Qian Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2953422/qian-li-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 252
 6,306
 37
 69

 papers
 h-index
 g-index

 273
 8,693
 9.5
 6.32

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
252	Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis <i>Journal of Experimental and Clinical Cancer Research</i> , 2022 , 41, 24	12.8	1
251	Molecular and Phenotypic Expansion of AlstrEn Syndrome in Chinese Patients <i>Frontiers in Genetics</i> , 2022 , 13, 808919	4.5	О
250	Programmable DNA Hydrogels as Artificial Extracellular Matrix Small, 2022, e2107640	11	5
249	Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. <i>Microchemical Journal</i> , 2022 , 175, 107077	4.8	O
248	Pharmaceutical applications of framework nucleic acids <i>Acta Pharmaceutica Sinica B</i> , 2022 , 12, 76-91	15.5	4
247	Computer vision-aided bioprinting for bone research <i>Bone Research</i> , 2022 , 10, 21	13.3	О
246	Two entry tunnels in mouse TAAR9 suggest the possibility of multi-entry tunnels in olfactory receptors <i>Scientific Reports</i> , 2022 , 12, 2691	4.9	1
245	Block Copolymer Self-Assembly Guided Synthesis of Mesoporous Carbons with In-Plane Holey Pores for Efficient Oxygen Reduction Reaction <i>Macromolecular Rapid Communications</i> , 2022 , e2100884	₄ 4.8	О
244	Olfactory regulation by dopamine and DRD2 receptor in the nose <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2118570119	11.5	1
243	Advances in aptamer-based nuclear imaging European Journal of Nuclear Medicine and Molecular Imaging, 2022 , 1	8.8	1
242	DNA Nanotechnology for Plasmonics 2022 , 271-323		
241	Optimum programmed intermittent epidural bolus interval time between 8 mL boluses of Ropivacaine 0.1% with sufentanil 0.3 mL with dural puncture epidural technique for labor analgesia: A biased-coin up-and-down sequential allocation trial <i>Journal of Clinical Anesthesia</i> ,	1.9	О
240	2022, 79, 110698 Long noncoding RNA PVT1 regulates the proliferation and apoptosis of ARPE-19 cells via the miR-1301-3p/KLF7 axis <i>Cell Cycle</i> , 2022, 1-9	4.7	1
239	Gold-Nanoparticle-Mediated Assembly of High-Order DNA Nano-Architectures Small, 2022, e2200824	11	1
238	Molecular Visualization of Early-Stage Acute Kidney Injury with a DNA Framework Nanodevice <i>Advanced Science</i> , 2022 , e2105947	13.6	2
237	Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration <i>Biomaterials</i> , 2022 , 285, 121530	15.6	5
236	Protein-Mimicking Nanoparticles in Biosystems Advanced Materials, 2022, e2201562	24	2

(2021-2021)

235	Chronic Intermittent Hypoxia-Induced Aberrant Neural Activities in the Hippocampus of Male Rats Revealed by Long-Term Recording <i>Frontiers in Cellular Neuroscience</i> , 2021 , 15, 784045	6.1	О
234	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26528-	-2 ¹⁶ -34	30
233	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie</i> , 2021 , 133, 26732	3.6	7
232	Electrochemically driven assembly of framework nucleic acids. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 905, 115901	4.1	
231	Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. <i>Advanced Science</i> , 2021 , 8, e2102989	13.6	2
230	Naloxone Facilitates Contextual Learning and Memory in a Receptor-Independent and Tet1-Dependent Manner. <i>Cellular and Molecular Neurobiology</i> , 2021 , 41, 1031-1038	4.6	О
229	Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. <i>Cell Reports</i> , 2021 , 34, 108905	10.6	7
228	Hepatic nNOS impaired hepatic insulin sensitivity through the activation of p38 MAPK. <i>Journal of Endocrinology</i> , 2021 , 248, 265-275	4.7	1
227	Immunostimulatory AIE Dots for Live-Cell Imaging and Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 19660-19667	9.5	3
226	Dysregulation of Wnt/Etatenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. <i>Cancer Science</i> , 2021 , 112, 1695-1706	6.9	12
225	Proteomic Exploration of Endocytosis of Framework Nucleic Acids. <i>Small</i> , 2021 , 17, e2100837	11	5
224	Epigenetic Remodeling Hydrogel Patches for Multidrug-Resistant Triple-Negative Breast Cancer. <i>Advanced Materials</i> , 2021 , 33, e2100949	24	23
223	DNA Assembly-Based Stimuli-Responsive Systems. <i>Advanced Science</i> , 2021 , 8, 2100328	13.6	11
222	Kinetically Interlocking Multiple-Units Polymerization of DNA Double Crossover and Its Application in Hydrogel Formation. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100182	4.8	3
221	Circulating microRNAs: Biomarkers of disease. Clinica Chimica Acta, 2021, 516, 46-54	6.2	19
220	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14438-14445	16.4	3
219	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie</i> , 2021 , 133, 14559-14566	3.6	
218	An Illustrated Guide to the Imaging Evolution of COVID in Non-Epidemic Areas of Southeast China. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 648180	5.6	

