
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids. Advanced Materials, 2018, 30, 1704961.	21.0	488
2	Bipolar Tetraarylsilanes as Universal Hosts for Blue, Green, Orange, and White Electrophosphorescence with High Efficiency and Low Efficiency Rollâ€Off. Advanced Functional Materials, 2011, 21, 1168-1178.	14.9	229
3	Inheriting the Characteristics of TADF Small Molecule by Sideâ€Chain Engineering Strategy to Enable Bluishâ€Green Polymers with High PLQYs up to 74% and External Quantum Efficiency over 16% in Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1604223.	21.0	207
4	Design Strategy for Solutionâ€Processable Thermally Activated Delayed Fluorescence Emitters and Their Applications in Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2018, 6, 1800568.	7.3	199
5	Dendronized delayed fluorescence emitters for non-doped, solution-processed organic light-emitting diodes with high efficiency and low efficiency roll-off simultaneously: two parallel emissive channels. Chemical Science, 2016, 7, 5441-5447.	7.4	180
6	Realizing 22.5% External Quantum Efficiency for Solutionâ€Processed Thermally Activated Delayedâ€Fluorescence OLEDs with Red Emission at 622 nm via a Synergistic Strategy of Molecular Engineering and Host Selection. Advanced Materials, 2019, 31, e1901404.	21.0	175
7	Naphthothiadiazoleâ€Based Nearâ€Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. Advanced Functional Materials, 2017, 27, 1606384.	14.9	173
8	Creating a thermally activated delayed fluorescence channel in a single polymer system to enhance exciton utilization efficiency for bluish-green electroluminescence. Chemical Communications, 2016, 52, 2292-2295.	4.1	160
9	Peripheral Decoration of Multiâ€Resonance Molecules as a Versatile Approach for Simultaneous Longâ€Wavelength and Narrowband Emission. Advanced Functional Materials, 2021, 31, 2102017.	14.9	157
10	De Novo Design of Excited-State Intramolecular Proton Transfer Emitters via a Thermally Activated Delayed Fluorescence Channel. Journal of the American Chemical Society, 2018, 140, 8877-8886.	13.7	153
11	Multi-carbazole encapsulation as a simple strategy for the construction of solution-processed, non-doped thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2016, 4, 2442-2446.	5.5	150
12	De Novo Design of Siliconâ€Bridged Molecule Towards a Bipolar Host: Allâ€Phosphor White Organic Lightâ€Emitting Devices Exhibiting High Efficiency and Low Efficiency Rollâ€Off. Advanced Materials, 2010, 22, 5370-5373.	21.0	149
13	Highly Efficient Deepâ€Blue Electrophosphorescence Enabled by Solutionâ€Processed Bipolar Tetraarylsilane Host with Both a High Triplet Energy and a Highâ€Lying HOMO Level. Advanced Materials, 2011, 23, 4956-4959.	21.0	142
14	Boosting reverse intersystem crossing by increasing donors in triarylboron/phenoxazine hybrids: TADF emitters for high-performance solution-processed OLEDs. Journal of Materials Chemistry C, 2016, 4, 4402-4407.	5.5	136
15	Simultaneous dual-colour tracking lipid droplets and lysosomes dynamics using a fluorescent probe. Chemical Science, 2019, 10, 2342-2348.	7.4	132
16	A Red Thermally Activated Delayed Fluorescence Emitter Simultaneously Having High Photoluminescence Quantum Efficiency and Preferentially Horizontal Emitting Dipole Orientation. Advanced Functional Materials, 2020, 30, 1908839.	14.9	129
17	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angewandte Chemie - International Edition, 2019, 58, 17651-17655.	13.8	124
18	Heavy-atom effect promotes multi-resonance thermally activated delayed fluorescence. Chemical Engineering Journal, 2021, 426, 131169.	12.7	122

#	Article	IF	CITATIONS
19	Tuning the Photoinduced Electron Transfer in a Zrâ€MOF: Toward Solidâ€State Fluorescent Molecular Switch and Turnâ€On Sensor. Advanced Materials, 2018, 30, e1802329.	21.0	120
20	Efficient phosphorescent polymer light-emitting diodes by suppressing triplet energy back transfer. Chemical Society Reviews, 2012, 41, 4797.	38.1	113
