Douglas Sheil

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2953423/douglas-sheil-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228 13,636 63 113 h-index g-index citations papers 6.51 15,916 7.8 243 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
228	Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices <i>PLoS ONE</i> , 2022 , 17, e0266178	3.7	2
227	Dietary Fats, Human Nutrition and the Environment: Balance and Sustainability <i>Frontiers in Nutrition</i> , 2022 , 9, 878644	6.2	1
226	Refined burned-area mapping protocol using Sentinel-2 data increases estimate of 2019 Indonesian burning. <i>Earth System Science Data</i> , 2021 , 13, 5353-5368	10.5	7
225	Oil Palm Plantations in the Context of Biodiversity Conservation 2021,		1
224	Rare and common species contribute disproportionately to the functional variation within tropical forests <i>Journal of Environmental Management</i> , 2021 , 304, 114332	7.9	1
223	Hopes for Russia's new forest code. <i>Science</i> , 2021 , 372, 472-473	33.3	1
222	Concerns about reported harvests in European forests. <i>Nature</i> , 2021 , 592, E15-E17	50.4	16
221	Structure of Chimpanzee Gut Microbiomes across Tropical Africa. MSystems, 2021, 6, e0126920	7.6	1
220	Detecting vulnerability of humid tropical forests to multiple stressors. <i>One Earth</i> , 2021 , 4, 988-1003	8.1	10
219	High aboveground carbon stock of African tropical montane forests. <i>Nature</i> , 2021 , 596, 536-542	50.4	10
218	Forest loss in Indonesian New Guinea (2001\(\textit{D}\)019): Trends, drivers and outlook. <i>Biological Conservation</i> , 2021 , 261, 109225	6.2	8
217	Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. <i>Ecological Informatics</i> , 2021 , 101442	4.2	5
216	The Floodplain Forests of the Mamberamo Basin, Papua, Indonesia (Western New Guinea): Vegetation, Soils, and Local Use. <i>Forests</i> , 2021 , 12, 1790	2.8	1
215	How forest structure varies with elevation in old growth and secondary forest in Costa Rica. <i>Forest Ecology and Management</i> , 2020 , 469, 118191	3.9	10
214	Long-term thermal sensitivity of Earth's tropical forests. <i>Science</i> , 2020 , 368, 869-874	33.3	92
213	Asynchronous carbon sink saturation in African and Amazonian tropical forests. <i>Nature</i> , 2020 , 579, 80-8	37 50.4	202
212	The global abundance of tree palms. Global Ecology and Biogeography, 2020, 29, 1495-1514	6.1	21

211	Coconut oil, conservation and the conscientious consumer. Current Biology, 2020, 30, R757-R758	6.3	9
210	Determinants of participation in state and private PES projects in Uganda. <i>Scientific African</i> , 2020 , 8, e00370	1.7	1
209	Comments on An Evaluation of Hurricane Superintensity in Axisymmetric Numerical Models Journals of the Atmospheric Sciences, 2020 , 77, 3971-3975	2.1	1
208	Rodents as potential hosts and reservoirs of parasites along the edge of a Central African forest: Bwindi impenetrable national park, South Western Uganda. <i>African Health Sciences</i> , 2020 , 20, 1168-117	'8 ^{1.1}	1
207	Rodents as potential hosts and reservoirs of parasites along the edge of a Central African forest: Bwindi impenetrable national park, South Western Uganda. <i>African Health Sciences</i> , 2020 , 20, 1168-117	'8 ^{1.1}	1
206	Compounding impact of deforestation on Borneol climate during El Nib events. <i>Environmental Research Letters</i> , 2020 , 15, 084006	6.2	7
205	A standardized assessment of forest mammal communities reveals consistent functional composition and vulnerability across the tropics. <i>Ecography</i> , 2020 , 43, 75-84	6.5	7
204	An empirical evaluation of camera trap study design: How many, how long and when?. <i>Methods in Ecology and Evolution</i> , 2020 , 11, 700-713	7.7	56
203	Co-benefits of soil carbon protection for invertebrate conservation. <i>Biological Conservation</i> , 2020 , 252, 108859	6.2	4
202	The environmental impacts of palm oil in context. <i>Nature Plants</i> , 2020 , 6, 1418-1426	11.5	43
202	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583	11.5	1
	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence,		
201	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583 Interpreting forest diversity-productivity relationships: volume values, disturbance histories and	6	1
201	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583 Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. <i>Forest Ecosystems</i> , 2020 , 7, Pangolins in global camera trap data: Implications for ecological monitoring. <i>Global Ecology and</i>	6 3.8	1
201 200	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583 Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. <i>Forest Ecosystems</i> , 2020 , 7, Pangolins in global camera trap data: Implications for ecological monitoring. <i>Global Ecology and Conservation</i> , 2019 , 20, e00769 The Moral Minefield of Ethical Oil Palm and Sustainable Development. <i>Frontiers in Forests and</i>	6 3.8 2.8	1 19 17
201 200 199 198	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583 Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. <i>Forest Ecosystems</i> , 2020 , 7, Pangolins in global camera trap data: Implications for ecological monitoring. <i>Global Ecology and Conservation</i> , 2019 , 20, e00769 The Moral Minefield of Ethical Oil Palm and Sustainable Development. <i>Frontiers in Forests and Global Change</i> , 2019 , 2, Wood decomposition is more rapid on than off termite mounds in an African savanna. <i>Ecosphere</i> ,	6 3.8 2.8 3.7	1 19 17 32
201 200 199 198	Trade-off between standing biomass and productivity in species-rich tropical forest: Evidence, explanations and implications. <i>Journal of Ecology</i> , 2020 , 108, 2571-2583 Interpreting forest diversity-productivity relationships: volume values, disturbance histories and alternative inferences. <i>Forest Ecosystems</i> , 2020 , 7, Pangolins in global camera trap data: Implications for ecological monitoring. <i>Global Ecology and Conservation</i> , 2019 , 20, e00769 The Moral Minefield of Ethical Oil Palm and Sustainable Development. <i>Frontiers in Forests and Global Change</i> , 2019 , 2, Wood decomposition is more rapid on than off termite mounds in an African savanna. <i>Ecosphere</i> , 2019 , 10, e02554 Local temperature and ecological similarity drive distributional dynamics of tropical mammals	6 3.8 2.8 3.7 3.1	1 19 17 32 4

