Qian Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/2953422/qian-li-publications-by-citations.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 252
 6,306
 37
 69

 papers
 citations
 h-index
 g-index

 273
 8,693
 9.5
 6.32

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
252	Isothermal Amplification of Nucleic Acids. <i>Chemical Reviews</i> , 2015 , 115, 12491-545	68.1	865
251	Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7745-50	16.4	326
250	Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. <i>Neuron</i> , 2012 , 76, 1030-41	13.9	218
249	Nanoscale optical probes for cellular imaging. <i>Chemical Society Reviews</i> , 2014 , 43, 2650-61	58.5	166
248	Multicomponent Plasmonic Nanoparticles: From Heterostructured Nanoparticles to Colloidal Composite Nanostructures. <i>Chemical Reviews</i> , 2019 , 119, 12208-12278	68.1	153
247	Concept and Development of Framework Nucleic Acids. <i>Journal of the American Chemical Society</i> , 2018 , 140, 17808-17819	16.4	124
246	Solving mazes with single-molecule DNA navigators. <i>Nature Materials</i> , 2019 , 18, 273-279	27	121
245	Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. <i>Nature Communications</i> , 2017 , 8, 15646	17.4	116
244	Multiple-Armed Tetrahedral DNA Nanostructures for Tumor-Targeting, Dual-Modality in Vivo Imaging. <i>ACS Applied Materials & Discours (Materials & Materials & Mater</i>	9.5	110
243	Framework nucleic acids as programmable carrier for transdermal drug delivery. <i>Nature Communications</i> , 2019 , 10, 1147	17.4	106
242	DNA Nanostructure-Programmed Like-Charge Attraction at the Cell-Membrane Interface. <i>ACS Central Science</i> , 2018 , 4, 1344-1351	16.8	102
241	An Intelligent DNA Nanorobot with Enhanced Protein Lysosomal Degradation of HER2. <i>Nano Letters</i> , 2019 , 19, 4505-4517	11.5	91
240	Programming nanoparticle valence bonds with single-stranded DNA encoders. <i>Nature Materials</i> , 2020 , 19, 781-788	27	88
239	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919	9.2	79
238	Cerebroprotection of flavanol (-)-epicatechin after traumatic brain injury via Nrf2-dependent and -independent pathways. <i>Free Radical Biology and Medicine</i> , 2016 , 92, 15-28	7.8	79
237	Quantizing single-molecule surface-enhanced Raman scattering with DNA origami metamolecules. <i>Science Advances</i> , 2019 , 5, eaau4506	14.3	67
236	Second Primary Malignant Neoplasms and Survival in Adolescent and Young Adult Cancer Survivors. <i>JAMA Oncology</i> , 2017 , 3, 1554-1557	13.4	65

(2020-2018)

235	Affinity-Modulated Molecular Beacons on MoS Nanosheets for MicroRNA Detection. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 35794-35800	9.5	63
234	Styryl-based compounds as potential in vivo imaging agents for beta-amyloid plaques. <i>ChemBioChem</i> , 2007 , 8, 1679-87	3.8	60
233	Size-Dependent Regulation of Intracellular Trafficking of Polystyrene Nanoparticle-Based Drug-Delivery Systems. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 18619-18625	9.5	59
232	Diagnostic Accuracy of CT-Guided Transthoracic Needle Biopsy for Solitary Pulmonary Nodules. <i>PLoS ONE</i> , 2015 , 10, e0131373	3.7	55
231	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10173-10178	16.4	53
230	Multimodality MRI assessment of grey and white matter injury and blood-brain barrier disruption after intracerebral haemorrhage in mice. <i>Scientific Reports</i> , 2017 , 7, 40358	4.9	52
229	Implementing digital computing with DNA-based switching circuits. <i>Nature Communications</i> , 2020 , 11, 121	17.4	50
228	Programming Cell-Cell Communications with Engineered Cell Origami Clusters. <i>Journal of the American Chemical Society</i> , 2020 , 142, 8800-8808	16.4	50
227	DNA-Based Nanomedicine with Targeting and Enhancement of Therapeutic Efficacy of Breast Cancer Cells. <i>ACS Applied Materials & Acs Applied & Acs</i>	9.5	49
226	Ligand exchange and spin state equilibria of Fe(II)(N4Py) and related complexes in aqueous media. <i>Inorganic Chemistry</i> , 2012 , 51, 900-13	5.1	46
225	E3 Ligase VHL Promotes Group 2 Innate Lymphoid Cell Maturation and Function via Glycolysis Inhibition and Induction of Interleukin-33 Receptor. <i>Immunity</i> , 2018 , 48, 258-270.e5	32.3	45
224	Long non-coding RNA PVT1-5 promotes cell proliferation by regulating miR-126/SLC7A5 axis in lung cancer. <i>Biochemical and Biophysical Research Communications</i> , 2018 , 495, 2350-2355	3.4	45
223	Synthesis and application of novel crosslinking polyamine dyes with good dyeing performance. <i>Dyes and Pigments</i> , 2008 , 76, 508-514	4.6	43
222	Post-Assembly Stabilization of Rationally Designed DNA Crystals. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9936-9	16.4	42
221	Cortical effects of deep brain stimulation: implications for pathogenesis and treatment of Parkinson disease. <i>JAMA Neurology</i> , 2014 , 71, 100-3	17.2	41
220	Tumor Chemo-Radiotherapy with Rod-Shaped and Spherical Gold Nano Probes: Shape and Active Targeting Both Matter. <i>Theranostics</i> , 2019 , 9, 1893-1908	12.1	39
219	Human-specific features of spatial gene expression and regulation in eight brain regions. <i>Genome Research</i> , 2018 , 28, 1097-1110	9.7	39
218	A poly(thymine)-melamine duplex for the assembly of DNA nanomaterials. <i>Nature Materials</i> , 2020 , 19, 1012-1018	27	38