21	Optimizing Optoelectronic Properties of Pyrimidineâ€Based TADF Emitters by Changing the Substituent for Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 25 % and Slow Efficiency Rollâ€Off. Chemistry - A European Journal, 2016, 22, 10860-10866.	3.3	111
22	Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 2012, 22, 2894-2899.	6.7	106
23	Inâ€Situ Solid‧tate Generation of (BN) ₂ â€Pyrenes and Electroluminescent Devices. Angewandte Chemie - International Edition, 2015, 54, 15074-15078.	13.8	105
24	Realizing Highly Efficient Solution-Processed Homojunction-Like Sky-Blue OLEDs by Using Thermally Activated Delayed Fluorescent Emitters Featuring an Aggregation-Induced Emission Property. Journal of Physical Chemistry Letters, 2018, 9, 1547-1553.	4.6	103
25	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie - International Edition, 2022, 61, .	13.8	85
26	Hydrophilic, Redâ€Emitting, and Thermally Activated Delayed Fluorescence Emitter for Timeâ€Resolved Luminescence Imaging by Mitochondrionâ€Induced Aggregation in Living Cells. Advanced Science, 2019, 6, 1801729.	11.2	80
27	Acceptor plane expansion enhances horizontal orientation of thermally activated delayed fluorescence emitters. Science Advances, 2020, 6, .	10.3	80
28	Halogen-induced internal heavy-atom effect shortening the emissive lifetime and improving the fluorescence efficiency of thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2017, 5, 12204-12210.	5.5	79
29	Simple Acridanâ€Based Multiâ€Resonance Structures Enable Highly Efficient Narrowband Green TADF Electroluminescence. Advanced Optical Materials, 2021, 9, 2100825.	7.3	79
30	Using Ring-Opening Metathesis Polymerization of Norbornene To Construct Thermally Activated Delayed Fluorescence Polymers: High-Efficiency Blue Polymer Light-Emitting Diodes. Macromolecules, 2018, 51, 1598-1604.	4.8	76
31	High-Power-Efficiency Blue Electrophosphorescence Enabled by the Synergistic Combination of Phosphine-Oxide-Based Host and Electron-Transporting Materials. Chemistry of Materials, 2014, 26, 1463-1470.	6.7	68
32	Efficient light-emitting diodes based on oriented perovskite nanoplatelets. Science Advances, 2021, 7, eabg8458.	10.3	68
33	Tuning the Photophysical Properties and Energy Levels by Linking Spacer and Topology between the Benzimidazole and Carbazole Units: Bipolar Host for Highly Efficient Phosphorescent OLEDs. Journal of Physical Chemistry C, 2010, 114, 5193-5198.	3.1	59
34	Multifunctional Thermally Activated Delayed Fluorescence Emitters and Insight into Multicolorâ€Mechanochromism Promoted by Weak Intra―and Intermolecular Interactions. Advanced Optical Materials, 2019, 7, 1900727.	7.3	58
35	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie - International Edition, 2022, 61, .	13.8	58
36	Solution-Processed Double-Silicon-Bridged Oxadiazole/Arylamine Hosts for High-Efficiency Blue Electrophosphorescence. Chemistry of Materials, 2012, 24, 3120-3127.	6.7	55

#	Article	IF	CITATIONS
37	Highly Efficient Simpleâ€Structure Blue and Allâ€Phosphor Warmâ€White Phosphorescent Organic Lightâ€Emitting Diodes Enabled by Wideâ€Bandgap Tetraarylsilaneâ€Based Functional Materials. Advanced Functional Materials, 2014, 24, 5710-5718.	14.9	55
38	AIE-active multicolor tunable luminogens: simultaneous mechanochromism and acidochromism with high contrast beyond 100 nm. Materials Chemistry Frontiers, 2020, 4, 2047-2053.	5.9	55
39	Tailoring Optoelectronic Properties of Phenanthrolineâ€Based Thermally Activated Delayed Fluorescence Emitters through Isomer Engineering. Advanced Optical Materials, 2016, 4, 1558-1566.	7.3	53
40	Prediction of Oscillator Strength and Transition Dipole Moments with the Nuclear Ensemble Approach for Thermally Activated Delayed Fluorescence Emitters. Journal of Physical Chemistry C, 2019, 123, 10081-10086.	3.1	53