217	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3
216	Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. <i>Brain, Behavior, and Immunity</i> , 2021 , 94, 437-457	16.6	11
215	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. <i>Nano Letters</i> , 2021 , 21, 4394-4402	11.5	13
214	Biocomputing Based on DNA Strand Displacement Reactions. <i>ChemPhysChem</i> , 2021 , 22, 1151-1166	3.2	7
213	Coordination of two enhancers drives expression of olfactory trace amine-associated receptors. <i>Nature Communications</i> , 2021 , 12, 3798	17.4	2
212	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 16829-16835	3.6	
211	Alpine grassland management based on ecosystem service relationships on the southern slopes of the Qilian Mountains, China. <i>Journal of Environmental Management</i> , 2021 , 288, 112447	7.9	6
210	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16693-16699	16.4	7
209	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
208	Postsynaptic Targeting and Mobility of Membrane Surface-Localized hASIC1a. <i>Neuroscience Bulletin</i> , 2021 , 37, 145-165	4.3	3
207	Biosensors based on DNA logic gates. View, 2021, 2, 20200038	7.8	4
206	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6624-6630	16.4	2
205	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. <i>Nature Protocols</i> , 2021 , 16, 383-404	18.8	5
204	A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2007342	15.6	37
203	Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. <i>Nano Research</i> , 2021 , 14, 992-997	10	12
202	Nanosurface energy transfer indicating Exo III-propelled stochastic 3D DNA walkers for HIV DNA detection. <i>Analyst, The</i> , 2021 , 146, 1675-1681	5	2
201	Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. <i>Chemical Communications</i> , 2021 , 57, 3247-3250	5.8	5
200	Encoding DNA Frameworks for Amplified Multiplexed Imaging of Intracellular microRNAs. Analytical Chemistry, 2021 , 93, 2226-2234	7.8	18

(2020-2021)

199	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie</i> , 2021 , 133, 6698-6704	3.6	
198	Advances in Whole-Cell Photobiological Hydrogen Production. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000051	Ο	1
197	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. <i>ACS Applied Materials & Acs Applied Materials</i>	9.5	8
196	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
195	Activatable Ratiometric NIR-II Fluorescence Nanoprobe for Quantitative Detection of HS in Colon Cancer. <i>Analytical Chemistry</i> , 2021 , 93, 9356-9363	7.8	11
194	Arbuscular mycorrhizal fungal community structure following different grazing intensities in an alpine grassland. <i>Soil Science Society of America Journal</i> , 2021 , 85, 1620-1633	2.5	1
193	Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. <i>Journal of Biological Chemistry</i> , 2021 , 297, 101268	5.4	3
192	Programming cell communications with pH-responsive DNA nanodevices. <i>Chemical Communications</i> , 2021 , 57, 4536-4539	5.8	4
191	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. <i>Chemical Communications</i> , 2021 , 57, 3801-3804	5.8	5
190	Data Storage Based on DNA. Small Structures, 2021 , 2, 2000046	8.7	10
189	Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. <i>ACS Nano</i> , 2021 ,	16.7	5
188	Restoration of Degraded Grassland Significantly Improves Water Storage in Alpine Grasslands in the Qinghai-Tibet Plateau <i>Frontiers in Plant Science</i> , 2021 , 12, 778656	6.2	2
187	Driving DNA Origami Assembly with a Terahertz Wave Nano Letters, 2021,	11.5	5
186	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. <i>Science Advances</i> , 2020 , 6, eaay994	48 ₄ .3	6
185	Light Grazing Significantly Reduces Soil Water Storage in Alpine Grasslands on the Qinghai-Tibet Plateau. <i>Sustainability</i> , 2020 , 12, 2523	3.6	7
184	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20
183	Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. <i>Energy and Environmental Science</i> , 2020 , 13, 2064-2068	35.4	8
182	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25

