015, 24, 2573-2584.	2.5	30
14	How we make cell therapy in Italy. Drug Design, Development and Therapy, 2015, 9, 4825.	4.3	9
15	Is it possible to reveal bacterial and fungal contamination in fresh and/or cryopreserved/thawed Advanced Therapy Medicinal Products using a rapid automated system? Results from a GMP validation study. Cytotherapy, 2015, 17, S28.	0.7	O
16	Dissection of the Cord Blood Stromal Component Reveals Predictive Parameters for Culture Outcome. Stem Cells and Development, 2015, 24, 104-114.	2.1	22
17	Defining the identity of human adipose-derived mesenchymal stem cells. Biochemistry and Cell Biology, 2015, 93, 74-82.	2.0	15
18	Adipogenic potential in human mesenchymal stem cells strictly depends on adult or foetal tissue harvest. International Journal of Biochemistry and Cell Biology, 2013, 45, 2456-2466.	2.8	37

#	Article	IF	CITATIONS
19	Differential microRNA signature of human mesenchymal stem cells from different sources reveals an "environmental-niche memory―for bone marrow stem cells. Experimental Cell Research, 2013, 319, 1562-1574.	2.6	45
20	Effects Of a Novel Ceramic Biomaterial On Immune Modulatory Properties and Differentiation Potential Of Mesenchymal Stromal Cells. Blood, 2013, 122, 4858-4858.	1.4	0
21	Human CD34+ cells engineered to express membrane-bound tumor necrosis factor–related apoptosis-inducing ligand target both tumor cells and tumor vasculature. Blood, 2010, 115, 2231-2240.	1.4	32
22	A computational approach to compare microvessel distributions in tumors following antiangiogenic treatments. Laboratory Investigation, 2009, 89, 1063-1070.	3.7	12
23	Anticancer Cell Therapy with TRAIL-Armed CD34+ Progenitor Cells. Advances in Experimental Medicine and Biology, 2008, 610, 100-111.	1.6	3
24	Forced expression of RDH10 gene retards growth of HepG2 cells. Cancer Biology and Therapy, 2007, 6, 238-245.	3.4	21
25	IFN-γ Enhances the Antimyeloma Activity of the Fully Human Anti–Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3. Cancer Research, 2007, 67, 3269-3275.	0.9	18
26	Targeting TRAIL Agonistic Receptors for Cancer Therapy. Clinical Cancer Research, 2007, 13, 2313-2317.	7.0	67
27	Highly efficient gene transfer into mobilized CD34+ hematopoietic cells using serotype-5 adenoviral vectors and BoosterExpress Reagent. Experimental Hematology, 2007, 35, 888-897.	0.4	5
28	Placental Growth Factor-1 Potentiates Hematopoietic Progenitor Cell Mobilization Induced by Granulocyte Colony-Stimulating Factor in Mice and Nonhuman Primates. Stem Cells, 2007, 25, 252-261.	3.2	12
29	Human CD34+ Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Exert a Potent Anti-Lymphoma Effects by Targeting Tumor Vasculature Blood, 2007, 110, 527-527.	1.4	0
30	Antitumor Activity of Adenovirally Transduced CD34 ⁺ Cells Expressing Membrane-bound TRAIL., 2007,, 373-392.		0
31	Antitumor Activity of Human CD34+Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Human Gene Therapy, 2006, 17, 1225-1240.	2.7	33
32	CD52 antigen expressed by malignant plasma cells can be targeted by alemtuzumab in vivo in NOD/SCID mice. Experimental Hematology, 2006, 34, 721-727.	0.4	25
33	The Anti–Human Leukocyte Antigen-DR Monoclonal Antibody 1D09C3 Activates the Mitochondrial Cell Death Pathway and Exerts a Potent Antitumor Activity in Lymphoma-Bearing Nonobese Diabetic/Severe Combined Immunodeficient Mice. Cancer Research, 2006, 66, 1799-1808.	0.9	37
34	Antitumor Activity of Human CD34+Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand. Human Gene Therapy, 2006, .	2.7	0
35	Antitumor Activity of Human CD34+ Cells Expressing Membrane-Bound Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (mTRAIL) Blood, 2006, 108, 233-233.	1.4	0
36	Primary Plasma Cells Expressing CD52 Are Efficiently Targeted In Vivo by Alemtuzumab Blood, 2004, 104, 3460-3460.	1.4	0

#	Article	IF	CITATIONS
37	In Vitro and In Vivo Anti-Lymphoma Activity of the Anti-HLA-DR Monoclonal Antibody 1D09C3 Blood, 2004, 104, 3285-3285.	1.4	2
38	Identical rearrangement of immunoglobulin heavy chain gene in neoplastic Langerhans cells and B-lymphocytes: evidence for a common precursor. Leukemia Research, 2002, 26, 1131-1133.	0.8	36