41	Deep-red iridium(<scp>iii</scp>) complexes cyclometalated by phenanthridine derivatives for highly efficient solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 3492-3498.	5.5	51
42	A Red Fluorescent Emitter with a Simultaneous Hybrid Local and Charge Transfer Excited State and Aggregationâ€Induced Emission for Highâ€Efficiency, Low Efficiency Rollâ€Off OLEDs. Advanced Optical Materials, 2017, 5, 1700145.	7.3	51
43	Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 2016, 4, 9998-10004.	5.5	50
44	Boosting the Efficiency of Nearâ€Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizerâ€Based Cascade Energy Transfer. Advanced Functional Materials, 2018, 28, 1706088.	14.9	50
45	Highly Efficient and Robust Blue Phosphorescent Pt(II) Compounds with a Phenylâ€1,2,3â€ŧriazolyl and a Pyridylâ€1,2,4â€ŧriazolyl Chelate Core. Advanced Functional Materials, 2014, 24, 7257-7271.	14.9	49
46	Simple Double Hetero[5]helicenes Realize Highly Efficient and Narrowband Circularly Polarized Organic Light-Emitting Diodes. CCS Chemistry, 2022, 4, 3463-3471.	7.8	49
47	Morphologically and electrochemically stable bipolar host for efficient green electrophosphorescence. Physical Chemistry Chemical Physics, 2010, 12, 2438.	2.8	47
48	Highly efficient red iridium(<scp>iii</scp>) complexes cyclometalated by 4-phenylthieno[3,2-c]quinoline ligands for phosphorescent OLEDs with external quantum efficiencies over 20%. Journal of Materials Chemistry C, 2017, 5, 10220-10224.	5.5	47
49	Saturated Red-Emitting Electrophosphorescent Polymers with Iridium Coordinating toβ-Diketonate Units in the Main Chain. Macromolecular Rapid Communications, 2006, 27, 1926-1931.	3.9	46
50	High-Efficiency Red Electroluminescence Based on a Carbene–Cu(I)–Acridine Complex. ACS Applied Materials & Interfaces, 2021, 13, 13478-13486.	8.0	46
51	Blue phosphorescent N-heterocyclic carbene chelated Pt(<scp>ii</scp>) complexes with an α-duryl-β-diketonato ancillary ligand. Dalton Transactions, 2015, 44, 8433-8443.	3.3	45
52	Versatile Benzimidazole/Triphenylamine Hybrids: Efficient Nondoped Deepâ€Blue Electroluminescence and Good Host Materials for Phosphorescent Emitters. Chemistry - an Asian Journal, 2010, 5, 2093-2099.	3.3	44
53	Tuning the twist angle of thermally activated delayed fluorescence molecules via a dendronization strategy: high-efficiency solution-processed non-doped OLEDs. Journal of Materials Chemistry C, 2017, 5, 3480-3487.	5.5	44
54	An unsymmetrical thermally activated delayed fluorescence emitter enables orange-red electroluminescence with 31.7% external quantum efficiency. Materials Horizons, 2021, 8, 2286-2292.	12.2	41

#	Article	IF	CITATIONS
55	High-efficiency pure blue thermally activated delayed fluorescence emitters with a preferentially horizontal emitting dipole orientation <i>via</i> a spiro-linked double D–A molecular architecture. Journal of Materials Chemistry C, 2019, 7, 10851-10859.	5.5	40
56	Incorporating Thermally Activated Delayed Fluorescence into Mechanochromic Luminescent Emitters: Highâ€Performance Solutionâ€Processed Yellow Organic Light Emitting Diodes. Advanced Optical Materials, 2018, 6, 1801071.	7.3	39
57	Solution-Processed Highly Efficient Bluish-Green Thermally Activated Delayed Fluorescence Emitter Bearing an Asymmetric Oxadiazole–Difluoroboron Double Acceptor. ACS Applied Materials & Interfaces, 2019, 11, 24339-24348.	8.0	38
58	Feasible Modification of PEDOT:PSS by Poly(4-styrenesulfonic acid): A Universal Method to Double the Efficiencies for Solution-Processed Organic Light-Emitting Devices. ACS Applied Materials & amp; Interfaces, 2019, 11, 29105-29112.	8.0	37
59	Highâ€Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. Advanced Materials, 2022, 34, e2109147.	21.0	37
60	High-efficiency red thermally activated delayed fluorescence emitters based on benzothiophene-fused spiro-acridine donor. Chemical Engineering Journal, 2021, 405, 126663.	12.7	36