181	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. <i>Nano Letters</i> , 2020 , 20, 5228-5235	11.5	18
180	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10406-10410	16.4	20
179	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25
178	Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote Hunger Response. <i>Cell Reports</i> , 2020 , 30, 3717-3728.e6	10.6	5
177	Naloxone regulates the differentiation of neural stem cells via a receptor-independent pathway. <i>FASEB Journal</i> , 2020 , 34, 5917-5930	0.9	4
176	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie</i> , 2020 , 132, 10492-10496	3.6	2
175	Non-additive Effects of Leaf Litter Mixtures from Robinia pseudoacacia and Ten Tree Species on Soil Properties. <i>Journal of Sustainable Forestry</i> , 2020 , 39, 771-784	1.2	2
174	Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane. <i>Nano Letters</i> , 2020 , 20, 3521-3527	11.5	11
173	Near-IR emissive rare-earth nanoparticles for guided surgery. <i>Theranostics</i> , 2020 , 10, 2631-2644	12.1	20
172	Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. <i>Chemical Communications</i> , 2020 , 56, 9012-9015	5.8	8
171	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo-Fenton Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18515-18521	16.4	15
170	PolyA-based DNA bonds with programmable bond length and bond energy. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
169	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337	16.7	13
168	Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. <i>Science of the Total Environment</i> , 2020 , 714, 136794	10.2	18
167	A Chemical Approach for Real-time Monitoring Neuronal Activities. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 729-730	2.2	
166	Prescribing DNA Origami Patterns via Scaffold Decoration. <i>Small</i> , 2020 , 16, e2000793	11	7
165	Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. <i>Cell Research</i> , 2020 , 30, 408-420	24.7	6
164	AlCl exposure regulates neuronal development by modulating DNA modification. <i>World Journal of Stem Cells</i> , 2020 , 12, 1354-1365	5.6	1

(2020-2020)

163	Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming. <i>Cell Regeneration</i> , 2020 , 9, 17	2.5		
162	DNA Framework-Programmed Micronano Hierarchy Sensor Interface for Metabolite Analysis in Whole Blood <i>ACS Applied Bio Materials</i> , 2020 , 3, 53-58	4.1	3	
161	Framework Nucleic Acids for Cell Imaging and Therapy. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1-9	2.2	7	
160	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50	
159	Metal-Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis. <i>Nano Letters</i> , 2020 , 20, 829-840	11.5	34	
158	DNA Framework-Encoded Mineralization of Calcium Phosphate. <i>CheM</i> , 2020 , 6, 472-485	16.2	31	
157	Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications. <i>ACS Applied Materials & English (Materials & Materials & Materials</i>	9.5	18	
156	ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 665-668	16.4	16	
155	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88	
154	Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. <i>Analytical Chemistry</i> , 2020 , 92, 1333-1339	7.8	6	
153	Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures. <i>Global Challenges</i> , 2020 , 4, 1900075	4.3	12	
152	Catalytic Nucleic Acids for Bioanalysis ACS Applied Bio Materials, 2020 , 3, 2674-2685	4.1	7	
151	TAAR Agonists. Cellular and Molecular Neurobiology, 2020 , 40, 257-272	4.6	11	
150	Ordered Bicontinuous Mesoporous Polymeric Semiconductor Photocatalyst. ACS Nano, 2020, 14, 1365	2-18. 6 6	219	
149	Erianin inhibits the oncogenic properties of hepatocellular carcinoma via inducing DNA damage and aberrant mitosis. <i>Biochemical Pharmacology</i> , 2020 , 182, 114266	6	6	
148	ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer disease. <i>Journal of Controlled Release</i> , 2020 , 327, 688-702	11.7	18	
147	A poly(thymine)-melamine duplex for the assembly of DNA nanomaterials. <i>Nature Materials</i> , 2020 , 19, 1012-1018	27	38	
146	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo-Fenton Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 18673-18679	3.6	O	

