Sahika inal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953187/publications.pdf

Version: 2024-02-01

		44444	40945
107	10,024	50	97
papers	citations	h-index	g-index
116	116	116	9966
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Tailoring Electropolymerized Poly(3,4â€ethylenedioxythiophene) Films for Oxygen Reduction Reaction. Advanced Materials Technologies, 2022, 7, 2100277.	3.0	7
2	Organic Bioelectronic Devices for Metabolite Sensing. Chemical Reviews, 2022, 122, 4581-4635.	23.0	55
3	Ionicâ€Liquid Induced Morphology Tuning of PEDOT:PSS for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, .	7.8	43
4	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2105007.	11.1	33
5	Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications. Materials Horizons, 2022, 9, 973-980.	6.4	23
6	Fast and sensitive electromechanical sensing. Nature Biomedical Engineering, 2022, 6, 223-224.	11.6	2
7	Hydroxymethyl PEDOT microstructure-based electrodes for high-performance supercapacitors. APL Materials, 2022, 10, .	2.2	11
8	Pathogen and Protein Detection using Organic Electronics. , 2022, , .		0
9	A Peculiar Binding Characterization of DNA (RNA) Nucleobases at MoOS-Based Janus Biosensor: Dissimilar Facets Role on Selectivity and Sensitivity. Biosensors, 2022, 12, 442.	2.3	2
10	Performance of PEDOTOH/PEOâ€based Supercapacitors in Agarose Gel Electrolyte. Chemistry - an Asian Journal, 2022, 17, .	1.7	3
11	Operation Mechanism of nâ€Type Organic Electronic Metabolite Sensors. Advanced Electronic Materials, 2022, 8, .	2.6	12
12	Conjugated Polymer based Electronics for Diagnostics in Physiological Media., 2022,,.		0
13	Convection Driven Ultrarapid Protein Detection via Nanobodyâ€Functionalized Organic Electrochemical Transistors. Advanced Materials, 2022, 34, .	11.1	36
14	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie - International Edition, 2021, 60, 7777-7785.	7.2	84
15	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie, 2021, 133, 7856-7864.	1.6	16
16	Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 4253-4266.	4.0	76
17	Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sensors and Actuators B: Chemical, 2021, 329, 129251.	4.0	35
18	Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid- \hat{l}^2 Detection. ACS Nano, 2021, 15, 8130-8141.	7.3	59

#	Article	IF	Citations
19	Mixed Conduction in an Nâ€Type Organic Semiconductor in the Absence of Hydrophilic Sideâ€Chains. Advanced Functional Materials, 2021, 31, 2010165.	7.8	71
20	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. Advanced Functional Materials, 2021, 31, 2100723.	7.8	35
21	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677.	11.6	235
22	Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes. Journal of the American Chemical Society, 2021, 143, 11007-11018.	6.6	74
23	Advances in bioelectronics: Materials, devices, and translational applications. APL Materials, 2021, 9, 070402.	2.2	2
24	Integration of Organic Electrochemical Transistors with Implantable Probes. Advanced Materials Technologies, 2021, 6, 2100763.	3.0	16
25	Decoding Electrophysiological Signals with Organic Electrochemical Transistors. Macromolecular Bioscience, 2021, 21, e2100187.	2.1	11
26	Reversible Electrochemical Charging of n-Type Conjugated Polymer Electrodes in Aqueous Electrolytes. Journal of the American Chemical Society, 2021, 143, 14795-14805.	6.6	62
27	The effect of the donor moiety of DPP based polymers on the performance of organic electrochemical transistors. Journal of Materials Chemistry C, 2021, 9, 13338-13346.	2.7	28
28	The Effect of Alkyl Spacers on the Mixed Ionicâ€Electronic Conduction Properties of Nâ€Type Polymers. Advanced Functional Materials, 2021, 31, 2008718.	7.8	67
29	Muscle Fatigue Sensor Based on Ti ₃ C ₂ T <i>_x</i> MXene Hydrogel. Small Methods, 2021, 5, e2100819.	4.6	49
30	Dual Mode Sensing of Binding and Blocking of Cancer Exosomes to Biomimetic Human Primary Stem Cell Surfaces. ACS Biomaterials Science and Engineering, 2021, , .	2.6	1
31	Laser-Scribed Graphene Electrodes Derived from Lignin for Biochemical Sensing. ACS Applied Nano Materials, 2020, 3, 1166-1174.	2.4	74
32	A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sensors and Actuators B: Chemical, 2020, 306, 127539.	4.0	72
33	Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nature Materials, 2020, 19, 456-463.	13.3	187
34	In Situ Electrochemical Synthesis of a Conducting Polymer Composite for Multimetabolite Sensing. Advanced Materials Technologies, 2020, 5, 1900943.	3.0	39
35	Organic Bioelectronics: From Functional Materials to Nextâ€Generation Devices and Power Sources. Advanced Materials, 2020, 32, e2001439.	11.1	101
36	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020, 32, e2002748.	11.1	181