193	Forest restoration: Transformative trees. <i>Science</i> , 2019 , 366, 316-317	33.3	10
192	Call of the wild: define it or lose it. <i>Nature</i> , 2019 , 565, 429	50.4	2
191	Damage to artificial seedlings across a disturbed Afromontane forest landscape. <i>Biotropica</i> , 2019 , 51, 652-663	2.3	О
190	Learning from Failure: Lessons from a Forest Based Carbon and Charcoal Project. <i>International Forestry Review</i> , 2019 , 21, 1-10	0.9	4
189	Disturbance and the elevation ranges of woody plant species in the mountains of Costa Rica. <i>Ecology and Evolution</i> , 2019 , 9, 14330-14340	2.8	3
188	Some Initial Observations Concerning the African Wild Banana Ensete ventricosum as a Resource for Vertebrates. <i>Tropical Conservation Science</i> , 2019 , 12, 194008291987931	1.4	1
187	SDG 15: Life on Land IThe Central Role of Forests in Sustainable Development 2019 , 482-509		10
186	Rise and fall of forest loss and industrial plantations in Borneo (2000\(\mathbb{Q}\)017). <i>Conservation Letters</i> , 2019 , 12, e12622	6.9	46
185	Estimating net biomass production and loss from repeated measurements of trees in forests and woodlands: Formulae, biases and recommendations. <i>Forest Ecology and Management</i> , 2019 , 433, 729-74	ŀ ĝ ∙9	13
184	The differential effects of bracken (Pteridium aquilinum (L.) Kuhn) on germination and seedling performance of tree species in the African tropics. <i>Plant Ecology</i> , 2019 , 220, 41-55	1.7	17
183	Biological control of an agricultural pest protects tropical forests. <i>Communications Biology</i> , 2019 , 2, 10	6.7	14
182	Phylogenetic classification of the world's tropical forests. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 1837-1842	11.5	107
181	Forests, atmospheric water and an uncertain future: the new biology of the global water cycle. <i>Forest Ecosystems</i> , 2018 , 5,	3.8	63
180	Tree seed rain and seed removal, but not the seed bank, impede forest recovery in bracken ((L.) Kuhn)-dominated clearings in the African highlands. <i>Ecology and Evolution</i> , 2018 , 8, 4224-4236	2.8	12
179	Forest loss and Borneo climate. Environmental Research Letters, 2018, 13, 044009	6.2	38
178	Definition and estimation of vital rates from repeated censuses: Choices, comparisons and bias corrections focusing on trees. <i>Methods in Ecology and Evolution</i> , 2018 , 9, 809-821	7.7	26
177	Comparing seed removal rates in actively and passively restored tropical moist forests. <i>Restoration Ecology</i> , 2018 , 26, 720-728	3.1	3
176	Distributional shifts in a biodiversity hotspot. <i>Biological Conservation</i> , 2018 , 228, 252-258	6.2	1

(2017-2018)