145	Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112449	11.8	19
144	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie</i> , 2020 , 132, 20793-20799	3.6	5
143	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 204, 111070	7	4
142	Bioinspired DNA Nanointerface with Anisotropic Aptamers for Accurate Capture of Circulating Tumor Cells. <i>Advanced Science</i> , 2020 , 7, 2000647	13.6	15
141	Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 760	5.7	17
140	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20612-20618	16.4	19
139	DNA-Based Fabrication for Nanoelectronics. <i>Nano Letters</i> , 2020 , 20, 5604-5615	11.5	13
138	Imaging of Cell Migration Mediated Exocytosis with Gold Nanoprobes. <i>Chinese Journal of Analytical Chemistry</i> , 2020 , 48, 847-854	1.6	
137	DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. <i>Nano Letters</i> , 2020 , 20, 7028-7035	11.5	9
136	Programming Cell-Cell Communications with Engineered Cell Origami Clusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8800-8808	16.4	50
135	DNA framework-engineered electrochemical biosensors. Science China Life Sciences, 2020, 63, 1130-114	11 8.5	8
134	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
133	DNA nanostructure-encoded fluorescent barcodes. <i>Aggregate</i> , 2020 , 1, 107-116	22.9	4
132	Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. <i>ACS Synthetic Biology</i> , 2019 , 8, 2106-2112	5.7	9
131	Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. <i>EBioMedicine</i> , 2019 , 47, 352-364	8.8	2
130	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. <i>Science Advances</i> , 2019 , 5, eaau4506	14.3	67
129	Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes. <i>ChemPlusChem</i> , 2019 , 84, 323-327	2.8	3
128	Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. <i>Cell Death and Disease</i> , 2019 , 10, 97	9.8	22

(2019-2019)

127	Terminal deoxynucleotidyl transferase (TdT)-catalyzed homo-nucleotides-constituted ssDNA: Inducing tunable-size nanogap for core-shell plasmonic metal nanostructure and acting as Raman reporters for detection of Escherichia coli O157:H7. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111419	11.8	10
126	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10173-10178	16.4	53
125	Hippocampal PKR/NLRP1 Inflammasome Pathway Is Required for the Depression-Like Behaviors in Rats with Neuropathic Pain. <i>Neuroscience</i> , 2019 , 412, 16-28	3.9	21
124	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie</i> , 2019 , 131, 10279-10284	3.6	15
123	Poly-Adenine-Engineered Gold Nanogaps for SERS Nanostructures. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3501-3509	5.6	4
122	An Intelligent DNA Nanorobot with Enhanced Protein Lysosomal Degradation of HER2. <i>Nano Letters</i> , 2019 , 19, 4505-4517	11.5	91
121	Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes. <i>ACS Applied Materials & Acs Applied & Acs Appli</i>	9.5	10
120	In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 263-270	11.8	17
119	Self-Assembly of Metallo-Nucleoside Hydrogels for Injectable Materials That Promote Wound Closure. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	27
118	AlloDriver: a method for the identification and analysis of cancer driver targets. <i>Nucleic Acids Research</i> , 2019 , 47, W315-W321	20.1	22
117	Tumor Chemo-Radiotherapy with Rod-Shaped and Spherical Gold Nano Probes: Shape and Active Targeting Both Matter. <i>Theranostics</i> , 2019 , 9, 1893-1908	12.1	39
116	Programming Motions of DNA Origami Nanomachines. <i>Small</i> , 2019 , 15, e1900013	11	20
115	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. <i>Nanoscale</i> , 2019 , 11, 6263-6269	7.7	10
114	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
113	DNA-Based Nanomedicine with Targeting and Enhancement of Therapeutic Efficacy of Breast Cancer Cells. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	49
112	Patterning Nanoparticles with DNA Molds. ACS Applied Materials & amp; Interfaces, 2019, 11, 13853-138	58 .5	20
111	Live-cell imaging of octaarginine-modified polymer dots via single particle tracking. <i>Cell Proliferation</i> , 2019 , 52, e12556	7.9	8
110	Microglial Depletion with Clodronate Liposomes Increases Proinflammatory Cytokine Levels, Induces Astrocyte Activation, and Damages Blood Vessel Integrity. <i>Molecular Neurobiology</i> , 2019 , 56, 6184-6196	6.2	31