#	Article	IF	Citations
37	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chemistry of Materials, 2020, 32, 6618-6628.	3.2	92
38	A Self-standing Organic Supercapacitor to Power Bioelectronic Devices. ACS Applied Energy Materials, 2020, 3, 7896-7907.	2.5	24
39	Benchmarking the Performance of Electropolymerized Poly(3,4â€ethylenedioxythiophene) Electrodes for Neural Interfacing. Macromolecular Bioscience, 2020, 20, e2000215.	2.1	15
40	Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nature Communications, 2020, 11, 3004.	5. 8	82
41	Fully Inkjetâ€Printed, Ultrathin and Conformable Organic Photovoltaics as Power Source Based on Crossâ€Linked PEDOT:PSS Electrodes. Advanced Materials Technologies, 2020, 5, 2000226.	3.0	50
42	Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Materials Horizons, 2020, 7, 2348-2358.	6.4	42
43	Biomembrane-based organic electronic devices for ligand–receptor binding studies. Analytical and Bioanalytical Chemistry, 2020, 412, 6265-6273.	1.9	14
44	Tailoring PEDOT properties for applications in bioelectronics. Materials Science and Engineering Reports, 2020, 140, 100546.	14.8	140
45	The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes. ACS Applied Materials & Substituted Polythiophenes.	4.0	78
46	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	7.8	131
47	MXene improves the stability and electrochemical performance of electropolymerized PEDOT films. APL Materials, 2020, 8, .	2.2	25
48	Inkjet-printed Ti ₃ C ₂ T _x MXene electrodes for multimodal cutaneous biosensing. JPhys Materials, 2020, 3, 044004.	1.8	30
49	Redox-active Polymers in Biofuel Cells. RSC Polymer Chemistry Series, 2020, , 332-382.	0.1	1
50	Enzymeâ€Free Detection of Glucose with a Hybrid Conductive Gel Electrode. Advanced Materials Interfaces, 2019, 6, 1800928.	1.9	51
51	An organic electrochemical transistor integrated with a molecularly selective isoporous membrane for amyloid- \hat{l}^2 detection. Biosensors and Bioelectronics, 2019, 143, 111561.	5.3	36
52	On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. Advanced Materials, 2019, 31, e1902291.	11.1	52
53	High-Performance Organic Electrochemical Transistors Based on Conjugated Polyelectrolyte Copolymers. Chemistry of Materials, 2019, 31, 5286-5295.	3.2	56
54	Facile Generation of Biomimetic-Supported Lipid Bilayers on Conducting Polymer Surfaces for Membrane Biosensing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 43799-43810.	4.0	41

#	Article	IF	CITATIONS
55	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	2.5	51
56	Membraneâ€Free Detection of Metal Cations with an Organic Electrochemical Transistor. Advanced Functional Materials, 2019, 29, 1904403.	7.8	80
57	Solvent Engineering for Highâ€Performance nâ€Type Organic Electrochemical Transistors. Advanced Electronic Materials, 2019, 5, 1900249.	2.6	59
58	Highly selective chromoionophores for ratiometric Na+ sensing based on an oligoethyleneglycol bridged bithiophene detection unit. Journal of Materials Chemistry C, 2019, 7, 5359-5365.	2.7	13
59	Digital Inkjet Printing of Highâ€Efficiency Largeâ€Area Nonfullerene Organic Solar Cells. Advanced Materials Technologies, 2019, 4, 1900040.	3.0	69
60	BMP-2 functionalized PEDOT:PSS-based OECTs for stem cell osteogenic differentiation monitoring. Flexible and Printed Electronics, 2019, 4, 044006.	1.5	11
61	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	7.8	116
62	An Electrocorticography Device with an Integrated Microfluidic Ion Pump for Simultaneous Neural Recording and Electrophoretic Drug Delivery In Vivo. Advanced Biology, 2019, 3, e1800270.	3.0	63
63	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	3.2	140
64	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chemistry of Materials, 2018, 30, 2945-2953.	3.2	199
65	Organic electrochemical transistors. Nature Reviews Materials, 2018, 3, .	23.3	1,143
66	Lipid bilayer formation on organic electronic materials. Journal of Materials Chemistry C, 2018, 6, 5218-5227.	2.7	12
67	Smaller Counter Cation for Higher Transconductance in Anionic Conjugated Polyelectrolytes. Macromolecular Chemistry and Physics, 2018, 219, 1700374.	1.1	22
68	A fully inkjet-printed disposable glucose sensor on paper. Npj Flexible Electronics, 2018, 2, .	5.1	136
69	Transistor in a tube: A route to three-dimensional bioelectronics. Science Advances, 2018, 4, eaat4253.	4.7	78
70	Visualizing the Solid–Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes. ACS Applied Bio Materials, 2018, 1, 1348-1354.	2.3	12
71	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	4.7	183
72	Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. Journal of Materials Chemistry C, 2018, 6, 12023-12030.	2.7	108