Observations on Southern White Rhinoceros Ceratotherium simum simum Translocated to Uganda. <i>Tropical Conservation Science</i> , 2018 , 11, 194008291880680	1.4	2
Termites confer resistance to changes in tree composition following reduced browsing in an African savanna. <i>Journal of Vegetation Science</i> , 2018 , 29, 989-998	3.1	1
Annual cycles are the most common reproductive strategy in African tropical tree communities. <i>Biotropica</i> , 2018 , 50, 418-430	2.3	27
Orangutans venture out of the rainforest and into the Anthropocene. Science Advances, 2018, 4, e1701	4 22 .3	24
Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. <i>Ecography</i> , 2017 , 40, 521-530	6.5	20
Matrix population models indicate that bark harvest of two medicinal plants in Uganda's Bwindi Impenetrable National Park is sustainable. <i>African Journal of Ecology</i> , 2017 , 55, 30-36	0.8	
Diversity and carbon storage across the tropical forest biome. <i>Scientific Reports</i> , 2017 , 7, 39102	4.9	177
Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. <i>Ecology Letters</i> , 2017 , 20, 307-316	10	67
Trees, forests and water: Cool insights for a hot world. <i>Global Environmental Change</i> , 2017 , 43, 51-61	10.1	439
Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. <i>Atmospheric Research</i> , 2017 , 193, 216-230	5.4	18
The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. <i>Ecology and Evolution</i> , 2017 , 7, 145-188	2.8	101
Termites and large herbivores influence seed removal rates in an African savanna. <i>Ecology</i> , 2017 , 98, 3165-3174	4.6	3
The feasibility of local participation in Measuring, Reporting and Verification (PMRV) for REDD. <i>PLoS ONE</i> , 2017 , 12, e0176897	3.7	12
A first look at the impediments to forest recovery in bracken-dominated clearings in the African Highlands. <i>Forest Ecology and Management</i> , 2017 , 402, 166-176	3.9	13
Kinetic energy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size. <i>Tellus, Series A: Dynamic Meteorology and Oceanography</i> , 2017 , 69, 1272752	2	3
Recent loss of closed forests is associated with Ebola virus disease outbreaks. <i>Scientific Reports</i> , 2017 , 7, 14291	4.9	81
The equations of motion for moist atmospheric air. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 7300-7307	4.4	6
Does biomass growth increase in the largest trees? Flaws, fallacies and alternative analyses. <i>Functional Ecology</i> , 2017 , 31, 568-581	5.6	37
	Tropical Conservation Science, 2018, 11, 194008291880680 Termites confer resistance to changes in tree composition following reduced browsing in an African savanna. Journal of Vegetation Science, 2018, 29, 989-998 Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica, 2018, 50, 418-430 Orangutans venture out of the rainforest and into the Anthropocene. Science Advances, 2018, 4, e1701 Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography, 2017, 40, 521-530 Matrix population models indicate that bark harvest of two medicinal plants in Uganda's Bwindi Impenetrable National Park is sustainable. African Journal of Ecology, 2017, 55, 30-36 Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102 Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20, 307-316 Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61 Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 2017, 193, 216-230 The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial System) project. Ecology and Evolution, 2017, 7, 145-188 Termites and large herbivores influence seed removal rates in an African savanna. Ecology, 2017, 98, 3165-3174 The feasibility of local participation in Measuring, Reporting and Verification (PMRV) for REDD. PLOS ONE, 2017, 12, e0176897 A first look at the impediments to forest recovery in bracken-dominated clearings in the African Highlands. Forest Ecology and Management, 2017, 402, 166-176 Kinetic energy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size. Tellus, Series A: Dynamic Meteorology and Oceangraphy, 2017, 69, 1272752 Rec	Tremites confer resistance to changes in tree composition following reduced browsing in an African savanna. Journal of Vegetation Science, 2018, 29, 989-998 Annual cycles are the most common reproductive strategy in African tropical tree communities. Biotropica, 2018, 50, 418-430 Orangutans venture out of the rainforest and into the Anthropocene. Science Advances, 2018, 4, e170142‡, 3 Phylogenetic composition and structure of tree communities shed light on historical processes influencing tropical rainforest diversity. Ecography, 2017, 40, 521-530 Matrix population models indicate that bark harvest of two medicinal plants in Uganda's Bwindi Impenetrable National Park is sustainable. African Journal of Ecology, 2017, 55, 30-36 Diversity and carbon storage across the tropical forest biome. Scientific Reports, 2017, 7, 39102 Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 2017, 20, 307-316 Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61 Trees, forests and water: Cool insights for a hot world. Global Environmental Change, 2017, 43, 51-61 Fuel for cyclones: The water vapor budget of a hurricane as dependent on its movement. Atmospheric Research, 2017, 193, 216-230 The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecology and Evolution, 2017, 7, 145-188 Termites and large herbivores influence seed removal rates in an African savanna. Ecology, 2017, 98, 3165-3174 The feasibility of local participation in Measuring, Reporting and Verification (PMRV) for REDD. PLOS ONE, 2017, 112, e0176897 Afrist look at the impediments to forest recovery in bracken-dominated clearings in the African Highlands. Forest Ecology and Management, 2017, 402, 166-176 Rivelt cenergy generation in heat engines and heat pumps: the relationship between surface pressure, temperature and circulation cell size. Tellus, Series A: Dynami