. ,	22
ed 3.1	16
an 16.4	23
6.1	21
16.4	27
0.9	
3.5	3
3.9	7
7.8	22
2019,	10
4.6	15
17.4	36
68.1	153
0.9	1
4.4	3
faces 9.5	38
9	18
4.1	19
	19, 5.7 ed 3.1 an 16.4 6.1 9.9 3.5 3.9 7.8 2019, 4.6 17.4 68.1 0.9 . 4.4

(2018-2019)

91	Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. <i>Brain Structure and Function</i> , 2019 , 224, 1035-1049	4	19
90	Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch. <i>Protein and Cell</i> , 2019 , 10, 395-404	7.2	11
89	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
88	PDGFR-Imodulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF- B pathway in subarachnoid hemorrhage rats. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1369-1380	7.3	30
87	20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1531-1543	7.3	30
86	Advances in Nanowire Transistor-Based Biosensors. Small Methods, 2018, 2, 1700263	12.8	33
85	Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. <i>Brain, Behavior, and Immunity</i> , 2018 , 70, 179-193	16.6	31
84	Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 15442-15448	9.5	31
83	E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor. <i>Immunity</i> , 2018 , 48, 258-270.e5	32.3	45
82	Long non-coding RNA PVT1-5 promotes cell proliferation by regulating miR-126/SLC7A5 axis in lung cancer. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 495, 2350-2355	3.4	45
81	Can strand displacement take place in DNA triplexes?. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 372-375	3.9	4
80	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919	9.2	79
79	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5418-5422	16.4	17
78	Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex-nucleus accumbens pathway in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E4890-E4899	11.5	13
77	Mesoporous MoC/Carbon Hybrid Nanotubes Synthesized by a Dual-Template Self-Assembly Approach for an Efficient Hydrogen Production Electrocatalyst. <i>Langmuir</i> , 2018 , 34, 10924-10931	4	20
76	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification <i>ACS Applied Bio Materials</i> , 2018 , 1, 859-864	4.1	18
75	Human-specific features of spatial gene expression and regulation in eight brain regions. <i>Genome Research</i> , 2018 , 28, 1097-1110	9.7	39
74	Deorphanization of Olfactory Trace Amine-Associated Receptors. <i>Methods in Molecular Biology</i> , 2018 , 1820, 21-31	1.4	4

73	Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid. <i>Marine Drugs</i> , 2018 , 17,	6	4
72	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. <i>ACS Applied Materials & Empty Interfaces</i> , 2018 , 10, 341-349	9.5	11
71	Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. <i>Ecohydrology</i> , 2018 , 11, e1925	2.5	28
70	The E3 ligase VHL controls alveolar macrophage function via metabolic-epigenetic regulation. <i>Journal of Experimental Medicine</i> , 2018 , 215, 3180-3193	16.6	19
69	Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression. <i>Nanomaterials</i> , 2018 , 8,	5.4	18
68	Simultaneous Evaluation of the Preservative Effect of RNAlater on Different Tissues by Biomolecular and Histological Analysis. <i>Biopreservation and Biobanking</i> , 2018 , 16, 426-433	2.1	4
67	Concept and Development of Framework Nucleic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17808-17819	16.4	124
66	Enhancing Type I Photochemistry in Photodynamic Therapy Under Near Infrared Light by Using Antennae-Fullerene Complexes. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2018 , 93, 997-1003	4.6	23
65	Programming Niche Accessibility and In Vitro Stemness with Intercellular DNA Reactions. <i>Advanced Materials</i> , 2018 , 30, e1804861	24	18
64	Affinity-Modulated Molecular Beacons on MoS Nanosheets for MicroRNA Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 35794-35800	9.5	63
63	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. <i>ACS Central Science</i> , 2018 , 4, 1344-1351	16.8	102
62	Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion. <i>Cellular Physiology and Biochemistry</i> , 2018 , 50, 987-1004	3.9	22
61	Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 179	97 ⁶ 1807	, 11
60	The Triple Functions of D2 Silencing in Treatment of Periapical Disease. <i>Journal of Endodontics</i> , 2017 , 43, 272-278	4.7	5
59	Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. <i>Scientific Reports</i> , 2017 , 7, 40358	4.9	52
58	Magnetoelectrics: Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery (Adv. Mater. 8/2017). Advanced Materials, 2017 , 29,	24	2
57	Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. <i>Neuropharmacology</i> , 2017 , 117, 93-105	5.5	20
56	Second Primary Malignant Neoplasms and Survival in Adolescent and Young Adult Cancer Survivors. <i>JAMA Oncology</i> , 2017 , 3, 1554-1557	13.4	65