217	Engineering Nanozymes Using DNA for Catalytic Regulation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 1790-1799	9.5	38
216	A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. <i>Advanced Functional Materials</i> , 2021 , 31, 2007342	15.6	37
215	DNA origami cryptography for secure communication. <i>Nature Communications</i> , 2019 , 10, 5469	17.4	36
214	Metal-Organic Framework Nanoparticles for Ameliorating Breast Cancer-Associated Osteolysis. <i>Nano Letters</i> , 2020 , 20, 829-840	11.5	34
213	Advances in Nanowire Transistor-Based Biosensors. Small Methods, 2018, 2, 1700263	12.8	33
212	Nucleic Acids Analysis. <i>Science China Chemistry</i> , 2020 , 64, 1-33	7.9	33
211	Microglial Depletion with Clodronate Liposomes Increases Proinflammatory Cytokine Levels, Induces Astrocyte Activation, and Damages Blood Vessel Integrity. <i>Molecular Neurobiology</i> , 2019 , 56, 6184-6196	6.2	31
210	Chemerin suppresses neuroinflammation and improves neurological recovery via CaMKK2/AMPK/Nrf2 pathway after germinal matrix hemorrhage in neonatal rats. <i>Brain, Behavior, and Immunity</i> , 2018 , 70, 179-193	16.6	31
209	Systematic Study in Mammalian Cells Showing No Adverse Response to Tetrahedral DNA Nanostructure. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 15442-15448	9.5	31
208	Single-Particle Tracking and Modulation of Cell Entry Pathways of a Tetrahedral DNA Nanostructure in Live Cells. <i>Angewandte Chemie</i> , 2014 , 126, 7879-7884	3.6	31
207	Changes in the cellular immune system and circulating inflammatory markers of stroke patients. <i>Oncotarget</i> , 2017 , 8, 3553-3567	3.3	31
206	DNA Framework-Encoded Mineralization of Calcium Phosphate. <i>CheM</i> , 2020 , 6, 472-485	16.2	31
205	Refinement of learned skilled movement representation in motor cortex deep output layer. <i>Nature Communications</i> , 2017 , 8, 15834	17.4	30
204	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26528	-26534	30
203	PDGFR-Imodulates vascular smooth muscle cell phenotype via IRF-9/SIRT-1/NF- B pathway in subarachnoid hemorrhage rats. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1369-1380	7.3	30
202	20-HETE synthesis inhibition promotes cerebral protection after intracerebral hemorrhage without inhibiting angiogenesis. <i>Journal of Cerebral Blood Flow and Metabolism</i> , 2019 , 39, 1531-1543	7-3	30
201	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. <i>ACS Applied Materials & DNA State of Materials & DNA State of</i>	9.5	29
200	Overexpression of miR-30a in lung adenocarcinoma A549 cell line inhibits migration and invasion via targeting EYA2. <i>Acta Biochimica Et Biophysica Sinica</i> , 2016 , 48, 220-8	2.8	29

(2019-2018)

199	Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. <i>Ecohydrology</i> , 2018 , 11, e1925	2.5	28	
198	Real-Time Imaging of Endocytosis and Intracellular Trafficking of Semiconducting Polymer Dots. <i>ACS Applied Materials & Documents amp; Interfaces</i> , 2017 , 9, 21200-21208	9.5	27	
197	Self-Assembly of Metallo-Nucleoside Hydrogels for Injectable Materials That Promote Wound Closure. <i>ACS Applied Materials & ACS ACS ACS ACS ACS ACS ACS ACS ACS ACS</i>	9.5	27	
196	Encoding Carbon Nanotubes with Tubular Nucleic Acids for Information Storage. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17861-17866	16.4	27	
195	Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays. <i>Biosensors and Bioelectronics</i> , 2016 , 81, 92-96	11.8	26	
194	DNA orientation-specific adhesion and patterning of living mammalian cells on self-assembled DNA monolayers. <i>Chemical Science</i> , 2016 , 7, 2722-2727	9.4	26	
193	Encapsulation and release of living tumor cells using hydrogels with the hybridization chain reaction. <i>Nature Protocols</i> , 2020 , 15, 2163-2185	18.8	25	
192	DNA Origami-Enabled Engineering of Ligand-Drug Conjugates for Targeted Drug Delivery. <i>Small</i> , 2020 , 16, e1904857	11	25	
191	Mononuclear Fe(II)-N4Py complexes in oxidative DNA cleavage: structure, activity and mechanism. <i>Dalton Transactions</i> , 2010 , 39, 8012-21	4.3	25	
190	PCR-Free Colorimetric DNA Hybridization Detection Using a 3D DNA Nanostructured Reporter Probe. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 38281-38287	9.5	23	
189	Fractal Nanoplasmonic Labels for Supermultiplex Imaging in Single Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11938-11946	16.4	23	
188	Rapid response of arbuscular mycorrhizal fungal communities to short-term fertilization in an alpine grassland on the Qinghai-Tibet Plateau. <i>PeerJ</i> , 2016 , 4, e2226	3.1	23	
187	Epigenetic Remodeling Hydrogel Patches for Multidrug-Resistant Triple-Negative Breast Cancer. <i>Advanced Materials</i> , 2021 , 33, e2100949	24	23	
186	Enhancing Type I Photochemistry in Photodynamic Therapy Under Near Infrared Light by Using Antennae-Fullerene Complexes. <i>Cytometry Part A: the Journal of the International Society for Analytical Cytology</i> , 2018 , 93, 997-1003	4.6	23	
185	Chemerin reverses neurological impairments and ameliorates neuronal apoptosis through ChemR23/CAMKK2/AMPK pathway in neonatal hypoxic-ischemic encephalopathy. <i>Cell Death and Disease</i> , 2019 , 10, 97	9.8	22	
184	AlloDriver: a method for the identification and analysis of cancer driver targets. <i>Nucleic Acids Research</i> , 2019 , 47, W315-W321	20.1	22	
183	A quantitative protocol for rapid analysis of cell density and size distribution of pelagic and benthic Microcystis colonies by FlowCAM. <i>Journal of Applied Phycology</i> , 2015 , 27, 711-720	3.2	22	
182	Astrogliosis inhibition attenuates hydrocephalus by increasing cerebrospinal fluid reabsorption through the glymphatic system after germinal matrix hemorrhage. <i>Experimental Neurology</i> , 2019 , 320, 113003	5.7	22	