61	Lanthanide Cerium(III) Tris(pyrazolyl)borate Complexes: Efficient Blue Emitters for Doublet Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 45686-45695.	8.0	33
62	First Iridium Complex End-Capped Polyfluorene:  Improving Device Performance for Phosphorescent Polymer Light-Emitting Diodes. Journal of Physical Chemistry C, 2008, 112, 3907-3913.	3.1	32
63	High-performance blue and green electrophosphorescence achieved by using carbazole-containing bipolar tetraarylsilanes as host materials. Journal of Materials Chemistry, 2011, 21, 11197.	6.7	32
64	Effective Suppression of Intra- and Interchain Triplet Energy Transfer to Polymer Backbone from the Attached Phosphor for Efficient Polymeric Electrophosphorescence. Chemistry of Materials, 2009, 21, 3306-3314.	6.7	31
65	Tuning the emissive characteristics of TADF emitters by fusing heterocycles with acridine as donors: highly efficient orange to red organic light-emitting diodes with EQE over 20%. Journal of Materials Chemistry C, 2019, 7, 9087-9094.	5.5	31
66	Novel Pyreneâ€armed Calix[4]arenes through Triazole Connection: Ratiometric Fluorescent Chemosensor for Zn ²⁺ and Promising Structure for Integrated Logic Gates. Chinese Journal of Chemistry, 2008, 26, 1424-1430.	4.9	30
67	A Simple Organic Molecule Realizing Simultaneous TADF, RTP, AIE, and Mechanoluminescence: Understanding the Mechanism Behind the Multifunctional Emitter. Angewandte Chemie, 2019, 131, 17815-17819.	2.0	30
68	Naphthyridine-based emitters simultaneously exhibiting thermally activated delayed fluorescence and aggregation-induced emission for highly efficient non-doped fluorescent OLEDs. Journal of Materials Chemistry C, 2019, 7, 6607-6615.	5.5	30
69	Extension of Molecular Structure toward Solution-Processable Hosts for Efficient Blue Phosphorescent Organic Light-Emitting Diodes. Journal of Physical Chemistry C, 2013, 117, 549-555.	3.1	28
70	High-Efficiency Solution-Processed Organic Light-Emitting Diodes with Tetradentate Platinum(II) Emitters. ACS Applied Materials & Interfaces, 2019, 11, 45161-45170.	8.0	27
71	Rational design of perfectly oriented thermally activated delayed fluorescence emitter for efficient red electroluminescence. Science China Materials, 2021, 64, 920-930.	6.3	27
72	Simple construction of deep-red hexaazatrinaphthylene-based thermally activated delayed fluorescence emitters for efficient solution-processed OLEDs with a peak at 692 nm. Chemical Communications, 2019, 55, 14190-14193.	4.1	26

#	Article	IF	CITATIONS
73	Polymorphism-dependent thermally activated delayed fluorescence materials with diverse three dimensional supramolecular frameworks. Chemical Engineering Journal, 2020, 390, 124626.	12.7	25
74	Copper(I) Complex as Sensitizer Enables Highâ€Performance Organic Lightâ€Emitting Diodes with Very Low Efficiency Rollâ€Off. Advanced Functional Materials, 2021, 31, 2106345.	14.9	25
75	Iridium complexes embedded into and end-capped onto phosphorescent polymers: optimizing PLED performance and structure–property relationships. Journal of Materials Chemistry, 2008, 18, 3366.	6.7	24
76	Benzoylpyridine-based TADF emitters with AIE feature for efficient non-doped OLEDs by both evaporation and solution process. Dyes and Pigments, 2020, 176, 108179.	3.7	23
77	Achieving 37.1% Green Electroluminescent Efficiency and 0.09 eV Full Width at Half Maximum Based on a Ternary Boronâ€Oxygenâ€Nitrogen Embedded Polycyclic Aromatic System. Angewandte Chemie, 0, , .	2.0	23
78	Excitonâ€Stimulated Molecular Transformation in Organic Lightâ€Emitting Diodes. Advanced Materials, 2014, 26, 6729-6733.	21.0	21
79	Novel Nitrogen-Containing Heterocyclic Non-Fullerene Acceptors for Organic PhotovoltaicCells: Different End-Capping Groups Leading to a Big Difference of Power Conversion Efficiencies. ACS Applied Materials & Interfaces, 2020, 12, 13068-13076.	8.0	21
80	Polycyclic phenazine-derived rigid donors construct thermally activated delayed fluorescence emitters for highly efficient orange OLEDs with extremely low roll-off. Chemical Engineering Journal, 2022, 438, 135571.	12.7	21