(2016-2017)

55	Changes of soil organic and inorganic carbon in relation to grassland degradation in Northern Tibet. <i>Ecological Research</i> , 2017 , 32, 395-404	1.9	14
54	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. <i>ACS Applied Materials & Drug-Delivery Systems</i> . <i>ACS Applied Materials & Drug-Delivery Systems</i> .	9.5	59
53	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 15245-15253	9.5	20
52	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Documents amp; Interfaces</i> , 2017 , 9, 21200-21208	9.5	27
51	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116
50	Refinement of learned skilled movement representation in motor cortex deep output layer. <i>Nature Communications</i> , 2017 , 8, 15834	17.4	30
49	The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues. <i>Biopreservation and Biobanking</i> , 2017 , 15, 475-483	2.1	9
48	PCR-Free Colorimetric DNA Hybridization Detection Using a 3D DNA Nanostructured Reporter Probe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 38281-38287	9.5	23
47	Reciprocal control of lncRNA-BCAT1 and Etatenin pathway reveals lncRNA-BCAT1 long non-coding RNA acts as a tumor suppressor in colorectal cancer. <i>Oncotarget</i> , 2017 , 8, 23628-23637	3.3	14
46	Application Progress of DNA Nanostructures in Drug Delivery and Smart Drug Carriers. <i>Chinese Journal of Analytical Chemistry</i> , 2017 , 45, 1078-1087	1.6	6
45	ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. <i>Experimental Neurology</i> , 2017 , 297, 92-100	5.7	18
44	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14
43	Association of CYP17A1 Genetic Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese Population. <i>Medical Science Monitor</i> , 2017 , 23, 2488-2499	3.2	3
42	Changes in the cellular immune system and circulating inflammatory markers of stroke patients. <i>Oncotarget</i> , 2017 , 8, 3553-3567	3.3	31
41	ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. <i>Nuclear Science and Techniques/Hewuli</i> , 2016 , 27, 1	2.1	9
40	Epidermal growth factor receptor kinase substrate® promotes the metastasis of cervical cancer via the epithelial-mesenchymal transition. <i>Molecular Medicine Reports</i> , 2016 , 14, 3220-8	2.9	7
39	Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau. <i>Journal of Mountain Science</i> , 2016 , 13, 1806-1817	2.1	12
38	Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. <i>Tumor Biology</i> , 2016 , 37, 16249	2.9	5