181	Single-Step Organization of Plasmonic Gold Metamaterials with Self-Assembled DNA Nanostructures. <i>Research</i> , 2019 , 2019, 7403580	7.8	22
180	Downregulation of N-Acetylglucosaminyltransferase GCNT3 by miR-302b-3p Decreases Non-Small Cell Lung Cancer (NSCLC) Cell Proliferation, Migration and Invasion. <i>Cellular Physiology and Biochemistry</i> , 2018 , 50, 987-1004	3.9	22
179	Hippocampal PKR/NLRP1 Inflammasome Pathway Is Required for the Depression-Like Behaviors in Rats with Neuropathic Pain. <i>Neuroscience</i> , 2019 , 412, 16-28	3.9	21
178	Two-Dimensional Interface Engineering of Mesoporous Polydopamine on Graphene for Novel Organic Cathodes. <i>ACS Applied Energy Materials</i> , 2019 , 2, 5816-5823	6.1	21
177	Efficient nuclear DNA cleavage in human cancer cells by synthetic bleomycin mimics. <i>ACS Chemical Biology</i> , 2014 , 9, 1044-51	4.9	21
176	Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5358-63	11.5	21
175	Receptor-stimulated transamidation induces activation of Rac1 and Cdc42 and the regulation of dendritic spines. <i>Neuropharmacology</i> , 2017 , 117, 93-105	5.5	20
174	Graphene Nanoprobes for Real-Time Monitoring of Isothermal Nucleic Acid Amplification. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 15245-15253	9.5	20
173	Programming Motions of DNA Origami Nanomachines. <i>Small</i> , 2019 , 15, e1900013	11	20
172	Patterning Nanoparticles with DNA Molds. ACS Applied Materials & amp; Interfaces, 2019, 11, 13853-138	3 58 .5	20
171	Programming Switchable Transcription of Topologically Constrained DNA. <i>Journal of the American Chemical Society</i> , 2020 , 142, 10739-10746	16.4	20
170	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10406-10410	16.4	20
169	Near-IR emissive rare-earth nanoparticles for guided surgery. <i>Theranostics</i> , 2020 , 10, 2631-2644	12.1	20
168	Mesoporous MoC/Carbon Hybrid Nanotubes Synthesized by a Dual-Template Self-Assembly Approach for an Efficient Hydrogen Production Electrocatalyst. <i>Langmuir</i> , 2018 , 34, 10924-10931	4	20
167	Photo-induced oxidation of [Fe(II)(N4Py)CH3CN] and related complexes. <i>Dalton Transactions</i> , 2012 , 41, 13180-90	4.3	20
166	Delivery of human NKG2D-IL-15 fusion gene by chitosan nanoparticles to enhance antitumor immunity. <i>Biochemical and Biophysical Research Communications</i> , 2015 , 463, 336-43	3.4	19
165	Photoenhanced oxidative DNA cleavage with non-heme iron(II) complexes. <i>Inorganic Chemistry</i> , 2010 , 49, 11009-17	5.1	19
164	Ordered Bicontinuous Mesoporous Polymeric Semiconductor Photocatalyst. <i>ACS Nano</i> , 2020 , 14, 1365	2- 1 8. 6 6	219

(2018-2020)