157	Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. <i>Scientific Reports</i> , 2016 , 6, 21930	4.9	126
156	How are soil carbon and tropical biodiversity related?. <i>Environmental Conservation</i> , 2016 , 43, 231-241	3.3	24
155	Tangible benefits or token gestures: does Bwindi impenetrable National Park's long established multiple use programme benefit the poor?. <i>Forests Trees and Livelihoods</i> , 2016 , 25, 16-32	1.4	3
154	Bell miner associated dieback: nutrient cycling and herbivore crown damage in Eucalyptus propinqua. <i>Australian Forestry</i> , 2016 , 79, 74-82	2.1	4
153	Motivation Matters: Lessons for REDD+ Participatory Measurement, Reporting and Verification from Three Decades of Child Health Participatory Monitoring in Indonesia. <i>PLoS ONE</i> , 2016 , 11, e01594	8ð ^{.7}	2
152	Disturbance and distributions: avoiding exclusion in a warming world. <i>Ecology and Society</i> , 2016 , 21,	4.1	19
151	Standardized Assessment of Biodiversity Trends in Tropical Forest Protected Areas: The End Is Not in Sight. <i>PLoS Biology</i> , 2016 , 14, e1002357	9.7	87
150	The moral basis for conservation Iteflections on Dickman etlal <i>Frontiers in Ecology and the Environment</i> , 2016 , 14, 67-69	5.5	5
149	Limited carbon and biodiversity co-benefits for tropical forest mammals and birds 2016 , 26, 1098-111		27
148	Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. <i>Scientific Reports</i> , 2016 , 6, 32017	4.9	208
147	Charisma counts: the presence of great apes affects the allocation of research effort in the paleotropics. <i>Frontiers in Ecology and the Environment</i> , 2016 , 14, 13-19	5.5	10
146	Global patterns of terrestrial assemblage turnover within and among land uses. <i>Ecography</i> , 2016 , 39, 1151-1163	6.5	63
145	Fuelwood collection and its impacts on a protected tropical mountain forest in Uganda. <i>Forest Ecology and Management</i> , 2015 , 354, 56-67	3.9	27
144	Comments on The Tropospheric LandBea Warming Contrast as the Driver of Tropical Sea Level Pressure Changes (Journal of Climate, 2015, 28, 4293-4307)	4.4	3
143	Tree Species Composition Predicts Epiphytic Lichen Communities in an African Montane Rain Forest. <i>Biotropica</i> , 2015 , 47, 542-549	2.3	6
142	Unseen sentinels: local monitoring and control in conservation’s blind spots. <i>Ecology and Society</i> , 2015 , 20,	4.1	33
141	Exploring Local Perspectives for Conservation Planning: A Case Study from a Remote Forest Community in Indonesian Papua. <i>Forests</i> , 2015 , 6, 3278-3303	2.8	6
140	An estimate of the number of tropical tree species. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 7472-7	11.5	258

139	Limited carbon and biodiversity co-benefits for tropical forest mammals and birds 2015,		3
138	REDD at the crossroads? The opportunities and challenges of REDD for conservation and human welfare in South West Uganda. <i>International Journal of Environment and Sustainable Development</i> , 2015 , 14, 273	1.3	6
137	What scope for certifying forest ecosystem services?. <i>Ecosystem Services</i> , 2014 , 7, 160-166	6.1	17
136	The Implementation and Sustainability of Village Conservation Agreements Around Kerinci Seblat National Park, Indonesia. <i>Society and Natural Resources</i> , 2014 , 27, 602-620	2.4	1
135	Maintaining ecosystem function and services in logged tropical forests. <i>Trends in Ecology and Evolution</i> , 2014 , 29, 511-20	10.9	223
134	Conservation in a Wicked Complex World; Challenges and Solutions. Conservation Letters, 2014, 7, 271-2	2879	142
133	How plants water our planet: advances and imperatives. <i>Trends in Plant Science</i> , 2014 , 19, 209-11	13.1	35
132	Spread of the Invasive Alien Species Piper Aduncum via Logging Roads in Borneo. <i>Tropical Conservation Science</i> , 2014 , 7, 35-44	1.4	17
131	Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires. <i>Scientific Reports</i> , 2014 , 4, 6112	4.9	186
130	Four decades of forest persistence, clearance and logging on Borneo. <i>PLoS ONE</i> , 2014 , 9, e101654	3.7	253
129	A More Realistic Portrayal of Tropical Forestry: Response to Kormos and Zimmerman. <i>Conservation Letters</i> , 2014 , 7, 145-146	6.9	1
128	Why Does Air Passage over Forest Yield More Rain? Examining the Coupling between Rainfall, Pressure, and Atmospheric Moisture Content*. <i>Journal of Hydrometeorology</i> , 2014 , 15, 411-426	3.7	38
127	Four new Arthoniomycetes from Bwindi Impenetrable National Park, Uganda ßupported by molecular data. <i>Nova Hedwigia</i> , 2014 , 98, 295-312	1.3	14
126	Conservation: focus on implementation. <i>Nature</i> , 2014 , 516, 37	50.4	4
125	Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes. <i>Journal of Ecology</i> , 2014 , 102, 1606-1611	6	16
124	Carbon storage in tropical forests correlates with taxonomic diversity and functional dominance on a global scale. <i>Global Ecology and Biogeography</i> , 2014 , 23, 563-573	6.1	110
123	The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. <i>Ecology and Evolution</i> , 2014 , 4, 4701-35	2.8	132