37	Soil effects of six different two-species litter mixtures that include Ulmus pumila. <i>Chemistry and Ecology</i> , 2016 , 32, 707-721	2.3	1
36	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. <i>ACS Applied Materials & Discreta (Materials & Materials & Mater</i>	9.5	110
35	Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 92-96	11.8	26
34	Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2. <i>Acta Biochimica Et Biophysica Sinica</i> , 2016 , 48, 220-8	2.8	29
33	Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. <i>Free Radical Biology and Medicine</i> , 2016 , 92, 15-28	7.8	79
32	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26
31	Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau. <i>PeerJ</i> , 2016 , 4, e2226	3.1	23
30	Prognostic value of lymph node ratio in patients with pathological N1 non-small cell lung cancer: a systematic review with meta-analysis. <i>Translational Lung Cancer Research</i> , 2016 , 5, 258-64	4.4	6
29	Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau. <i>PLoS ONE</i> , 2016 , 11, e0160420	3.7	9
28	Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5358-63	11.5	21
27	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie</i> , 2016 , 128, 12638-12642	3.6	6
26	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12450-4	16.4	11
25	Isothermal Amplification of Nucleic Acids. <i>Chemical Reviews</i> , 2015 , 115, 12491-545	68.1	865
24	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & Description (Control of Materials & Description (Control of Materials & Description)</i> Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA Nanocages (Control of Materials & DNA Nanocages)</i> Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA Nanocages (Control of Materials & DNA Nanocages)</i> Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA Nanocages (Control of Materials & DNA Nanocages)</i> Construction (Control of Materials & DNA Nanocages)	9.5	29
23	A quantitative protocol for rapid analysis of cell density and size distribution of pelagic and benthic Microcystis colonies by FlowCAM. <i>Journal of Applied Phycology</i> , 2015 , 27, 711-720	3.2	22
22	Risk given by AGT polymorphisms in inducing susceptibility to essential hypertension among isolated populations from a remote region of China: A case-control study among the isolated populations. <i>JRAAS - Journal of the Renin-Angiotensin-Aldosterone System</i> , 2015 , 16, 1202-17	3	4
21	Post-Assembly Stabilization of Rationally Designed DNA Crystals. <i>Angewandte Chemie</i> , 2015 , 127, 1007	4316007	77 ₇
20	Post-Assembly Stabilization of Rationally Designed DNA Crystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9936-9	16.4	42

19	Diagnostic Accuracy of CT-Guided Transthoracic Needle Biopsy for Solitary Pulmonary Nodules. <i>PLoS ONE</i> , 2015 , 10, e0131373	3.7	55
18	Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. <i>Biochemical and Biophysical Research Communications</i> , 2015 , 463, 336-43	3.4	19
17	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
16	Efficient nuclear DNA cleavage in human cancer cells by synthetic bleomycin mimics. <i>ACS Chemical Biology</i> , 2014 , 9, 1044-51	4.9	21
15	Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7745-50	16.4	326
14	Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. <i>Angewandte Chemie</i> , 2014 , 126, 7879-7884	3.6	31
13	Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. <i>JAMA Neurology</i> , 2014 , 71, 100-3	17.2	41
12	TIGAR is correlated with maximal standardized uptake value on FDG-PET and survival in non-small cell lung cancer. <i>PLoS ONE</i> , 2013 , 8, e80576	3.7	16
11	Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. <i>Neuron</i> , 2012 , 76, 1030-41	13.9	218
10	Ligand exchange and spin state equilibria of Fe(II)(N4Py) and related complexes in aqueous media. <i>Inorganic Chemistry</i> , 2012 , 51, 900-13	5.1	46
9	Photo-induced oxidation of [Fe(II)(N4Py)CH3CN] and related complexes. <i>Dalton Transactions</i> , 2012 , 41, 13180-90	4.3	20
8	DNA cleavage activity of Fe(II)N4Py under photo irradiation in the presence of 1,8-naphthalimide and 9-aminoacridine: unexpected effects of reactive oxygen species scavengers. <i>Inorganic Chemistry</i> , 2011 , 50, 8318-25	5.1	13
7	Photoenhanced oxidative DNA cleavage with non-heme iron(II) complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 11009-17	5.1	19
6	Mononuclear Fe(II)-N4Py complexes in oxidative DNA cleavage: structure, activity and mechanism. <i>Dalton Transactions</i> , 2010 , 39, 8012-21	4.3	25
5	Synthesis and application of novel crosslinking polyamine dyes with good dyeing performance. <i>Dyes and Pigments</i> , 2008 , 76, 508-514	4.6	43
4	N-Substituted indole-3-thiolate [4FeAS] clusters with a unique and tunable combination of spectral and redox properties. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1811-1818	2.7	7
3	Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques. <i>ChemBioChem</i> , 2007 , 8, 1679-87	3.8	60
2	Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources. <i>Polymer Chemistry</i> ,	4.9	5

Phase transferring luminescent gold nanoclusters via single-stranded DNA. Science China Chemistry, 1 - 7.9 - 0