163	Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. <i>Biosensors and Bioelectronics</i> , 2020 , 165, 112449	11.8	19	
162	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 20612-20618	16.4	19	
161	Circulating microRNAs: Biomarkers of disease. Clinica Chimica Acta, 2021 , 516, 46-54	6.2	19	
160	Colorimetric Analysis of Carcinoembryonic Antigen Using Highly Catalytic Gold Nanoparticles-Decorated MoS Nanocomposites <i>ACS Applied Bio Materials</i> , 2019 , 2, 292-298	4.1	19	
159	Genetic labeling reveals temporal and spatial expression pattern of D2 dopamine receptor in rat forebrain. <i>Brain Structure and Function</i> , 2019 , 224, 1035-1049	4	19	
158	The E3 ligase VHL controls alveolar macrophage function via metabolic-epigenetic regulation. <i>Journal of Experimental Medicine</i> , 2018 , 215, 3180-3193	16.6	19	
157	Unraveling Cell-Type-Specific Targeted Delivery of Membrane-Camouflaged Nanoparticles with Plasmonic Imaging. <i>Nano Letters</i> , 2020 , 20, 5228-5235	11.5	18	
156	Interannual climate variability and altered precipitation influence the soil microbial community structure in a Tibetan Plateau grassland. <i>Science of the Total Environment</i> , 2020 , 714, 136794	10.2	18	
155	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification ACS Applied Bio Materials, 2018, 1, 859-864	4.1	18	
154	ErbB4 protects against neuronal apoptosis via activation of YAP/PIK3CB signaling pathway in a rat model of subarachnoid hemorrhage. <i>Experimental Neurology</i> , 2017 , 297, 92-100	5.7	18	
153	Bead-String-Shaped DNA Nanowires with Intrinsic Structural Advantages and Their Potential for Biomedical Applications. <i>ACS Applied Materials & Empty Interfaces</i> , 2020 , 12, 3341-3353	9.5	18	
152	ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer@disease. <i>Journal of Controlled Release</i> , 2020 , 327, 688-702	11.7	18	
151	Spinal IL-36/IL-36R participates in the maintenance of chronic inflammatory pain through astroglial JNK pathway. <i>Glia</i> , 2019 , 67, 438-451	9	18	
150	Encoding DNA Frameworks for Amplified Multiplexed Imaging of Intracellular microRNAs. <i>Analytical Chemistry</i> , 2021 , 93, 2226-2234	7.8	18	
149	Effect of Surface Coating of Gold Nanoparticles on Cytotoxicity and Cell Cycle Progression. <i>Nanomaterials</i> , 2018 , 8,	5.4	18	
148	Programming Niche Accessibility and In Vitro Stemness with Intercellular DNA Reactions. <i>Advanced Materials</i> , 2018 , 30, e1804861	24	18	
147	In situ terminus-regulated DNA hydrogelation for ultrasensitive on-chip microRNA assay. <i>Biosensors and Bioelectronics</i> , 2019 , 137, 263-270	11.8	17	
146	Charge Neutralization Drives the Shape Reconfiguration of DNA Nanotubes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 5418-5422	16.4	17	

145	Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 760	5.7	17
144	Impacts of climate change and human factors on land cover change in inland mountain protected areas: a case study of the Qilian Mountain National Nature Reserve in China. <i>Environmental Monitoring and Assessment</i> , 2019 , 191, 486	3.1	16
143	TIGAR is correlated with maximal standardized uptake value on FDG-PET and survival in non-small cell lung cancer. <i>PLoS ONE</i> , 2013 , 8, e80576	3.7	16
142	ATP-Triggered, Allosteric Self-Assembly of DNA Nanostructures. <i>Journal of the American Chemical Society</i> , 2020 , 142, 665-668	16.4	16
141	General Interfacial Self-Assembly Engineering for Patterning Two-Dimensional Polymers with Cylindrical Mesopores on Graphene. <i>Angewandte Chemie</i> , 2019 , 131, 10279-10284	3.6	15
140	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo-Fenton Reaction. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18515-18521	16.4	15
139	Bioinspired DNA Nanointerface with Anisotropic Aptamers for Accurate Capture of Circulating Tumor Cells. <i>Advanced Science</i> , 2020 , 7, 2000647	13.6	15
138	Pore Engineering of 2D Mesoporous Nitrogen-Doped Carbon on Graphene through Block Copolymer Self-Assembly. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1901476	4.6	15
137	Changes of soil organic and inorganic carbon in relation to grassland degradation in Northern Tibet. <i>Ecological Research</i> , 2017 , 32, 395-404	1.9	14
136	Reciprocal control of lncRNA-BCAT1 and Etatenin pathway reveals lncRNA-BCAT1 long non-coding RNA acts as a tumor suppressor in colorectal cancer. <i>Oncotarget</i> , 2017 , 8, 23628-23637	3.3	14
135	Recognizing single phospholipid vesicle collisions on carbon fiber nanoelectrode. <i>Science China Chemistry</i> , 2017 , 60, 1474-1480	7.9	14
134	Near-Atomic Fabrication with Nucleic Acids. <i>ACS Nano</i> , 2020 , 14, 1319-1337	16.7	13
133	Dopamine receptors mediate strategy abandoning via modulation of a specific prelimbic cortex-nucleus accumbens pathway in mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, E4890-E4899	11.5	13
132	DNA cleavage activity of Fe(II)N4Py under photo irradiation in the presence of 1,8-naphthalimide and 9-aminoacridine: unexpected effects of reactive oxygen species scavengers. <i>Inorganic Chemistry</i> , 2011 , 50, 8318-25	5.1	13
131	DNA-Based Fabrication for Nanoelectronics. <i>Nano Letters</i> , 2020 , 20, 5604-5615	11.5	13
130	Sequential Therapy of Acute Kidney Injury with a DNA Nanodevice. <i>Nano Letters</i> , 2021 , 21, 4394-4402	11.5	13
129	Distribution of soil carbon in different grassland types of the Qinghai-Tibetan Plateau. <i>Journal of Mountain Science</i> , 2016 , 13, 1806-1817	2.1	12
128	Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures. <i>Global Challenges</i> , 2020 , 4, 1900075	4.3	12