#	Article	IF	CITATIONS
73	Improving the Compatibility of Diketopyrrolopyrrole Semiconducting Polymers for Biological Interfacing by Lysine Attachment. Chemistry of Materials, 2018, 30, 6164-6172.	3.2	37
74	Fully printed all-polymer tattoo/textile electronics for electromyography. Flexible and Printed Electronics, 2018, 3, 034004.	1.5	46
75	Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 2018, 51, 1368-1376.	7.6	361
76	Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics. Macromolecular Materials and Engineering, 2017, 302, 1600497.	1.7	127
77	Polyelectrolyte Layer-by-Layer Assembly on Organic Electrochemical Transistors. ACS Applied Materials & Description of the M	4.0	43
78	A Microfluidic Ion Pump for In Vivo Drug Delivery. Advanced Materials, 2017, 29, 1701217.	11.1	97
79	Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. Advanced Biology, 2017, 1, 1700052.	3.0	89
80	Benchmarking organic mixed conductors for transistors. Nature Communications, 2017, 8, 1767.	5.8	343
81	Organic electrochemical transistors based on PEDOT with different anionic polyelectrolyte dopants. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 147-151.	2.4	63
82	Supported Lipid Bilayer Assembly on PEDOT:PSS Films and Transistors. Advanced Functional Materials, 2016, 26, 7304-7313.	7.8	62
83	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12022.	3.3	364
84	Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9440-9445.	3.3	107
85	Autoclave Sterilization of PEDOT:PSS Electrophysiology Devices. Advanced Healthcare Materials, 2016, 5, 3094-3098.	3.9	46
86	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). Chemistry of Materials, 2016, 28, 6080-6088.	3.2	96
87	N-type organic electrochemical transistors with stability in water. Nature Communications, 2016, 7, 13066.	5.8	242
88	Conducting polymer scaffolds for electrical control of cellular functions (Conference) Tj ETQq0 0 0 rgBT /Overloc	k 10 Tf 50	142 Td (Pres
89	Structural control of mixed ionic and electronic transport in conducting polymers. Nature Communications, 2016, 7, 11287.	5.8	627
90	Optical study of electrochromic moving fronts for the investigation of ion transport in conducting polymers. Journal of Materials Chemistry C, 2016, 4, 3942-3947.	2.7	44

#	Article	IF	CITATIONS
91	3D conducting polymer platforms for electrical control of protein conformation and cellular functions. Journal of Materials Chemistry B, 2015, 3, 5040-5048.	2.9	116
92	Controlling Epileptiform Activity with Organic Electronic Ion Pumps. Advanced Materials, 2015, 27, 3138-3144.	11.1	138
93	SiO2/carbon nitride composite materials: The role of surfaces for enhanced photocatalysis. Catalysis Today, 2014, 225, 185-190.	2.2	56
94	<i>In Situ</i> Formation of Heterojunctions in Modified Graphitic Carbon Nitride: Synthesis and Noble Metal Free Photocatalysis. Chemistry of Materials, 2014, 26, 5812-5818.	3.2	192
95	A High Transconductance Accumulation Mode Electrochemical Transistor. Advanced Materials, 2014, 26, 7450-7455.	11.1	151
96	A water soluble fluorescent polymer as a dual colour sensor for temperature and a specific protein. Journal of Materials Chemistry B, 2013, 1, 6373.	2.9	38
97	Temperatureâ€Regulated Fluorescence Characteristics of Supramolecular Assemblies Formed By a Smart Polymer and a Conjugated Polyelectrolyte. Macromolecular Chemistry and Physics, 2013, 214, 435-445.	1.1	13
98	Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. Journal of the American Chemical Society, 2013, 135, 7118-7121.	6.6	781
99	Structure-related differences in the temperature-regulated fluorescence response of LCST type polymers. Journal of Materials Chemistry C, 2013, 1, 6603.	2.7	31
100	Temperature-Regulated Fluorescence and Association of an Oligo(ethyleneglycol)methacrylate-Based Copolymer with a Conjugated Polyelectrolyte—The Effect of Solution Ionic Strength. Journal of Physical Chemistry B, 2013, 117, 14576-14587.	1.2	7
101	Fluorinated Copolymer PCPDTBT with Enhanced Open-Circuit Voltage and Reduced Recombination for Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2012, 134, 14932-14944.	6.6	361
102	The Relationship between the Electric Field-Induced Dissociation of Charge Transfer Excitons and the Photocurrent in Small Molecular/Polymeric Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 982-986.	2.1	50
103	Relationship of Photophysical Properties and the Device Performance of Novel Hybrid Smallâ€Molecular/Polymeric Solar Cells. Macromolecular Rapid Communications, 2009, 30, 1263-1268.	2.0	10
104	Understanding the effect of polymer hydration on n-type organic mixed semiconductor transistors. , 0, , .		0
105	Conjugated Polymer based Electronics for Diagnostics in Physiological Media. , 0, , .		0
106	Operation mechanism of n-type organic electronic metabolite sensors. , 0, , .		0
107	Influence of side chains on the n-type organic electrochemical transistor performance. , 0, , .		0