121	Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. <i>Global Ecology and Biogeography</i> , 2013 , 22, 1261-1271	6.1	280
120	Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites. <i>Biodiversity and Conservation</i> , 2013 , 22, 1909-1930	3.4	32
119	Accessing local knowledge to identify where species of conservation concern occur in a tropical forest landscape. <i>Environmental Management</i> , 2013 , 52, 348-59	3.1	16
118	The Key Physical Parameters Governing Frictional Dissipation in a Precipitating Atmosphere. <i>Journals of the Atmospheric Sciences</i> , 2013 , 70, 2916-2929	2.1	7
117	Defining and defending Connell's intermediate disturbance hypothesis: a response to Fox. <i>Trends in Ecology and Evolution</i> , 2013 , 28, 571-2	10.9	80
116	Sharing future conservation costs. <i>Science</i> , 2013 , 339, 270-1	33.3	7
115	Pseudoreplication in tropical forests and the resulting effects on biodiversity conservation. <i>Conservation Biology</i> , 2013 , 27, 364-72	6	73
114	Estimates of soil carbon concentration in tropical and temperate forest and woodland from available GIS data on three continents. <i>Global Ecology and Biogeography</i> , 2013 , 22, 461-469	6.1	22
113	Variability of Soil Organic Carbon stocks under different land uses: A study in an afro-montane landscape in southwestern Uganda. <i>Geoderma</i> , 2013 , 193-194, 282-289	6.7	30
112	Human impacts on forest structure and species richness on the edges of a protected mountain forest in Uganda. <i>Forest Ecology and Management</i> , 2013 , 307, 206-218	3.9	27
111	A camera trap assessment of terrestrial vertebrates in Bwindi Impenetrable National Park, Uganda. <i>African Journal of Ecology</i> , 2013 , 51, 21-31	0.8	31
110	How selective are elephants as agents of forest tree damage in Bwindi Impenetrable National Park, Uganda?. <i>African Journal of Ecology</i> , 2013 , 51, 55-65	0.8	10
109	Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 1039-1056	6.8	68
108	Oil-Palm Plantations in the Context of Biodiversity Conservation 2013 , 600-612		16
107	Biodiversity State and Trends in Southeast Asia 2013 , 509-527		11
106	African Golden Cats, Citizen Science, and Serendipity: Tapping the Camera Trap Revolution. <i>South African Journal of Wildlife Research</i> , 2013 , 43, 74-78		5
105	Complex contexts and dynamic drivers: Understanding four decades of forest loss and recovery in an East African protected area. <i>Biological Conservation</i> , 2013 , 159, 257-268	6.2	64
104	Above-ground biomass and structure of 260 African tropical forests. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2013 , 368, 20120295	5.8	204