127	Dysregulation of Wnt/Etatenin signaling by protein kinases in hepatocellular carcinoma and its therapeutic application. <i>Cancer Science</i> , 2021 , 112, 1695-1706	6.9	12
126	Double diamond structured bicontinuous mesoporous titania templated by a block copolymer for anode material of lithium-ion battery. <i>Nano Research</i> , 2021 , 14, 992-997	10	12
125	Classifying Cell Types with DNA-Encoded Ligand-Receptor Interactions on the Cell Membrane. <i>Nano Letters</i> , 2020 , 20, 3521-3527	11.5	11
124	TAAR Agonists. <i>Cellular and Molecular Neurobiology</i> , 2020 , 40, 257-272	4.6	11
123	DNA Assembly-Based Stimuli-Responsive Systems. <i>Advanced Science</i> , 2021 , 8, 2100328	13.6	11
122	Microglia-derived interleukin-10 accelerates post-intracerebral hemorrhage hematoma clearance by regulating CD36. <i>Brain, Behavior, and Immunity</i> , 2021 , 94, 437-457	16.6	11
121	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 12450-4	16.4	11
120	Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch. <i>Protein and Cell</i> , 2019 , 10, 395-404	7.2	11
119	Epitope Binning Assay Using an Electron Transfer-Modulated Aptamer Sensor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 341-349	9.5	11
118	Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 179	7 ⁶ 1807	7 ¹¹
117	Activatable Ratiometric NIR-II Fluorescence Nanoprobe for Quantitative Detection of HS in Colon Cancer. <i>Analytical Chemistry</i> , 2021 , 93, 9356-9363	7.8	11
116	Terminal deoxynucleotidyl transferase (TdT)-catalyzed homo-nucleotides-constituted ssDNA: Inducing tunable-size nanogap for core-shell plasmonic metal nanostructure and acting as Raman reporters for detection of Escherichia coli O157:H7. <i>Biosensors and Bioelectronics</i> , 2019 , 141, 111419	11.8	10
115	Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 21859-21864	9.5	10
114	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. <i>Nanoscale</i> , 2019 , 11, 6263-6269	7.7	10
113	Programming Accessibility of DNA Monolayers for Degradation-Free Whole-Blood Biosensors 2019 , 1, 671-676		10
112	Data Storage Based on DNA. Small Structures, 2021 , 2, 2000046	8.7	10
111	The Impact of Repeated Freeze-Thaw Cycles on the Quality of Biomolecules in Four Different Tissues. <i>Biopreservation and Biobanking</i> , 2017 , 15, 475-483	2.1	9
110	Nonlinear Regulation of Enzyme-Free DNA Circuitry with Ultrasensitive Switches. <i>ACS Synthetic Biology</i> , 2019 , 8, 2106-2112	5.7	9

109	ALD-coated ultrathin Al2O3 film on BiVO4 nanoparticles for efficient PEC water splitting. <i>Nuclear Science and Techniques/Hewuli</i> , 2016 , 27, 1	2.1	9
108	DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers. <i>Nano Letters</i> , 2020 , 20, 7028-7035	11.5	9
107	Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau. <i>PLoS ONE</i> , 2016 , 11, e0160420	3.7	9
106	Live-cell imaging of octaarginine-modified polymer dots via single particle tracking. <i>Cell Proliferation</i> , 2019 , 52, e12556	7.9	8
105	Engineering a chemoenzymatic cascade for sustainable photobiological hydrogen production with green algae. <i>Energy and Environmental Science</i> , 2020 , 13, 2064-2068	35.4	8
104	Ultrasensitive analysis of microRNAs with gold nanoparticle-decorated molybdenum disulfide nanohybrid-based multilayer nanoprobes. <i>Chemical Communications</i> , 2020 , 56, 9012-9015	5.8	8
103	DNA framework-engineered electrochemical biosensors. <i>Science China Life Sciences</i> , 2020 , 63, 1130-114	11 8.5	8
102	Protein-Mimicking Nanoparticles for a Cellular Regulation of Homeostasis. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 31331-31336	9.5	8
101	Light Grazing Significantly Reduces Soil Water Storage in Alpine Grasslands on the Qinghai-Tibet Plateau. <i>Sustainability</i> , 2020 , 12, 2523	3.6	7
100	Prescribing DNA Origami Patterns via Scaffold Decoration. <i>Small</i> , 2020 , 16, e2000793	11	7
99	Epidermal growth factor receptor kinase substrate® promotes the metastasis of cervical cancer via the epithelial-mesenchymal transition. <i>Molecular Medicine Reports</i> , 2016 , 14, 3220-8	2.9	7
98	Post-Assembly Stabilization of Rationally Designed DNA Crystals. <i>Angewandte Chemie</i> , 2015 , 127, 1007	4 316 07	'7 ₇
97	N-Substituted indole-3-thiolate [4Fe\u00edS] clusters with a unique and tunable combination of spectral and redox properties. <i>Inorganica Chimica Acta</i> , 2008 , 361, 1811-1818	2.7	7
96	Identification of Immediate Early Genes in the Nervous System of Snail. <i>ENeuro</i> , 2019 , 6,	3.9	7
95	Two-Dimensional MXene-Polymer Heterostructure with Ordered In-Plane Mesochannels for High-Performance Capacitive Deionization. <i>Angewandte Chemie</i> , 2021 , 133, 26732	3.6	7
94	Framework Nucleic Acids for Cell Imaging and Therapy. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 1-9	2.2	7
93	Catalytic Nucleic Acids for Bioanalysis ACS Applied Bio Materials, 2020, 3, 2674-2685	4.1	7
92	Ogt controls neural stem/progenitor cell pool and adult neurogenesis through modulating Notch signaling. <i>Cell Reports</i> , 2021 , 34, 108905	10.6	7

