Federico Franco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953174/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Applications of Carbon Dots for the Photocatalytic and Electrocatalytic Reduction of CO2. Molecules, 2022, 27, 1081.	3.8	23
2	Mechanically Constrained Catalytic Mn(CO) ₃ Br Single Sites in a Two-Dimensional Covalent Organic Framework for CO ₂ Electroreduction in H ₂ O. ACS Catalysis, 2021, 11, 7210-7222.	11.2	43
3	A Unified Electro- and Photocatalytic CO ₂ to CO Reduction Mechanism with Aminopyridine Cobalt Complexes. Journal of the American Chemical Society, 2020, 142, 120-133.	13.7	75
4	Transition metal-based catalysts for the electrochemical CO ₂ reduction: from atoms and molecules to nanostructured materials. Chemical Society Reviews, 2020, 49, 6884-6946.	38.1	305
5	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visibleâ€Light Photoredox Catalysis. Angewandte Chemie - International Edition, 2019, 58, 4869-4874.	13.8	63
6	Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visible‣ight Photoredox Catalysis. Angewandte Chemie, 2019, 131, 4923-4928.	2.0	11
7	Advances in the electrochemical catalytic reduction of CO2 with metal complexes. Current Opinion in Electrochemistry, 2019, 15, 109-117.	4.8	48
8	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 4603-4606.	13.8	109
9	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 2018, 130, 4693-4696.	2.0	23
10	Understanding light-driven H ₂ evolution through the electronic tuning of aminopyridine cobalt complexes. Chemical Science, 2018, 9, 2609-2619.	7.4	31
11	Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, 4782-4793.	3.3	123
12	Frontispiece: Local Proton Source in Electrocatalytic CO ₂ Reduction with [Mn(bpy–R)(CO) ₃ Br] Complexes. Chemistry - A European Journal, 2017, 23, .	3.3	0
13	Electrochemical Reduction of CO ₂ by M(CO) ₄ (diimine) Complexes (M=Mo, W): Catalytic Activity Improved by 2,2′â€Đipyridylamine. ChemElectroChem, 2015, 2, 1372-1379.	3.4	46
14	Photo†and Electrocatalytic Reduction of CO ₂ by [Re(CO) ₃ {î±,î±â€²â€Diimineâ€(4â€piperidinylâ€1,8â€naphthalimide)}Cl] Complexes. European Jou Inorganic Chemistry, 2015, 2015, 296-304.	rn al @f	45
15	A local proton source in a [Mn(bpy-R)(CO) ₃ Br]-type redox catalyst enables CO ₂ reduction even in the absence of BrÃ,nsted acids. Chemical Communications, 2014, 50, 14670-14673.	4.1	144
16	Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides. Journal of Physical Chemistry C, 2013, 117, 9991-9998.	3.1	26
17	The Dual Effect of Coordinating â^'NH Groups and Light in the Electrochemical CO 2 Reduction with Pyridylamino Co Complexes. ChemElectroChem, 0, , .	3.4	5