103	On taxing wildlife films and exposure to nature. <i>Oryx</i> , 2013 , 47, 483-485	1.5	5
102	Wildlife film fees: a reply to Jepson & Jennings. <i>Oryx</i> , 2013 , 47, 488-489	1.5	2
101	Fusing radar and optical remote sensing for biomass prediction in mountainous tropical forests 2013 ,		1
100	Ten principles for a landscape approach to reconciling agriculture, conservation, and other competing land uses. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 8349-56	11.5	706
99	Reconciling forest conservation and logging in Indonesian Borneo. <i>PLoS ONE</i> , 2013 , 8, e69887	3.7	98
98	Local Perceptions of Climate Variability and Change in Tropical Forests of Papua, Indonesia. <i>Ecology and Society</i> , 2013 , 18,	4.1	56
97	Diversity of locally useful tropical forest wild-plants as a function of species richness and informant culture. <i>Biodiversity and Conservation</i> , 2012 , 21, 687-699	3.4	12
96	The impacts of selective logging on non-timber forest products of livelihood importance. <i>Forest Ecology and Management</i> , 2012 , 268, 57-69	3.9	69
95	Visual detection based distance sampling offers efficient density estimation for distinctive low abundance tropical forest tree species in complex terrain. <i>Forest Ecology and Management</i> , 2012 , 263, 114-121	3.9	14
94	Bamboo for people, Mountain gorillas, and golden monkeys: Evaluating harvest and conservation trade-offs and synergies in the Virunga Volcanoes. <i>Forest Ecology and Management</i> , 2012 , 267, 163-171	3.9	17
93	Logging scars in Ghanaian high forest: Towards improved models for sustainable production. <i>Forest Ecology and Management</i> , 2012 , 271, 27-36	3.9	47
92	Averting biodiversity collapse in tropical forest protected areas. <i>Nature</i> , 2012 , 489, 290-4	50.4	686
91	Sustaining conservation values in selectively logged tropical forests: the attained and the attainable. <i>Conservation Letters</i> , 2012 , 5, 296-303	6.9	362
90	The dilemma of green business in tropical forests: how to protect what it cannot identify. <i>Conservation Letters</i> , 2012 , 5, 342-348	6.9	12
89	Do Anthropogenic Dark Earths Occur in the Interior of Borneo? Some Initial Observations from East Kalimantan. <i>Forests</i> , 2012 , 3, 207-229	2.8	15
88	Invasions: the trail behind, the path ahead, and a test of a disturbing idea. <i>Journal of Ecology</i> , 2012 , 100, 116-127	6	153
87	Community structure and diversity of tropical forest mammals: data from a global camera trap network. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2011 , 366, 2703-11	5.8	196
86	'Linguistic injustice' is not black and white. <i>Trends in Ecology and Evolution</i> , 2011 , 26, 58-9	10.9	8

85	Timber and Non-timber Forest Product Extraction and Management in the Tropics: Towards Compatibility?. <i>Tropical Forestry</i> , 2011 , 171-188		3
84	The evolving role of tropical forests for local livelihoods in Indonesia. <i>International Journal of Environment and Sustainable Development</i> , 2011 , 10, 267	1.3	4
83	Predicting alpha diversity of African rain forests: models based on climate and satellite-derived data do not perform better than a purely spatial model. <i>Journal of Biogeography</i> , 2011 , 38, 1164-1176	4.1	23
82	A preliminary assessment of large mammal and bird use of different habitats in Bwindi Impenetrable National Park. <i>African Journal of Ecology</i> , 2011 , 49, 21-30	0.8	4
81	An encounter with an African golden cat Caracal aurata: one of the World least known felids. <i>African Journal of Ecology</i> , 2011 , 49, 367-369	0.8	4
80	A Modest Proposal for Wealthy Countries to Reforest Their Land for the Common Good. <i>Biotropica</i> , 2011 , 43, 524-528	2.3	16
79	Understanding and integrating local perceptions of trees and forests into incentives for sustainable landscape management. <i>Environmental Management</i> , 2011 , 48, 334-49	3.1	66
78	Falling back on forests: how forest-dwelling people cope with catastrophe in a changing landscape. <i>International Forestry Review</i> , 2011 , 13, 442-455	0.9	16
77	Seeing the fruit for the trees in Borneo. <i>Conservation Letters</i> , 2011 , 4, 184-191	6.9	23
76	Innocent invaders? A preliminary assessment of Cecropia, an American tree, in Java. <i>Plant Ecology and Diversity</i> , 2011 , 4, 279-288	2.2	10
75	Of Cecropias, Snarks and Boojums. Plant Ecology and Diversity, 2011, 4, 295-300	2.2	2
74	A booming trade? How collection of war residues affects livelihoods and forest in Vietnam. <i>International Forestry Review</i> , 2011 , 13, 404-415	0.9	4
73	Soils on exposed Sunda shelf shaped biogeographic patterns in the equatorial forests of Southeast Asia. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 12343-	7 ^{11.5}	51
72	Purity and Prejudice: Deluding Ourselves About Biodiversity Conservation. <i>Biotropica</i> , 2010 , 42, 566-568	82.3	24
71	Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo's tropical forests. <i>Global Ecology and Biogeography</i> , 2010 , 19, 50-60	6.1	228
70	The lowland forest tree community in Malinau, Kalimantan (Indonesian Borneo): results from a one-hectare plot. <i>Plant Ecology and Diversity</i> , 2010 , 3, 59-66	2.2	9
69	Mass fruiting in Borneo: a missed opportunity. <i>Science</i> , 2010 , 330, 584	33.3	17
68	Compatibility of timber and non-timber forest product management in natural tropical forests: Perspectives, challenges, and opportunities. <i>Forest Ecology and Management</i> , 2010 , 259, 237-245	3.9	87

(2007-2010)