91	Biocomputing Based on DNA Strand Displacement Reactions. ChemPhysChem, 2021, 22, 1151-1166	3.2	7
90	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 16693-16699	16.4	7
89	Programming PAM antennae for efficient CRISPR-Cas9 DNA editing. <i>Science Advances</i> , 2020 , 6, eaay994	1814.3	6
88	Accelerated evolution of an Lhx2 enhancer shapes mammalian social hierarchies. <i>Cell Research</i> , 2020 , 30, 408-420	24.7	6
87	Application Progress of DNA Nanostructures in Drug Delivery and Smart Drug Carriers. <i>Chinese Journal of Analytical Chemistry</i> , 2017 , 45, 1078-1087	1.6	6
86	Automated Nanoplasmonic Analysis of Spherical Nucleic Acids Clusters in Single Cells. <i>Analytical Chemistry</i> , 2020 , 92, 1333-1339	7.8	6
85	Erianin inhibits the oncogenic properties of hepatocellular carcinoma via inducing DNA damage and aberrant mitosis. <i>Biochemical Pharmacology</i> , 2020 , 182, 114266	6	6
84	Alpine grassland management based on ecosystem service relationships on the southern slopes of the Qilian Mountains, China. <i>Journal of Environmental Management</i> , 2021 , 288, 112447	7.9	6
83	Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. <i>Journal of the American Chemical Society</i> , 2021 , 143, 10735-10742	16.4	6
82	Prognostic value of lymph node ratio in patients with pathological N1 non-small cell lung cancer: a systematic review with meta-analysis. <i>Translational Lung Cancer Research</i> , 2016 , 5, 258-64	4.4	6
81	Ion-Mediated Polymerase Chain Reactions Performed with an Electronically Driven Microfluidic Device. <i>Angewandte Chemie</i> , 2016 , 128, 12638-12642	3.6	6
80	Reconstructing Soma-Soma Synapse-like Vesicular Exocytosis with DNA Origami. <i>ACS Central Science</i> , 2021 , 7, 1400-1407	16.8	6
79	The Triple Functions of D2 Silencing in Treatment of Periapical Disease. <i>Journal of Endodontics</i> , 2017 , 43, 272-278	4.7	5
78	Chromatin-Binding Protein PHF6 Regulates Activity-Dependent Transcriptional Networks to Promote Hunger Response. <i>Cell Reports</i> , 2020 , 30, 3717-3728.e6	10.6	5
77	PolyA-based DNA bonds with programmable bond length and bond energy. <i>NPG Asia Materials</i> , 2020 , 12,	10.3	5
76	Chloroquine inhibits tumor growth and angiogenesis in malignant pleural effusion. <i>Tumor Biology</i> , 2016 , 37, 16249	2.9	5
75	Programmable DNA Hydrogels as Artificial Extracellular Matrix Small, 2022, e2107640	11	5
74	Room-temperature Barbier single-atom polymerization induced emission as a versatile approach for the utilization of monofunctional carboxylic acid resources. <i>Polymer Chemistry</i> ,	4.9	5

73	Programmable Live-Cell CRISPR Imaging with Toehold-Switch-Mediated Strand Displacement. Angewandte Chemie, 2020 , 132, 20793-20799	3.6	5
72	Proteomic Exploration of Endocytosis of Framework Nucleic Acids. <i>Small</i> , 2021 , 17, e2100837	11	5
71	Tracking endocytosis and intracellular distribution of spherical nucleic acids with correlative single-cell imaging. <i>Nature Protocols</i> , 2021 , 16, 383-404	18.8	5
70	Programming folding cooperativity of the dimeric i-motif with DNA frameworks for sensing small pH variations. <i>Chemical Communications</i> , 2021 , 57, 3247-3250	5.8	5
69	Hydrophobic collapse-driven nanoparticle coating with poly-adenine adhesives. <i>Chemical Communications</i> , 2021 , 57, 3801-3804	5.8	5
68	Self-Protected DNAzyme Walker with a Circular Bulging DNA Shield for Amplified Imaging of miRNAs in Living Cells and Mice. <i>ACS Nano</i> , 2021 ,	16.7	5
67	Driving DNA Origami Assembly with a Terahertz Wave Nano Letters, 2021,	11.5	5
66	Injectable immunomodulation-based porous chitosan microspheres/HPCH hydrogel composites as a controlled drug delivery system for osteochondral regeneration <i>Biomaterials</i> , 2022 , 285, 121530	15.6	5
65	Poly-Adenine-Engineered Gold Nanogaps for SERS Nanostructures. <i>ACS Applied Nano Materials</i> , 2019 , 2, 3501-3509	5.6	4
64	Naloxone regulates the differentiation of neural stem cells via a receptor-independent pathway. <i>FASEB Journal</i> , 2020 , 34, 5917-5930	0.9	4
63	Can strand displacement take place in DNA triplexes?. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 372-375	3.9	4
62	Deorphanization of Olfactory Trace Amine-Associated Receptors. <i>Methods in Molecular Biology</i> , 2018 , 1820, 21-31	1.4	4
61	Risk given by AGT polymorphisms in inducing susceptibility to essential hypertension among isolated populations from a remote region of China: A case-control study among the isolated populations. <i>JRAAS - Journal of the Renin-Angiotensin-Aldosterone System</i> , 2015 , 16, 1202-17	3	4
60	Silver nanoparticle-activated COX2/PGE2 axis involves alteration of lung cellular senescence in vitro and in vivo. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 204, 111070	7	4
59	Pharmaceutical applications of framework nucleic acids <i>Acta Pharmaceutica Sinica B</i> , 2022 , 12, 76-91	15.5	4
58	Nano-in-Micro Delivery System Prepared by Co-Axial Air Flow for Oral Delivery of Conjugated Linoleic Acid. <i>Marine Drugs</i> , 2018 , 17,	6	4
57	Biosensors based on DNA logic gates. <i>View</i> , 2021 , 2, 20200038	7.8	4
56	Simultaneous Evaluation of the Preservative Effect of RNAlater on Different Tissues by Biomolecular and Histological Analysis. <i>Biopreservation and Biobanking</i> , 2018 , 16, 426-433	2.1	4

