Naveed Zafar Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953101/publications.pdf

Version: 2024-02-01

		1307594	1474206	
11	129	7	9	
papers	citations	h-index	g-index	
11	11	11	208	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Corrosion inhibition studies of ferrocenyl Schiff bases in a mild acidic medium through experimental methods and DFT calculations. New Journal of Chemistry, 2022, 46, 3925-3938.	2.8	8
2	Corrosion protection of aluminum alloy (AA2219-T6) using sulfonic acid-doped conducting polymer coatings. New Journal of Chemistry, 2022, 46, 14557-14564.	2.8	6
3	Defect ferromagnetism induced by lower valence cation doping: Li-doped SnO ₂ nanoparticles. RSC Advances, 2020, 10, 26342-26348.	3.6	10
4	Synthesis, Characterization and Biological Studies of Ether–Based Ferrocenyl Amides and their Organic Analogues. Crystals, 2020, 10, 480.	2.2	0
5	Topotactic, pressure-driven, diffusion-less phase transition of layered CsCoO ₂ to a stuffed cristobalite-type configuration. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2019, 75, 704-710.	1.1	0
6	Defect ferromagnetism in SnO ₂ :Zn ²⁺ hierarchical nanostructures: correlation between structural, electronic and magnetic properties. RSC Advances, 2019, 9, 4082-4091.	3.6	7
7	Experimental and theoretical insights into the corrosion inhibition activity of novel Schiff bases for aluminum alloy in acidic medium. RSC Advances, 2019, 9, 36455-36470.	3.6	15
8	Effect of Cr-N codoping on structural phase transition, Raman modes, and optical properties of TiO2 nanoparticles. Journal of Applied Physics, 2018, 123, .	2.5	9
9	Photocatalytic Dehydrogenation of Formic Acid on CdS Nanorods through Ni and Co Redox Mediation under Mild Conditions. ChemSusChem, 2018, 11, 2587-2592.	6.8	44
10	Anomalous temperature dependence of magnetic coercivity and structure property correlations in $Bi < 0.75 < sub < 0.25 < $	5.5	27
11	\hat{I}^3 -Rays Irradiation Induced Structural and Morphological Changes in Copper Nanowires. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	3