67	The forests and related vegetation of Kwerba, on the Foja Foothills, Mamberamo, Papua (Indonesian New Guinea). <i>Blumea: Journal of Plant Taxonomy and Plant Geography</i> , 2010 , 55, 153-161	1	6
66	Carbon payments as a safeguard for threatened tropical mammals. <i>Conservation Letters</i> , 2009 , 2, 123-1	26 .9	118
65	Can engaging local peopled interests reduce forest degradation in Central Vietnam?. <i>Biodiversity and Conservation</i> , 2009 , 18, 2743-2757	3.4	35
64	Increasing carbon storage in intact African tropical forests. <i>Nature</i> , 2009 , 457, 1003-6	50.4	714
63	The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. <i>Ecology Letters</i> , 2009 , 12, 798-805	10	152
62	Evaluating the success of conservation actions in safeguarding tropical forest biodiversity. <i>Conservation Biology</i> , 2009 , 23, 1448-57	6	74
61	The potential for species conservation in tropical secondary forests. Conservation Biology, 2009, 23, 140	06-17	399
60	Environmental correlates for tropical tree diversity and distribution patterns in Borneo. <i>Diversity and Distributions</i> , 2009 , 15, 523-532	5	74
59	How Forests Attract Rain: An Examination of a New Hypothesis. <i>BioScience</i> , 2009 , 59, 341-347	5.7	128
58	Interactive Land-Use Planning in Indonesian Rain-Forest Landscapes: Reconnecting Plans to Practice. <i>Ecology and Society</i> , 2009 , 14,	4.1	17
57	Cuddly animals don't persuade poor people to back conservation. <i>Nature</i> , 2008 , 454, 159	50.4	12
56	Wood density as a conservation tool: quantification of disturbance and identification of conservation-priority areas in tropical forests. <i>Conservation Biology</i> , 2008 , 22, 1299-308	6	49
55	Maximum size distributions in tropical forest communities: relationships with rainfall and disturbance. <i>Journal of Ecology</i> , 2008 , 96, 495-504	6	26
54	Improved tropical forest management for carbon retention. PLoS Biology, 2008, 6, e166	9.7	136
53	The persistence and conservation of Borneo's mammals in lowland rain forests managed for timber: observations, overviews and opportunities. <i>Ecological Research</i> , 2008 , 23, 21-34	1.9	84
52	Simulating Oil Palm Expansion Requires Credible Approaches that Address Real Issues. <i>Ecology and Society</i> , 2008 , 13,	4.1	5
51	A Review of Tools for Incorporating Community Knowledge, Preferences, and Values into Decision Making in Natural Resources Management. <i>Ecology and Society</i> , 2007 , 12,	4.1	239
50	A logged forest in Borneo is better than none at all. <i>Nature</i> , 2007 , 446, 974	50.4	44

49	The odd man out? Might climate explain the lower tree Ediversity of African rain forests relative to Amazonian rain forests?. <i>Journal of Ecology</i> , 2007 , 95, 1058-1071	6	99
48	Conserving What and for Whom? Why Conservation Should Help Meet Basic Human Needs in the Tropics. <i>Biotropica</i> , 2007 , 39, 567-574	2.3	109
47	Phylogenetic Age is Positively Correlated with Sensitivity to Timber Harvest in Bornean Mammals. <i>Biotropica</i> , 2007 , 40, 070924063552006-???	2.3	5
46	Finding and promoting a local conservation consensus in a globally important tropical forest landscape. <i>Biodiversity and Conservation</i> , 2007 , 16, 137-151	3.4	16
45	Is wildlife research useful for wildlife conservation in the tropics? A review for Borneo with global implications. <i>Biodiversity and Conservation</i> , 2007 , 16, 3053-3065	3.4	37
44	Partnerships for tropical conservation. <i>Oryx</i> , 2007 , 41, 434-440	1.5	52
43	Developing a predictive understanding of landscape importance to the Punan-Pelancau of East Kalimantan, Borneo. <i>Ambio</i> , 2007 , 36, 593-9	6.5	5
42	The possibility of common ground: a reply to Mavhunga and Robinson. <i>Oryx</i> , 2007 , 41, 445-446	1.5	1
41	Scoring the importance of tropical forest landscapes with local people: patterns and insights. <i>Environmental Management</i> , 2006 , 38, 126-36	3.1	36
40	Recognizing local people's priorities for tropical forest biodiversity. <i>Ambio</i> , 2006 , 35, 17-24	6.5	70
39	Wildlife Conservation in Bornean Timber Concessions. <i>Ecology and Society</i> , 2006 , 11,	4.1	21
38	IlluminationBize relationships of 109 coexisting tropical forest tree species. <i>Journal of Ecology</i> , 2006 , 94, 494-507	6	42
37	Local people may be the best allies in conservation. <i>Nature</i> , 2006 , 440, 868	50.4	18
36	Drought, fire and tree survival in a Borneo rain forest, East Kalimantan, Indonesia. <i>Journal of Ecology</i> , 2005 , 93, 191-201	6	157
35	Forest Tree Persistence, Elephants, and Stem Scars. <i>Biotropica</i> , 2004 , 36, 505-521	2.3	23
34	Tropical forest tree mortality, recruitment and turnover rates: calculation, interpretation and comparison when census intervals vary. <i>Journal of Ecology</i> , 2004 , 92, 929-944	6	137
33	Tropical biologists, local people and conservation: new opportunities for collaboration. <i>Trends in Ecology and Evolution</i> , 2004 , 19, 634-8	10.9	102
32	Ecological Criteria and Indicators for Tropical Forest Landscapes: Challenges in the Search for Progress. <i>Ecology and Society</i> , 2004 , 9,	4.1	21