(2021-2021)

55	Programming cell communications with pH-responsive DNA nanodevices. <i>Chemical Communications</i> , 2021 , 57, 4536-4539	5.8	4	
54	DNA nanostructure-encoded fluorescent barcodes. <i>Aggregate</i> , 2020 , 1, 107-116	22.9	4	
53	Rapid Transmembrane Transport of DNA Nanostructures by Chemically Anchoring Artificial Receptors on Cell Membranes. <i>ChemPlusChem</i> , 2019 , 84, 323-327	2.8	3	
52	An Improved SVM-RFE Based on \$F\$ -Statistic and mPDC for Gene Selection in Cancer Classification. <i>IEEE Access</i> , 2019 , 7, 147617-147628	3.5	3	
51	Association of CYP17A1 Genetic Polymorphisms and Susceptibility to Essential Hypertension in the Southwest Han Chinese Population. <i>Medical Science Monitor</i> , 2017 , 23, 2488-2499	3.2	3	
50	DNA Framework-Programmed Micronano Hierarchy Sensor Interface for Metabolite Analysis in Whole Blood <i>ACS Applied Bio Materials</i> , 2020 , 3, 53-58	4.1	3	
49	Immunostimulatory AIE Dots for Live-Cell Imaging and Drug Delivery. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 19660-19667	9.5	3	
48	Kinetically Interlocking Multiple-Units Polymerization of DNA Double Crossover and Its Application in Hydrogel Formation. <i>Macromolecular Rapid Communications</i> , 2021 , 42, e2100182	4.8	3	
47	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 14438-14445	16.4	3	
46	Metal-Bridged Graphene-Protein Supraparticles for Analog and Digital Nitric Oxide Sensing. <i>Advanced Materials</i> , 2021 , 33, e2007900	24	3	
45	Programming biosensing sensitivity by controlling the dimension of nanostructured electrode. <i>Analytical and Bioanalytical Chemistry</i> , 2019 , 411, 4085-4092	4.4	3	
44	Postsynaptic Targeting and Mobility of Membrane Surface-Localized hASIC1a. <i>Neuroscience Bulletin</i> , 2021 , 37, 145-165	4.3	3	
43	Convergent olfactory trace amine-associated receptors detect biogenic polyamines with distinct motifs via a conserved binding site. <i>Journal of Biological Chemistry</i> , 2021 , 297, 101268	5.4	3	
42	Magnetoelectrics: Hybrid Magnetoelectric Nanowires for Nanorobotic Applications: Fabrication, Magnetoelectric Coupling, and Magnetically Assisted In Vitro Targeted Drug Delivery (Adv. Mater. 8/2017). <i>Advanced Materials</i> , 2017 , 29,	24	2	
41	Hepatic nitric oxide synthase 1 adaptor protein regulates glucose homeostasis and hepatic insulin sensitivity in obese mice depending on its PDZ binding domain. <i>EBioMedicine</i> , 2019 , 47, 352-364	8.8	2	
40	DNA Framework-Based Topological Cell Sorters. <i>Angewandte Chemie</i> , 2020 , 132, 10492-10496	3.6	2	
39	Non-additive Effects of Leaf Litter Mixtures from Robinia pseudoacacia and Ten Tree Species on Soil Properties. <i>Journal of Sustainable Forestry</i> , 2020 , 39, 771-784	1.2	2	
38	Nanomechanical Induction of Autophagy-Related Fluorescence in Single Cells with Atomic Force Microscopy. <i>Advanced Science</i> , 2021 , 8, e2102989	13.6	2	