81	Adamantaneâ€Based Wideâ€Bandgap Host Material: Blue Electrophosphorescence with High Efficiency and Very High Brightness. Chemistry - A European Journal, 2015, 21, 8250-8256.	3.3	20
82	Efficient saturated red electrophosphorescence by using solution-processed 1-phenylisoquinoline-based iridium phosphors with peripheral functional encapsulation. Organic Electronics, 2015, 26, 400-407.	2.6	20
83	Simple InCl ₃ Doped PEDOT:PSS and UV–Ozone Treatment Strategy: External Quantum Efficiency up to 21% for Solution-Processed Organic Light-Emitting Devices with a Thermally Activated Delayed Fluorescence Emitter. ACS Applied Materials & Interfaces, 2017, 9, 34139-34145.	8.0	20
84	Efficient non-doped fluorescent OLEDs with nearly 6% external quantum efficiency and deep-blue emission approaching the blue standard enabled by quaterphenyl-based emitters. Journal of Materials Chemistry C, 2018, 6, 4479-4484.	5.5	20
85	Green and yellow pyridazine-based phosphorescent Iridium(III) complexes for high-efficiency and low-cost organic light-emitting diodes. Dyes and Pigments, 2019, 164, 206-212.	3.7	20
86	Designing versatile sulfoximine as accepting unit to regulate the photophysical properties of TADF emitters towards high-performance OLEDs. Chemical Engineering Journal, 2020, 399, 125648.	12.7	20
87	Tuning of Förster Resonance Energy Transfer in Metal–Organic Frameworks: Toward Amplified Fluorescence Sensing. CCS Chemistry, 2021, 3, 2054-2062.	7.8	20
88	Tetrasubstituted adamantane derivatives with arylamine groups: Solution-processable hole-transporting and host materials with high triplet energy and good thermal stability for organic light-emitting devices. Organic Electronics, 2015, 25, 193-199.	2.6	18
89	Tuning emissive characteristics and singlet-triplet energy splitting of fluorescent emitters by encapsulation group modification: Yellow TADF emitter for solution-processed OLEDs with high luminance and ultraslow efficiency roll-off. Dyes and Pigments, 2017, 139, 593-600.	3.7	18
90	Revealing the new potential of an indandione unit for constructing efficient yellow thermally activated delayed fluorescence emitters with short emissive lifetimes. Journal of Materials Chemistry C, 2018, 6, 7111-7118.	5.5	17

#	Article	IF	CITATIONS
91	Fine-tuning the photophysical properties of thermally activated delayed fluorescent emitters using torsion angles: high performance sky-blue OLEDs. Journal of Materials Chemistry C, 2019, 7, 13953-13959.	5.5	17
92	Fused twin-acridine scaffolds as electron donors for thermally activated delayed fluorescence emitters: controllable TADF behavior by methyl substitution. Chemical Communications, 2019, 55, 15125-15128.	4.1	16
93	Chiral Multiâ€Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angewandte Chemie, 2022, 134, .	2.0	16
94	On-off switchable thermally activated delayed fluorescence controlled by multiple channels: Understanding the mechanism behind distinctive polymorph-dependent optical properties. Chemical Engineering Journal, 2021, 415, 128909.	12.7	15
95	Triarylboron-cored multi-donors TADF emitter with high horizontal dipole orientation ratio achieving high performance OLEDs with near 39% external quantum efficiency and small efficiency Roll-off. Chemical Engineering Journal, 2022, 450, 137805.	12.7	13
96	Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform. Applied Physics Letters, 2014, 104, .	3.3	12
97	Rational design of isophthalonitrile-based thermally activated delayed fluorescence emitters for OLEDs with high efficiency and slow efficiency roll-off. Dyes and Pigments, 2017, 147, 350-356.	3.7	11
98	A simple and effective strategy to lock the quasi-equatorial conformation of acridine by H–H repulsion for highly efficient thermally activated delayed fluorescence emitters. Chemical Communications, 2020, 56, 2308-2311.	4.1	11