(1995-2003)

31	Disturbing hypotheses in tropical forests. <i>Trends in Ecology and Evolution</i> , 2003 , 18, 18-26	10.9	226
30	Reduced-impact logging in Indonesian Borneo: some results confirming the need for new silvicultural prescriptions. <i>Forest Ecology and Management</i> , 2003 , 179, 415-427	3.9	89
29	Growth assessment in tropical trees: large daily diameter fluctuations and their concealment by dendrometer bands. <i>Canadian Journal of Forest Research</i> , 2003 , 33, 2027-2035	1.9	31
28	Towards sustainable management of mixed dipterocarp forests of South-east Asia: moving beyond minimum diameter cutting limits. <i>Environmental Conservation</i> , 2003 , 30, 364-374	3.3	71
27	An extreme-value approach to detect clumping and an application to tropical forest gap-mosaic dynamics. <i>Journal of Tropical Ecology</i> , 2002 , 18, 671-686	1.3	3
26	The Value of Tropical Forest to Local Communities: Complications, Caveats, and Cautions. <i>Ecology</i> and Society, 2002 , 6,		72
25	Conservation and Biodiversity Monitoring in the Tropics: Realities, Priorities, and Distractions. <i>Conservation Biology</i> , 2001 , 15, 1179-1182	6	83
24	The Ecological Consequences of Logging in the Burned Forests of East Kalimantan, Indonesia. <i>Conservation Biology</i> , 2001 , 15, 1183-1186	6	83
23	Long-term observations of rain forest succession, tree diversity and responses to disturbance <i>Plant Ecology</i> , 2001 , 155, 183-199	1.7	49
22	Long-term permanent plot observations of vegetation dynamics in Budongo, a Ugandan rain forest. <i>Journal of Tropical Ecology</i> , 2000 , 16, 865-882	1.3	114
21	Developing tests of successional hypotheses with size-structured populations, and an assessment using long-term data from a Ugandan rain forest 1999 , 140, 117-127		20
20	Tropical forest diversity, environmental change and species augmentation: After the intermediate disturbance hypothesis. <i>Journal of Vegetation Science</i> , 1999 , 10, 851-860	3.1	64
19	Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures. <i>Forestry</i> , 1999 , 72, 59-74	2.2	491
18	Further Notes on Species Richness, Tropical Forest Dynamics and Sampling: A Reply to Phillips et al <i>Oikos</i> , 1997 , 79, 188	4	6
17	Forest turnover, diversity and CO(2). Trends in Ecology and Evolution, 1997, 12, 404	10.9	23
16	Species Richness, Tropical Forest Dynamics and Sampling: Questioning Cause and Effect. <i>Oikos</i> , 1996 , 76, 587	4	17
15	Mortality and Recruitment Rate Evaluations in Heterogeneous Tropical Forests. <i>Journal of Ecology</i> , 1996 , 84, 91	6	216
14	Tropical Alpine Environments: Plant Form and Function. <i>Mountain Research and Development</i> , 1995 , 15, 84	1.4	

13	A critique of permanent plot methods and analysis with examples from Budongo Forest, Uganda. <i>Forest Ecology and Management</i> , 1995 , 77, 11-34	3.9	115
12	The Interpretation and Misinterpretation of Mortality Rate Measures. <i>Journal of Ecology</i> , 1995 , 83, 331	6	297
11	Evaluating turnover in tropical forests. <i>Science</i> , 1995 , 268, 894	33.3	54
10	Naturalized and invasive plant species in the evergreen forests of the East Usambara Mountains, Tanzania. <i>African Journal of Ecology</i> , 1994 , 32, 66-71	0.8	21
9	Tanzanian coastal forests Linique, threatened, and overlooked. Oryx, 1992, 26, 107-114	1.5	9
8	Researching local perspectives on biodiversity in tropical landscapes: lessons from ten case studies113-	141	2
7	Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. <i>Conservation Letters</i> ,	6.9	4
6	Even small forest patches increase bee visits to flowers in an oil palm plantation landscape. Biotropica,	2.3	1
5	The environmental impacts of palm oil in context		2
4	The Decentralization of Forest Governance		2
3	Slowing deforestation in Indonesia follows declining oil palm expansion and lower oil prices		5
2	Forest loss in Indonesian New Guinea: trends, drivers, and outlook		1
1	Glasgow forest declaration needs new modes of data ownership. Nature Climate Change,	21.4	3