37	Coordination of two enhancers drives expression of olfactory trace amine-associated receptors. <i>Nature Communications</i> , 2021 , 12, 3798	17.4	2
36	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6624-6630	16.4	2
35	Nanosurface energy transfer indicating Exo III-propelled stochastic 3D DNA walkers for HIV DNA detection. <i>Analyst, The</i> , 2021 , 146, 1675-1681	5	2
34	Restoration of Degraded Grassland Significantly Improves Water Storage in Alpine Grasslands in the Qinghai-Tibet Plateau <i>Frontiers in Plant Science</i> , 2021 , 12, 778656	6.2	2
33	Molecular Visualization of Early-Stage Acute Kidney Injury with a DNA Framework Nanodevice <i>Advanced Science</i> , 2022 , e2105947	13.6	2
32	Protein-Mimicking Nanoparticles in Biosystems Advanced Materials, 2022 , e2201562	24	2
31	Soil effects of six different two-species litter mixtures that include Ulmus pumila. <i>Chemistry and Ecology</i> , 2016 , 32, 707-721	2.3	1
30	Genome-wide CRISPR/Cas9 library screen identifies PCMT1 as a critical driver of ovarian cancer metastasis <i>Journal of Experimental and Clinical Cancer Research</i> , 2022 , 41, 24	12.8	1
29	AlCl exposure regulates neuronal development by modulating DNA modification. <i>World Journal of Stem Cells</i> , 2020 , 12, 1354-1365	5.6	1
28	Hepatic nNOS impaired hepatic insulin sensitivity through the activation of p38 MAPK. <i>Journal of Endocrinology</i> , 2021 , 248, 265-275	4.7	1
27	A sparse optimization problem with hybrid (L_2{text {-}}L_p) regularization for application of magnetic resonance brain images. <i>Journal of Combinatorial Optimization</i> , 2019 , 1	0.9	1
26	Advances in Whole-Cell Photobiological Hydrogen Production. <i>Advanced NanoBiomed Research</i> , 2021 , 1, 2000051	0	1
25	Arbuscular mycorrhizal fungal community structure following different grazing intensities in an alpine grassland. <i>Soil Science Society of America Journal</i> , 2021 , 85, 1620-1633	2.5	1
24	Two entry tunnels in mouse TAAR9 suggest the possibility of multi-entry tunnels in olfactory receptors <i>Scientific Reports</i> , 2022 , 12, 2691	4.9	1
23	Olfactory regulation by dopamine and DRD2 receptor in the nose <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119, e2118570119	11.5	1
22	Advances in aptamer-based nuclear imaging European Journal of Nuclear Medicine and Molecular Imaging, 2022 , 1	8.8	1
21	Long noncoding RNA PVT1 regulates the proliferation and apoptosis of ARPE-19 cells via the miR-1301-3p/KLF7 axis <i>Cell Cycle</i> , 2022 , 1-9	4.7	1
20	Gold-Nanoparticle-Mediated Assembly of High-Order DNA Nano-Architectures Small, 2022, e2200824	11	1

(2021-2021)

19	Chronic Intermittent Hypoxia-Induced Aberrant Neural Activities in the Hippocampus of Male Rats Revealed by Long-Term Recording <i>Frontiers in Cellular Neuroscience</i> , 2021 , 15, 784045	6.1	O
18	Molecular and Phenotypic Expansion of Alstrfh Syndrome in Chinese Patients <i>Frontiers in Genetics</i> , 2022 , 13, 808919	4.5	O
17	Recent advances in the construction of functional nucleic acids with isothermal amplification for heavy metal ions sensor. <i>Microchemical Journal</i> , 2022 , 175, 107077	4.8	О
16	Naloxone Facilitates Contextual Learning and Memory in a Receptor-Independent and Tet1-Dependent Manner. <i>Cellular and Molecular Neurobiology</i> , 2021 , 41, 1031-1038	4.6	O
15	Degradation of Structurally Defined Graphene Nanoribbons by Myeloperoxidase and the Photo-Fenton Reaction. <i>Angewandte Chemie</i> , 2020 , 132, 18673-18679	3.6	0
14	Computer vision-aided bioprinting for bone research <i>Bone Research</i> , 2022 , 10, 21	13.3	O
13	Block Copolymer Self-Assembly Guided Synthesis of Mesoporous Carbons with In-Plane Holey Pores for Efficient Oxygen Reduction Reaction <i>Macromolecular Rapid Communications</i> , 2022 , e210088	4 ^{4.8}	О
12	Optimum programmed intermittent epidural bolus interval time between 8ImL boluses of Ropivacaine 0.1% with sufentanil 0.3Ig/mL with dural puncture epidural technique for labor analgesia: A biased-coin up-and-down sequential allocation trial <i>Journal of Clinical Anesthesia</i> ,	1.9	0
11	Phase transferring luminescent gold nanoclusters via single-stranded DNA. <i>Science China Chemistry</i> ,1	7.9	О
10	A Chemical Approach for Real-time Monitoring Neuronal Activities. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 729-730	2.2	
9	An improved linear convergence of FISTA for the LASSO problem with application to CT image reconstruction. <i>Journal of Combinatorial Optimization</i> , 2019 , 1	0.9	
8	Positive feedback between retinoic acid and 2-phospho-L-ascorbic acid trisodium salt during somatic cell reprogramming. <i>Cell Regeneration</i> , 2020 , 9, 17	2.5	
7	Electrochemically driven assembly of framework nucleic acids. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 905, 115901	4.1	
6	Imaging of Cell Migration Mediated Exocytosis with Gold Nanoprobes. <i>Chinese Journal of Analytical Chemistry</i> , 2020 , 48, 847-854	1.6	
5	Poly-Adenine-Based Spherical Nucleic Acids for Efficient Live-Cell MicroRNA Capture. <i>Angewandte Chemie</i> , 2021 , 133, 14559-14566	3.6	
4	An Illustrated Guide to the Imaging Evolution of COVID in Non-Epidemic Areas of Southeast China. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 648180	5.6	
3	DNA Framework-Engineered Long-Range Electrostatic Interactions for DNA Hybridization Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 16829-16835	3.6	
2	Probing Transient DNA Conformation Changes with an Intercalative Fluorescent Excimer. <i>Angewandte Chemie</i> , 2021 , 133, 6698-6704	3.6	

DNA Nanotechnology for Plasmonics **2022**, 271-323