99	Purine-based thermally activated delayed fluorescence emitters for efficient organic light-emitting diodes. Dyes and Pigments, 2020, 180, 108437.	3.7	9
100	Difluoroboron locking tactic enhances photo- and electroluminescence of TADF emitter. Dyes and Pigments, 2021, 192, 109392.	3.7	9
101	A Rational Molecular Design Strategy of TADF Emitter for Achieving Device Efficiency Exceeding 36%. Advanced Optical Materials, 2022, 10, .	7.3	9
102	Synthesis of Spirobifluoreneâ€ <i>alt</i> â€Carbazole Copolymers with Oxadiazole Pendants and their Thermal, Electrochemical, and Photoluminescent Properties. Macromolecular Rapid Communications, 2008, 29, 1817-1822.	3.9	7
103	Organic Lightâ€Emitting Diodes: Achieving Nearly 30% External Quantum Efficiency for Orange–Red Organic Light Emitting Diodes by Employing Thermally Activated Delayed Fluorescence Emitters Composed of 1,8â€Naphthalimideâ€Acridine Hybrids (Adv. Mater. 5/2018). Advanced Materials, 2018, 30, 1870033.	21.0	7
104	Monoradically luminescent polymers by a super acid-catalyzed polymerization and deep-red electroluminescence. Science China Chemistry, 2020, 63, 1214-1220.	8.2	7
105	Nematic liquid crystals induce and amplify the circularly polarized luminescence of chiral TADF emitters. Journal of Materials Chemistry C, 2022, 10, 5065-5069.	5.5	6
106	Sky-blue thermally activated delayed fluorescence polymers with π-interrupted polymer mainchain via Friedel-Crafts polycondensation. Polymer, 2020, 204, 122722.	3.8	5
107	Deep-red thermally activated delayed fluorescence emitters based on a phenanthroline-containing planar acceptor. Dyes and Pigments, 2021, 192, 109474.	3.7	5
108	Boosting the electroluminescence efficiency of solution-processed thermally activated delayed fluorescence OLEDs with a versatile hole-transporting layer of organic–inorganic hybrid perovskite. Journal of Materials Chemistry C, 2018, 6, 6305-6311.	5.5	4

#	Article	IF	CITATIONS
109	Systematic investigation of methyl substitution effect on physicochemical properties and photovoltaic performance in nonfullerene small-molecule electron acceptors. Dyes and Pigments, 2019, 164, 126-132.	3.7	4
110	Realization of exceeding 80% external quantum efficiency in organic light-emitting diodes using high-index substrates and highly horizontal emitters. Organic Electronics, 2021, 89, 106049.	2.6	4
111	Quinazoline-based thermally activated delayed fluorescence emitters for high-performance organic light-emitting diodes with external quantum efficiencies about 28%. Journal of Materials Chemistry C, 2021, 9, 12633-12641.	5.5	4
112	Phenoxazine-Dibenzothiophene Sulfoximine Emitters Featuring Both Thermally Activated Delayed Fluorescence and Aggregation Induced Emission. Molecules, 2021, 26, 5243.	3.8	4
113	Efficient Red Thermally Activated Delayed Fluorescence Emitters Based on a Dibenzonitrile-Substituted Dipyrido[3,2-a:2′,3′-c]phenazine Acceptor. Molecules, 2021, 26, 2427.	3.8	3
114	Novel tetracoordinated organoboron emitters for thermally activated delayed fluorescence organic light-emitting diodes. Dyes and Pigments, 2021, 188, 109192.	3.7	3
115	High-efficiency organic light emitting diodes using high-index transparent electrode. Organic Electronics, 2020, 87, 105984.	2.6	2

116 å«å﴿啶基团çš"åŒæžä¸»ä½"ææ–™çš"啿~ã€æ€§èƒ½ä¸Žè"å…‰ç"µè‡´ç£·å…‰å™¨ä»¶ç"ç©¶. Scientia Sinica Chimica, 2013, 43, 47

117	The Design, Synthesis and Optoelectronic Properties of Side-Chain-Type Thermally Activated Delayed Fluorescent Polymer. , 2017, , .		0
118	28â€1: <i>Invited Paper:</i> Efficient Thermally Activated Delayed Fluorescence Emitters with Preferentially Horizontal Dipole Orientations. Digest of Technical Papers SID International Symposium, 2021, 52, 349-350.	0.3	0
119	Highly efficient orange–red electroluminescence enabled by fluorenone-based thermally activated delayed fluorescent emitter. Journal of Photonics for Energy, 2018, 8, 1.	1.3	0